
J Sign Process Syst
DOI 10.1007/s11265-008-0321-4

A Multi-core Architecture Based Parallel Framework
for H.264/AVC Deblocking Filters

Sung-Wen Wang · Shu-Sian Yang · Hong-Ming Chen ·
Chia-Lin Yang · Ja-Ling Wu

Received: 15 September 2007 / Revised: 30 April 2008 / Accepted: 11 November 2008
© 2008 Springer Science + Business Media, LLC. Manufactured in The United States

Abstract Deblocking filter is one of the most time
consuming modules in the H.264/AVC decoder as in-
dicated in many studies. Therefore, accelerating de-
blocking filter is critical for improving the overall
decoding performance. This paper proposes a novel
parallel algorithm for H.264/AVC deblocking filter to
speed the H.264/AVC decoder up. We exploit pixel-
level data parallelism among filtering steps, and observe
that results of each filtering step only affect a limited
region of pixels. We call this “the limited propagation
effect”. Based on this observation, the proposed algo-
rithm could partition a frame into multiple independent
rectangles with arbitrary granularity. The proposed
parallel deblocking filter algorithm requires very little
synchronization overhead, and provides good scalabil-
ity. Experimental results show that applying the pro-
posed parallelization method to a SIMD optimized
sequential deblocking filter achieves up to 95.31% and

Ja-Ling Wu is a Fellow IEEE.

S.-W. Wang (B) · S.-S. Yang · H.-M. Chen ·
C.-L. Yang · J.-L. Wu
Department of Computer Science and Information
Engineering, National Taiwan University, Taipei, Taiwan
e-mail: song@cmlab.csie.ntu.edu.tw

S.-S. Yang
e-mail: pigyoung@cmlab.csie.ntu.edu.tw

H.-M. Chen
e-mail: blacksmith@cmlab.csie.ntu.edu.tw

C.-L. Yang
e-mail: yangc@csie.ntu.edu.tw

J.-L. Wu
e-mail: wjl@cmlab.csie.ntu.edu.tw

224.07% speedup on a two-core and four-core proces-
sor, respectively. We have also observed a significant
speedup for H.264/AVC decoding, 21% and 34% on a
two-core and four-core processor, respectively.

Keywords Video coding · H.264/AVC ·
Deblocking filter · SIMD · Parallel algorithm

1 Introduction

A content adaptive in-loop deblocking filter has been
adopted by H.264/AVC. Unlike traditional post-loop
filters, the in-loop filter is part of the frame recon-
struction process. Any inappropriate modification of
the in-loop filter causes serious error propagation
to succeeding frames. The deblocking filter adopted
by H.264/AVC, though offers 10–15% bit rate sav-
ing, suffers from heavy computational load due to
the high data dependency among filtering stages [1].
Lappalainen et al. proposed an optimized implementa-
tion of H.264/AVC decoder [2], in which the profiling
results show that image interpolation and deblocking
filter contributes to a significant part of the decoding
time. For HDTV applications, Chen et al. [3] also ana-
lyzed the computation profiles of H.264/AVC decoder
with HDTV1024p video clips. Based on their analysis,
the computational time contributed by the modules of
interpretation and deblocking filter are 39% and 38%,
respectively. Therefore, to improve the H.264/AVC
decoding performance, accelerating deblocking filter is
critical.

Many recent studies focused on designing dedicated
hardware to improve the data transmission rate of

J Sign Process Syst

deblocking filter. Huang et al. [4] proposed SRAM
modules with carefully organized data structure for the
efficient access of pixels in different blocks. To simplify
data exchange between deblocking filter and outside
data memory, Sima et al. [5] designed a compact data
access unit and a build-in data buffer. To efficiently
utilize the bus bandwidth, by classifying the filtering
mode, Chang et al. [6] used an adaptive transmission
scheme to avoid redundant data transfer. Cheng et al.
[7] proposed an in-place computing flow to reuse the
intermediate data. To support the deblocking oper-
ation for multi-channel video applications, Khurana
et al. [8] proposed a pipelined hardware implementa-
tion of in-loop deblocking filter. The dedicated hard-
ware approach can achieve highly efficient deblocking
operations but it is lack of flexibility. A new standard
often requires a whole new design of a dedicated
hardware.

Single instruction multiple data (SIMD) is a com-
monly used approach to improve the performance of
media processing on a general purpose processor, such
as, MMX, SSE1, SSE2 and SSE3[9]. Warrington et al.
[10] applied SIMD instructions to improve the per-
formance of H.264/AVC deblocking filtering. Never-
theless, the complexity of the deblocking filter comes
mainly from the huge amount of data comparisons
involved. Each 4 × 4 block has to be examined by
series of conditional checks. The requirement of pixel-
by-pixel conditional checks limits its performance gain
obtainable from SIMD instructions. Unlike the interpo-
lation operations, the performance of deblocking filter
cannot easily be enhanced by using SIMD instructions
only. As shown in [11] the speedup ratios for chro-
minance motion compensation and that of deblock-
ing filter are 10.2 and 1.1, respectively. Figure 1 shows
the execution time distribution of a SIMD-optimized

Buffer
Management,

0.01%

CAVLC+Syntax

Motion
Comensation,

12.06%

CAVLC+Syntax
Parsing,
23.79%

Deblocking
Filter 38 60%

I/O, 3.61%

Intra
Prediction,

1.08%

main.c,0.56%
Misc,

11.17%

Filter, 38.60%
DeQuantizatio

n/Inverse
Integer

Transform,
9.12%

Deblocking

Figure 1 Time breakdown of SIMD-optimized H.264/AVC
decoder.

decoder/footnote. The SIMD-optimized decoder used
in this study is derived on the basis of our previous work
[12]. We can see that deblocking filter still accounts
for 38.6% of the execution time of SIMD-optimized
H.264/AVC decoding.

In addition to conventional optimization schemes,
with the increasing popularity of multi-core processors,
parallelizing heavy computational tasks becomes an
effective way for performance enhancement. Unfortu-
nately, it is not easy to develop effective algorithms that
can take advantage of parallel processors. Parallelism
does not guarantee speedup. Without cautious arrange-
ment, the associated synchronization overhead may
impair the benefits of parallel execution dramatically.
In this work, we propose a novel parallel algorithm
for H.264/AVC in-loop deblocking filter that requires
very little synchronization overhead. The proposed al-
gorithm is based on the observation that results of
each filtering step only affect a limited region of pixels.
This is referred to as “limited propagation effect” in
this paper. Based on this observation, the proposed
parallel deblocking filter algorithm partitions a frame
(or a region containing multiple macroblocks) into
d independent rectangles, where d is the number of
available processors. Since there are no dependencies
among rectangles allocated to different processors, a
processor needs only to perform synchronization once
in the entire frame. Therefore, the proposed parallelism
needs only d synchronization operations. Experimental
results show that applying the proposed parallelizing
approach to a SIMD optimized sequential deblocking
filter achieves up to 95.31% and 224.07% speedup for
two-core and four-core processors, respectively. The
synchronization overhead of the proposed algorithm is
almost negligible (less than 1%) for both 2-core and
4-core processors. In contrast, the well-known wave-
front parallelization approach [24] does not show per-
formance improvement on SIMD optimized codes due
to significant synchronization overhead, up to 30.78%
of the deblocking execution time. The experimental
results also show that our scheme achieves a significant
speedup for H.264/AVC decoding, 21% and 34% on a
two-core and four-core processor, respectively.

The remainder of this paper is organized as follows.
The related works are introduced in Section 2. A brief
summary of deblocking filtering and the conventional
parallel deblocking filtering method are described in
Section 3. Section 4 addresses the “limited propagation
effect” in the deblocking filter of H.264/AVC. Then,
we present the proposed parallel deblocking filtering
algorithm in Section 5. Experimental results are given
in Section 6. Finally, the concluding remarks and future
research directions are addressed in Section 7.

J Sign Process Syst

2 Related Works

In general, there are two ways to parallelize an applica-
tion: task-level parallelism and data-level parallelism.
Task-level parallelism assigns independent tasks to dif-
ferent processors and data-level parallelism process
independent data concurrently. Task-level parallelism
is more suitable for asymmetric multi-core architecture
since the loading of each task is usually not balanced
[13, 14]. Task-level parallelism are also preferred in
hardware implementations [15–19], software-hardware
co-design [20], and software pipelining [25]. For paral-
lelizing video coding on symmetric multi-core architec-
ture, data-level parallelism is more preferable.

A video sequence is composed of a series of Group
of Pictures (GOPs) and a GOP contains a series of
frames. A video frame comprises several slices which
are independent to each other and can be further di-
vided into non-overlapped MacroBlocks (MBs). This
hierarchical data structure naturally provides different
level of granularities and gives different degree of ef-
fects on parallelism. From the GOP level to slice level,
Rodriguez et al. [21] proposed a hierarchical paral-
lelization encoding scheme. In [22], Chen et al. pre-
sented a frame level to slice level data parallelization
video coding scheme. In general, to fully utilize the
available cores, the number of slices per frame should
be large when the number of cores increases.

Without doubt, a significant speedup of slice-level
parallelism can be expected because less synchroniza-
tion and communication overheads existing in the slice
level; however, it brings negative impacts as well. Con-
sidering the encoding efficiency, the result of [22] and
[23] show that more independent slices degrades the
bit-rate performance. The main reason is that, in this
case, MBs cannot exploit the correlation across slice
boundaries. It is clear that speedup can be obtained
from encoding independent slices in parallel; however,
decoding multiple independent slices in parallel is in-
applicable for a client because the number of multiple
slices for a frame cannot always be guaranteed. For ex-
ample, if only one slice completes a frame, the number
of slices that can be processed in parallel is limited due
to their temporal prediction dependencies.

After analyzing the data dependency among MBs, it
is clear that the current MB relies only on its neigh-
boring four MBs, i.e. Top-left, Top, Top-right, and
left ones. By rearranging the data partition and task
scheduling, several independent MBs can be executed
concurrently. Since the positions of independent MBs
are wavefront-like, this kind of parallelism method is
named as the wavefront parallelization. For the en-
coder, the wavefront MB decomposition has been

adopted in [26], which provides good coding effi-
ciency. For the decoder, similar approaches has also
been addressed in [25, 28]. More detailed information
about MB wavefront parallelization will introduced in
Section 3.2.

MB-wavefront provides a finer granularity of par-
allelism than slices and prevents the data dependency
violation. However, as compared with slice-level par-
allelism, MB-level parallelism has two disadvantages.
The first one is that entropy decoding cannot be par-
allelized in MB-level. An H.264/AVC video bitstream
is composed of a series of Network Abstraction Layer
Units (NALs) with fixed length headers [27]. Since
the length of the header is fixed, the Slice type which
is the lowest level of NAL type can be individually
parsed from the bitstream. Nevertheless, MBs can-
not be individually extracted without conducting en-
tropy decoding in order. That is, independent MBs can
be simultaneously issued only when entropy decoding
has been performed. The second shortcoming is the
penalty brought from finer granularity of parallelism.
The wavefront MB decomposition requires frequent
synchronization among processing units, which could
possibly impair the speedup obtainable from parallel
processing.

3 Background

3.1 Deblocking Filtering of H.264/AVC

H.264/AVC adopts an in-loop deblocking filter for
removing block-edge artifacts that are introduced by
block transformation and block motion compensation.
As the name of “In-loop” implies the moment to apply
filtering while prior reconstruction step is within the
motion compensation loop. Figure 2 shows the block
diagram of H.264/AVC decoding process and where the
insertion point of deblocking filter is. To adaptively al-
leviate blocking artifact, the deblocking stage is divided
into three levels: slice level, block level and pixel level.
At the slice level, encoder sets an overall strength for
the filter. At the block level, a 4 × 4 block-dependent
Boundary Strength (BS) value is determined according
to the coding information, such as coding mode and
coded residues. Finally, at the pixel level, pixels on
either side of an edge are examined and then filtered.
More specifically, if the difference between these pixels
is lower than a Quantization Parameter (QP) depen-
dent threshold and the slice level offset, the edge is
considered as a blocking artifact. The filtering stage is
applied to each 4 × 4 luminance and chrominance block
edge within each MB, in a specific order, as shown

J Sign Process Syst

Figure 2 Block diagram
of H.264/AVC decoding
process.

Entropy
DE-

Quantize/

Motion
Compens

ation De-
blocking

Reference
Decoding inverse

Transform Intra
Prediction

blocking
Filter

Buffer

in Fig. 3: vertical boundary edges are filtered first,
followed by the horizontal ones.

All filtering steps are taken place from left to right
and from top to bottom. Moreover, MBs are processed
in a raster-scan order over the frame. This particular
filtering order must be followed to ensure both the
encoder and the decoder obtaining the same result.

For MB boundary (MB-B) edges, four pixels on ei-
ther side of each edge are evaluated. Up to three pixels
on either side of the edge may be influenced. Non-
MB-boundary (N-MB-B) edges are less affected by the
blocking effect, thus, processed by a filter with shorter
length. Three pixels on either side of an N-MB-B edge
are evaluated, and only up to two pixels on either side
may be influenced. By convention [27], pixels on either
side of an edge in adjacent blocks p and q are denoted
by pi and qi with i = 0,...,3, as shown in Fig. 4. More
details about the edge filtering can be found in [27].
Table 1 summarizes all possible influenced pixels and
their respective referenced pixels.

Since the steps of boundary edges filtering within
an MB obey the prescribed ordering (c.f. Fig. 3), the
evaluated pixels on an specific edge filtering depend
on the filtered pixels values of its previous edge filter-
ing. We divide the influences upon pixels into two
parts: the impact from the filtering of current MB and
the impact from adjacent MBs. That is, the pixels

Figure 3 Edge filtering order in an MB.

influenced by the antecedent edge filtering will be used
as the pixels of the current MB in the subsequent edge
filtering. Moreover, pixels of the current MB will affect
the values of pixels for its adjacent MBs due to MB-
boundary filtering.

3.2 MB-Wavefront Realization of Deblocking Filter
and Its Synchronization Overhead

The wavefront method is a commonly used data parti-
tion method for parallelization[24]. Data are processed
in the wavefront order as shown in Fig. 5. Data blocks
marked the same number are computed concurrently.
For H.264/AVC decoding, since the computation of the
current MB depends on the data of its neighboring
four MBs, we can group the MB computations along
the π − arctan 1

2 � 153◦ diagonals. Therefore, the wave-
front parallelization method can be adopted to paral-
lelize H.264/AVC decoding [28]. This method is called
MB-wavefront in this paper. In this section, we discuss
how the wavefront approach is applied to deblocking
filter, and the associated synchronization overheads.

The MB-wavefront realization of deblocking fil-
ter is demonstrated by the pseudo codes shown in
Algorithm 1. In Algorithm 1, the application program-
ming interface (API) of pthread_mutex_lock, pthread_
mutex_unlock and pthread_cond_wait are provided by

q2

p block

q block

q3

q1

q0

p0

p1

p2

p3

p3 p2 p1 p0 q0 q1 q2 q3

Vertical Boundary

p block q block

Horizontal Boundary

Figure 4 Pixels adjacent to vertical and horizontal boundaries.

J Sign Process Syst

Table 1 Pixels which could be influenced and evaluated for MB-
B and N-MB-B filters.

Filter type Filtered pixel Evaluated pixels

MB-B filter p2 p3 p2 p1 p0 q0

p1 p2 p1 p0 q0

p0 p2 p1 p0 q0 q1

q0 q2 q1 q0 p0 p1

q1 q2 q1 q0 p0

q2 q3 q2 q1 q0 p0

N-MB-B filter p1 p2 p1 p0 q0

p0 p1 p0 q0 q1

q0 p1 p0 q0 q1

q1 q2 q1 q0 p0

an open library: POSIX threads (http://sourceware.org/
pthreads-win32/). In general, to avoid spending too
much time on creating and destroying threads in
POSIX thread library, we could include the design of
thread pool [29] into the parallel programs. The func-
tion thread pool provides two important functionalities:
a pool of concurrent working threads, workers and
a queue for waiting service tasks, where the workers
sustainedly consume tasks from the queue. The thread
pool creates all workers at the beginning of the program
and destroys all at the end. Meanwhile, to avoid race
condition, the number of workers should be equal to
the number of available processors in our parallel pro-
gram. The queue size is decided by the maximal number
of concurrent tasks. For example, the queue sizes of
the MB-wavefront are 40, 23 and 11 for 720p, 480p and
CIF test sequences, respectively. Line 7 in Algorithm 1
uses the design of the thread pool as described above.
Every wavefront iteration introduces a synchronization
barrier, from Line 9 to Line 13 in Algorithm 1.

The synchronization of the wavefronting parallel-
ism occurs at wavefront boundaries. More specifi-
cally, referring to Algorithm 1, the iteration number,w,
of the outmost loop directly affects the number of
synchronization. In addition to the synchronization

1 2 3 40

53 42 6

54 6 7 8

Figure 5 A wavefronting example: Each rectangular represents
an MB. The number d in each MB indicates the d-th iteration
execution.

Algorithm 1 The Wavefronting Scheduling
1: w ← the number of wavefront iterations
2: mapi ← MB positions of the ith wavefront iteration
3: MBi ← the number of MBs of the ith wavefront

iteration
4: count ← 0
5: for i ← 1, w do
6: for all MBs within mapi do
7: add Deblock(MB) into queue
8: end for
9: pthread_mutex_lock

10: while task queue is not Empty do � wait until
all tasks are finished

11: pthread_cond_wait
12: end while
13: pthread_mutex_unlock
14: end for
15: procedure Deblock(MB)
16: Retrieve data from left, top-left and top of the

current MB

17: Processing Deblocking MB abides by [27]
18: end procedure

between wavefront iterations, within each iteration,
synchronization is also required among workers (i.e,
the available processors). Therefore, the amount of
synchronization overhead incurred in MB-wavefront
is d × w, where d is number of processors and w =
Mh + (Mv − 1) × 2. Mh and Mv are the horizontal and
vertical frame size, in terms of the number of MBs,
respectively. Normally, the w is a large integer. For
example, Mh and Mv for a 1280 × 720 (i.e., 720p) video
sequence are 80 and 45, respectively (i.e, w = 168).
Therefore, as the number of cores increases, the syn-
chronization overhead d × w is also expected to grow
substantially.

Another drawback of the MB-wavefront method is
poor cache utilization. If MBs with dependency are
allocated to different processors, frequent data ex-
change between processors are expected. This results in
poor cache utilization, and also incurs significant cache
coherency traffic.

4 Limited Propagation Effect of Filtering Stages

From Section 3.1, we knew why edge filtering will affect
the subsequent filtering steps. In the following, we will
characterize how far the effect of each filtering step can
propagate. The influence of filtered pixels comes mainly
from the stage of MB boundary filtering and the stage
of block edge filtering within each MB. To find out the

http://sourceware.org/pthreads-win32/
http://sourceware.org/pthreads-win32/

J Sign Process Syst

Figure 6 The superscript
of each pixel indicates its
identity. Shaded pixels
may be modified during
succeeding filtering stages. a b c d e f g h i j k l m n o p

p3
w p2

w p1
w p0

w q0
w q1

w q2
w q3

w

p2
w p1

w p0
w q0

w q1
w q2

w

q r s t

Boundary W
MB-B

Boundary X Boundary Y Boundary Z

Current MBPrevious MB

MB-B on W

N-MB-B on X

Filter length of W

Evaluated Range to Filter pixel j

p2
w p1

w p0
w q0

w q1
w q2

w N-MB-B on Y

Evaluated Range of N-MB-B Y

p3
w q3

w

p3
w q3

w

Boundary V

maximal range of influence, we investigate the pixels
which are influenced by the MB-B filtering.

The H.264/AVC deblocking filter is a two-
dimensional filter (i.e., edge filtering along both vertical
and horizontal directions). To fully characterize its
propagation behavior, mutual influences of two direc-
tions’ filtering between adjacent MBs must be consid-
ered. Let’s examine the vertical edge filtering first.
From Table 1, when the strongest filter is applied to
MB boundaries, there are at most six pixels (i.e. the
pixels p2, p1, p0, q0, q1 and q2) will be influenced.
According to Table 1, the evaluated pixels which
served to adjust the left/upward most three pixels (p1,
p0, and q0) in the subsequent N-MB-B filtering may be
modified by the antecedent MB-B filtering. As a result,
the values of these three pixels certainly hinge upon the
results of its antecedent MB-B filtering. However,
the value of the right/downward most pixel q1 in the
subsequent N-MB-B filtering has nothing to do with
the result of the antecedent MB-B filtering. The reason
is that the subsequent N-MB-B filtering determines

the value of the filtered pixel q1 merely by evaluating
the antecedent unmodified pixels, as shown in Fig. 6.
More specifically, pixel g behaves not only as the q2

pixel of the MB-B filter W, but also as the p1 pixel of
the N-MB-B filter X. One can see that, pixel j, which
behave as the q1 pixel of X, is determined by pixels h,
i, j, and k which behave as q2, q1, q0 and p0 pixels of
X, respectively. In other words, these four pixels are
outside the filter length of the MB-B filter W.

To sum up, considering the pixel j, the evaluated
pixels within the stage of N-MB-B filter X will not be
influenced by the MB-B filter W, even if the maximal
impact of MB-B filter W is taken into account. Going
one step further, the succeeding filter is the vertical
N-MB-B filter Y. Since the N-MB-B filter evaluates
only three pixels on either side of an edge, the farthest
referenced pixel is the aforecited pixel j, we called it the
strongest-filter-independent pixel. That is, the strongest
MB-boundary filtering influences only limited pixels to
subsequent filtering stages. The pixels influenced by the
vertical MB-B filtering are shown in Fig. 7, which can be

Figure 7 The maximal
influence range of an
MB-boundary filtering. Eight
pixels are influenced by the
filter W. The pixel g will be
altered two times because of
the filtering of boundaries W
and X. The pixels after pixel
j are independent of the
MB-boundary filtering.

a b c d e f g h i j k l m n o p q r s t

Boundary W
MB-B

Boundary X Boundary Y Boundary Z

Current MBPrevious MB

The strong-filter-independent pixel

Influence pixels

Boundary V

(basic influenced stripe)

J Sign Process Syst

Figure 8 The maximal
influence range of a a vertical
MB-boundary filtering and
b a horizontal MB-boundary
filtering.

8 pixels

ba

Current MB Current MB

treated as a basic influenced stripe (represented by the
set of colored pixels).

As discussed above, the influenced region of vertical
MB-B filtering can now represented by the yellow area
of Fig. 8a. The blue area indicates the additional filtered
pixels of the next N-MB-B filtering (i.e., the edge filter
B in Fig. 3) which referring to the pixels in the yellow
area. Considering the influenced stripe described in
Fig. 7, the influenced region caused by the antecedent
(i.e., the left-hand-side) vertical MB-B filter is limited,
as shown in the yellow and the blue areas of Fig. 8a.
Notice that we have only considered the vertical filters
up to now. Another filtering step that must be taken
into account is the top-left horizontal MB-B filtering

of the current MB. It follows that the purple pixels
in Fig. 8a will be influenced. Similarly the horizontal
MB-B filtering of the bottom-left boundary of the cur-
rent MB needs to evaluate the green pixels shown in
Fig. 8a. Again, the influence will also propagate to only
a limited range, an eight-pixel wide stripe extending
along the vertical direction. Similarly, considering the
impact of the horizontal MB-B filtering, the maximal
influenced region of horizontal MB-B filtering will be
an eight-pixel wide stripe extending along the horizon-
tal direction, as shown in Fig. 8b.

As for the influence of N-MB-B filtering upon the
vertical boundaries X, Y and Z , we show the maximal
influenced pixels by the N-MB-B filtering in Fig. 9.

Figure 9 The influenced
ranges of the
N-MB-boundary filtering.
Each gray pixel is
independent of the
antecedent N-MB-boundary
filtering. Five pixels are
influenced by filtering
a the boundary X and b the
boundary Y; c six pixels are
influenced by filtering the
boundary Z . Notice that
pixel r will be altered twice
because of the filtering of
boundaries Z and V′.

a b c d e f g h i j k l m n o p q r s t

Boundary W
MB-B

Boundary X Boundary Y Boundary Z

N MBN-1 MB

Boundary V

(a)

a b c d e f g h i j k l m n o p q r s t

Boundary W
MB-B

Boundary X Boundary Y Boundary Z

N MBN-1 MB

Boundary V

(b)

a b c d e f g h i j k l m n o p q r s t

Boundary W
MB-B

Boundary X Boundary Y Boundary Z

N MBN-1 MB

u v w x

N+1 MB

(c)

Boundary V Boundary V’

J Sign Process Syst

Correspondingly, the overall impact of both the vertical
and the horizontal N-MB-B filters is shown in Fig. 10.

Consequently, the above observation implies that
any affection caused by the filtering stages propagates
to only a limited range, we named this fact as the
“limited propagation effect” In other words, the filter-
ing stages of left/upward and right/underneath regions,
which are separated by the colored regions are self-
governing, and therefore, can be filtered concurrently.
Notice that the filtering stages within the colored re-
gions should obey the processing order described in
Section 3.1. The data dependency analyzed in this sec-
tion builds the foundation of our parallel deblocking
algorithm described in Section 5.

5 Parallel Deblocking Algorithm

5.1 Proposed Algorithm

Based on the limited propagation effect discussed in the
previous section, we classify the data regions involved
in the filtering stages into two categories: the regions
can be filtered concurrently without incurring any error
(say R1) and the regions R2 which depend on the results
of R1. In the proposed parallel deblocking algorithm,
along with the block boundary, we divide the w × h
region into N rectangular units, ui, which belong to R1.
That is,

R1 =
N−1⋃

i=0

ui. (1)

Notice that the w × h region can be considered as a
partial region of a frame. For easy presentation, we take
w × h region as an entire frame hereafter.

Since as indicated in the previous section, MB-B
and N-MB-B filters of the filtering stages influence
only limited pixels, any error caused by the preceding
filtering will not propagate over the basic influenced
stripe. By definition, ui are outside the impacted ranges,
so we can issue ui all together. Notice that the filter-
ing stages within each ui should follow the processing
order specified in Section 3.1. To effectively utilize
the computation power of multi-core architecture, the
number of parallel filtering units, N, is determined by
the number of available processing units. Furthermore,
to better utilize the memory locality, the direction of
segmentation, horizontal or vertical, is decided on the
basis of the memory architecture. For row-major ma-
chines, horizontal segmentation is preferred; otherwise,
vertical segmentation is adopted (c.f. Fig. 11).

Assume that the region is stored in a one-
dimensional array buffer, thus, the specific position of
ui in the buffer is represented as
[
Si, Ei) . (2)

In Eq. 2, Si can be formulated as

Si =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if i = 0
⎛

⎝

⌊ i·α
4·N

⌋ × 4 + 5δ[σ] + 3δ[σ − 1]
+3δ[σ − 2]
+4δ[σ − 3]

⎞

⎠ × β, if i > 0

(3)

where δ[n] denotes the delta function and

σ =
(⌊

i · α

4 · N

⌋)
mod 4. (4)

Ei can be formulated as

Ei =
{⌊

(i+1)·α
4·N

⌋
× 4 × β, if 0 ≤ i < N − 1

α × β, if i = N − 1
(5)

The (α, β) is determined by the row-major or
column-major memory architecture and whose values
are (h, w) or (w, h), respectively. The formula Eq. 3 is
composed of the start address of 4 × 4 block boundary
and the offset, which are

⌊ i·α
4·N

⌋ × 4 and 5δ[σ] + 3δ[σ −
1] + 3δ[σ − 2] + 4δ[σ − 3], respectively. Since the influ-
enced region is dependent on the MB-B and N-MB-B
filters, the offset is proportional to the influence range
of the filter. Therefore, coefficients of 5, 3, 3 and 4, are
the pixels in vertical/horizontal direction of the influ-
ence range of the MB-B filter (c.f. Fig. 8), cases (a)(b) in
Fig. 10, cases (c)(d) in Fig. 10 and cases (e)(f) in Fig. 10,
respectively. More specifically, the

⌊ i·α
4·N

⌋ × 4 represents
the start address of the block boundary (either the MB
boundary or the red line in Fig. 10) and the coefficients
of 5, 3, 3 and 4 are the vertical/horziontal pixels, which
indicate the remaining influence area started after the
block boundary (i.e.,

⌊ i·α
4·N

⌋ × 4).
The remaining filtering stages are conducted over the

infected areas, vi, of ui and are denoted as R2. That is,

R2 =
N−2⋃

i=0

vi. (6)

The filtering stages of vi are processed only when those
of the ui are completed because vi hinges on the results
of ui. Since we segment a region along the block bound-
aries, the impact of each MB-B or N-MB-B filtering
is within a fixed wide stripe, as shown in the colored
regions of Figs. 8 and 10. Each vi is, thus, the collection

J Sign Process Syst

Figure 10 The overall
impact, as shown by the
colored regions, of N-MB-B
filters. The red lines indicate
the upon filtered boundaries:
a b boundary X, c d boundary
Y and e f boundary Z .

(a)

(c)

(b)

(d)

(e) (f)

5 pixels
5 pixels

5 pixels

5 pixels

6 pixels

6 pixels

J Sign Process Syst

Figure 11 We segment one
frame into N rectangles
based on the memory
architecture (N = 4 for
quad-core architecture here).

Row-major Column-major

of the fixed wide stripes spanning across the frame, and
the specific position of which can be represented as
[
Ei − Ai, Si+1) , (7)

where

Ai = (3δ[σ] + 2δ[σ − 1] + 2δ[σ − 2] + 2δ[σ − 3]) × β.

(8)

The proposed parallelism schedule is shown in
Fig. 12, which dispatches the data-dependent regions,
ui and vi, to the processor Pi. Figure 13 illustrates
an example where the number of available processing
units is assumed to be two, P0 and P1. In Fig. 13, u0

and u1 are dispatched to P0 and P1 and are processed
concurrently. Once u0 is finished, P0 processes v0 imme-
diately. The design goal of our parallel algorithm is to
minimize the amount of required synchronization and
communication overhead while maximizing paralleliza-
tion degree.

Figure 12 A schedule
for dispatching the
data-dependence ui and vi to
the processor Pi The directed
line indicates that the data
in region vi depends on the
data in region ui.

iui

Data Dependence

iv
Data Space

Pi
Processor Space

P

The proposed parallel deblocking filter algorithm
has the following three advantages over the MB-
wavefront:

1. It could utilize all the available cores: in the MB-
wavefront method, the number of concurrent tasks
depends on the number of MBs in the current
wavefront iteration. In our scheme, as mentioned
earlier, a frame is partitioned into n regions, where
n is the number of available cores.

2. It incurs less synchronization overheads: Since
there are no dependencies among regions allocated
to different processors, a processor needs only to
perform synchronization once in the entire frame.
Therefore, the proposed parallel deblocking filter
needs only d synchronization operations, where d
is the number of processors.

3. It achieves better cache utilization: as explained in
Section 3.2, the MB-waveafront method incurs fre-
quent data exchange between processors. This re-
sults in poor cache utilization. While in our scheme,
since there are no dependencies between MBs allo-
cated to different processor, it does not require data
exchange between processors.

5.2 Discussion

In this section, we first investigate how to combine
the conventional parallelization technique with the pro-
posed method and then discuss the load-balancing of
the proposed parallel deblocking filtering.

The wavefront technique (i.e., the MB-wavefront
approach), described in Section 3.2, takes an MB as the
basic data partition unit. Nevertheless, as shown in [28],
the data partition unit in the wavefront technique could
be multiple MBs. It implies that a coarser-granularity
grouping approach has the advantage of less synchro-
nization overhead and better cache utilization as com-
pared with the MB-wavefront approach. Suppose a

J Sign Process Syst

0u 0v 1u

(a)

0v

0u

1u

(b)

Figure 13 The specific positions of R1 and R2 in the mem-
ory buffer, where N = 2 and (w, h) = (64, 48). Assume that the
image is stored in a one-dimensional array, thus, the values a
and b in [a, b) are used to specify the physical location in the
memory. By convention, the top-left pixel of the frame begins
from zero. R1 includes u0 and u1, which are bounded by the red

box and the blue box, respectively. R2 only includes v0, the green
colored region. a For the column-major memory architecture, u0,
u1 and v0 are located at [0, 1536), [1776, 3072) and [1392, 1776),
respectively. b For the row-major memory architecture, u0, u1
and v0 are located at [0, 1536), [1728, 3072) and [1408, 1728),
respectively.

frame contains Mh × Mv MBs. We partition a frame
into Mh

x × Mv wavefront block units (WBU). WBUs are
processed in parallel along the 153◦ diagonal like that
of the MB-wavefront. The MBs within a WBU are
processed in sequential order. Once several WBUs
have gone through the decoding stages preceding de-
blocking filter (i.e., entropy decoding, de-quantization,
inverse transformation, motion compensation, and in-
tra prediction), the proposed deblocking algorithm is
then invoked. We use Fig. 14 to illustrate this process.
We group 5 MBs as a WBU and process WBUs in
parallel like the MB-wavefront. As long as the 1st, the
3rd, 5th, 7th, 9th and 11th WBU have gone through the
decoding steps before deblocking filter, and they are
currently in the deblocking filter stage which adopts the
proposed parallel algorithm. It is clear that the data
partition granularity (i.e., the size of WBU) and the
number of WBUs are critical parameters. However,
how to decide these parameters is out of the scope of
this paper. Another issue is the load-balancing prob-
lem. The tasks with light workload have to wait for
the completeness of the threads with heavy workload,
and in consequence the multi-core system could not be
fully utilized. To enable the efficient use of multi-core
system, the load balancing is one of the important issues
for improving performance. Conventionally, to solve
this performance issue is to observe the load balancing
problem and then dynamically schedule the threads

to process tasks. The proposed parallel deblocking fil-
tering divide the deblocking process into several tasks
executed on different processors. However, to observe
the load balancing problem and further dynamically
schedule the filtering is out of the intend of this paper.

MB: needed to be deblocked

: WBU

1

3

5

7

9

11

2

4

6

8

10

12

3

5

7

9

11

13

4

6

8

10

12

14

13

15

17

19

21

23

14

16

18

20

22

24

15

17

19

21

23

25

16

18

20

22

24

26

MB: waiting to be processed

Figure 14 An example of WBU with 5 MBs. Each rectangle rep-
resents an MB and the number of WBUs indicates the execution
order. The rectangular region surrounded by bold line is adopted
by the proposed deblocking algorithm.

J Sign Process Syst

6 Experimental Results

In this section, we evaluate the effectiveness of the
proposed parallel deblocking filter algorithm. We com-
pare our scheme with the MB-wavefront algorithm de-
scribed in Section 2. We implemented both approaches
on an SIMD-optimized H.264/AVC decoder. The
SIMD-optimized decoder used in this study is based
on our previous work [12], which achieves 45.94 frame
per second (fps) decoding rate for 720p standard test
sequences. The code segment of the optimized decoder
is less redundant compared with that of the reference
software (http://iphome.hhi.de/suehring/tml/download/
old_jm/jm73.zip) and bit-by-bit correctness of the
decoded bitstreams has been verified; therefore, the
experimental results are believed to be able to reflect
the effectiveness of deblocking filter in practice.

All parallel programs are realized using the open
POSIX threads library (http://sourceware.org/pthreads-
win32/) on the Intel Core 2 CPU with clock rate
2.13 GHz, and Intel Core 2 Quad CPU with clock
rate 2.66 GHz. We implemented the MB-wavefront
for deblocking filter in Algorithm 1, as mentioned in
Section 3.2. The testbed contains 10 streams with three
resolution levels, 1280 × 720(720p), 720 × 480(480p)
and 352 × 288(CIF), which are encoded in H.264/
AVC baseline profile by using the reference software
JM73 (http://iphome.hhi.de/suehring/tml/download/
old_jm/jm73.zip) The frame reconstruction includes
the stages of entropy decoding, de-quantization, in-
verse integer transform, intra prediction and motion
compensation.

Below we first analyze the speedup on deblock-
ing filter obtained from proposed parallel deblocking

2.12
1.86

2.90

2.00

2.50

3.00

3.50

1.30 1.43 1.49
1.19

1.35
1.63

1.86

1.23

0.50

1.00

1.50

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e
N

o
rm

al
iz

ed
 E

xe
cu

ti
o

n
 T

im
e

SIMD+wavefront

SIMD+Proposed

0.00

(a)

8 00

3.61

6.84

3.47 3.63 3.48

6.30

4.12 4.09
4.00

5.00

6.00

7.00

8.

2.48 2.55

0.31 0.48 0.35 0.39 0.31 0.46 0.37
0.78 0.55 0.82

0.00

1.00

2.00

3.00

4.00

SIMD+wavefront

SIMD+Proposed

(b)

0.59 0.71 0.65 0.76
0.57

0.92
0.57 0.51 0.57 0.53

Figure 15 The performance comparison of the MB-wavefront and the proposed approach on a two-core and b four-core processers.

http://iphome.hhi.de/suehring/tml/download/old_jm/jm73.zip
http://iphome.hhi.de/suehring/tml/download/old_jm/jm73.zip
http://sourceware.org/pthreads-win32/
http://sourceware.org/pthreads-win32/
http://iphome.hhi.de/suehring/tml/download/old_jm/jm73.zip
http://iphome.hhi.de/suehring/tml/download/old_jm/jm73.zip

J Sign Process Syst

Table 2 The average normalized execution time of the MB-
wavefront and the proposed approach, for the task of deblocking
filtering.

Two-core Four-core

Wavefront Proposed Wavefront Proposed

720p 1.62 0.65 4.31 0.38
480p 1.42 0.71 3.28 0.38
CIF 2 0.54 4.84 0.72

algorithm and the MB-wavefront approach, respec-
tively1. We then show the overall decoding perfor-
mance improvement achieved by our scheme. Finally,
we perform synchronization overhead analysis.

6.1 Speedup Analysis

Figure 15 compares the performance of the MB-
wavefront and the proposed approach. The y-axis
shows the execution time of deblocking filter normal-
ized to the SIMD optimized decoder. The average
normalized execution time is summarized in Table 2.
Notice that the performance of CIF sequences de-
grades when the number of cores increases. The reason
is that low resolution of frames hardly allows large
amount of parallel blocks in the proposed algorithm,
so the performance is easily affected by the synchro-
nization overhead. The results show that the proposed
approach provides significant performance gain, up to
95% and 224.07% speedup for two-core and four-
core processors, respectively. In contrast, applying the
MB-wavefront to the SIMD-optimized code actually
degrades performance.

The effective speedup gains of the proposed algo-
rithm on the entire decoding process, for 2-core
and 4-core platforms, are shown in Tables 3, and 4,
respectively. The SIMD (ms) columns show the exe-
cution time of the SIMD-optimized decoder executed
on the p-core platform, the p-core (ms) columns in
the Tables show the execution time of our proposed
algorithm executed on p-core platform, and Speedup
columns in the Tables show the obtained speedup gains,
where the speedup value is measured by

Speedup = SIMD(ms)
p − core(ms)

.

1For this set of analysis, the input frames to deblocking filter has
gone through the decoding stages preceding deblocking filter.

Table 3 Entire decoding speedup (2-core)

Bitstream SIMD (ms) 2-core (ms) Speedup

Harbour-720p 8250 7140 1.16
Jets-720p 2437 2202 1.11
Night-720p 6062 5498 1.10
Crew-480p 3121 2815 1.11
Harbour-480p 4034 3577 1.13
Night-480p 2468 2107 1.17
Sailormen-480p 2904 2592 1.12
bus-CIF 720 609 1.18
football-CIF 1139 965 1.18
mobile-CIF 1515 1253 1.21

The results of Tables 3 and 4 show that the proposed
method achieves up to 1.21x and 1.34x speedup gains
on the overall encoding performance on the dual-core
and the quad-core processors, respectively.

6.2 Synchronization Overhead Analysis

We analyze the synchronization overheads by measur-
ing the lock/unlock operations of the POSIX thread
library t(pthreadVC2.dll) using the Intel VTune Perfor-
mance Analyzer (http://www3.intel.com/cd/software/
products/asmo-na/eng/239144.htm). Figure 16 shows
the contribution of lock/unlock operations to the total
execution time of deblocking filter for the proposed
parallel algorithm and the MB-wavefront approach.
The results show that the synchronization overhead of
the proposed algorithm is almost negligible (less than
1%) for both 2-core and 4-core processors. In contrast,
the MB-wavefronting approach, as expected, shows
much higher synchronization overheads, up to 16.60%
and 30.78% for two-core and a four-core processors, re-
spectively. These results indicate that our method pro-
vides better scalability than the MB-wavefront method.

Table 4 Entire decoding speedup (4-core)

Bitstream SIMD (ms) 4-core (ms) Speedup

Harbour-720p 6640 5295 1.25
Jets-720p 2047 1593 1.28
Night-720p 4826 3857 1.25
Crew-480p 2484 1859 1.34
Harbour-480p 3170 2625 1.21
Night-480p 1845 1531 1.21
Sailormen-480p 2295 1828 1.26
bus-CIF 483 389 1.24
football-CIF 859 764 1.12
mobile-CIF 1094 905 1.21

http://www3.intel.com/cd/software/products/asmo-na/eng/239144.htm
http://www3.intel.com/cd/software/products/asmo-na/eng/239144.htm

J Sign Process Syst

16.60%

12 00%

14.00%

16.00%

18.00%

5.29%

7.10%

5.29%
4.34%

6.45%
5.09%

5.99%
6.89%

3 52%
6.00%

8.00%

10.00%

12.00%

wavefront

Proposed3.52%

0.00% 0.06% 0.01% 0.03% 0.02% 0.04% 0.06% 0.13% 0.09% 0.14%
0.00%

2.00%

4.00%

P
er

ce
n

ta
g

e
o

f
p

en
al

ty
 o

ve
r

to
ta

l e
xe

. t
im

e
P

er
ce

n
ta

g
e

o
f

p
en

al
ty

 o
ve

r
to

ta
l e

xe
.

Proposed

(a)

30.78%

20 00%

25.00%

30.00%

35.00%

10.71%
12.39%

10.75%
8.56%

11.40% 10.17%
13.63% 12.90%

10.21%

0 84%
5.00%

10.00%

15.00%

20.00%

wavefront

proposed

0.03% 0.11% 0.19% 0.06% 0.04% 0.05% 0.09% 0.00% 0.84% 0.17%
0.00%

(b)

ti
m

e

Figure 16 The comparison of parallelization penalty between the wavefronting and the proposed approach on three resolution levels,
720p, 480p and CIF, for a two-core and b four-core real machines.

7 Conclusion and Future Work

In this paper, we present a novel parallel algorithm
for H.264/AVC deblocking filter based on an impor-
tant observation named as “limited propagation effect”.
By exploiting the characteristics of limited influenced
range, the proposed algorithm outperforms existing
parallel approaches in terms of both the execution
speed and the synchronization penalty.

Unlike the wavefront parallelization, there is no
restriction on the number of concurrently executable
processes at a time, thus, the proposed algorithm is
believed to be adequate for parallelizing deblocking
filtering when the number processing units is further

increased in the future. On the other hand, we show
that the performance might not be improved from the
general wavefront parallelization even if the SIMD
optimized decoder is taken into account. The main
reason lies in the fact that the associated paralleliza-
tion penalty impairs the benefit obtainable from fine-
grain parallelization. Therefore, to effectively utilize
the power of multi-core processors, how to reduce the
parallelization overhead would play a rather important
role in designing the parallel algorithm. One of our fu-
ture work directions is to find the best tradeoff between
the fine-grain parallelism and the synchronization/
communication overheads by using the algorithmic-
architectural co-design methodology.

J Sign Process Syst

References

1. List, P., Joch, A., Lainema, J., Bjntegaard, G., & Karczewicz,
M. (2003). Adaptive deblocking filter. IEEE Transactions on
Circuits and Systems for Video Technology, 13(7), 614–619.

2. Lappalainen, V., Hallapuro, A., Hamalainen, T.D., Center,
N.R., & Tampere, F. (2003). Complexity of optimized H.
26L video decoder implementation. IEEE Transactions on
Circuits and Systems for Video Technology, 13(7), 717–725.

3. Chen, T.C., Fang, H.C., Lian, C.J., Tsai, C.H., Huang, Y.W.,
Chen, T.W., et al. (2003). Algorithm analysis and architecture
design for HDTV applications-a look at the H. 264/AVC
video compressor system. IEEE Transactions on Circuits and
Devices Magazine, 22(3), 22–31.

4. Huang, Y.W., Chen, T.W., Hsieh, B.Y., Wang, T.C., Chang,
T.H., & Chen, L.G. (2003). Architecture design for deblock-
ing filter in H.264/JVT/AVC. IEEE Proceedings of Interna-
tional Conference on Multimedia and Expo, 1, 693–699.

5. Sima, M., Zhou, Y., & Zhang, W. (2004) An efficient archi-
tecture for adaptive deblocking filter of H.264/AVC video
coding. IEEE Transactions on Consumer Electronics, 50(1),
292–296.

6. Chang, S.C., Peng, W.H., Wang, S.H., & Chiang, T. (2005). A
platform based bus-interleaved architecture for de-blocking
filter in H.264/MPEG-4 AVC. IEEE Transactions on Con-
sumer Electronics, 51(1), 249–255.

7. Cheng, C.C., Chang, T.S., & Lee, K.B. (2006). An in-place
architecture for the deblocking filter in H.264/AVC. IEEE
Transactions on Circuits and Systems: Analog and Digital
Signal Processing, 99, 530–534.

8. Khurana, G.K., & Mi, A.A.T.P.C. (2006). A pipelined
hardware implementation of in-loop deblocking filter in
H.264/AVC. IEEE Transsactions on Consumer Electronics,
52(2), 536–540.

9. Intel Corporation. IA-32 Intel architecture optimization
reference manual. ftp://download.intel.com/design/Pentium4/
manuals.

10. Warrington, S., Shojania, H., & Sudharsanan, S. (2006). Per-
formance improvement of the H.264/AVC deblocking filter
using SIMD instructions. IEEE Proceedings of International
Symposium on Circuits and Systems.

11. Zhou, X., Li, E.Q., & Chen, Y.K. (2003). Implementation of
H. 264 decoder on general-purpose processors with media
instructions. SPIE Conference on Image and Video Commu-
nications and Processing.

12. Wang, S.W., Yang, Y.T., Li, C.Y., Tung, Y.S., & Wu, J.L.
(2004). The optimization of H.264/AVC baseline decoder
on low-cost TriMedia DSP processor. Proceedings of SPIE,
5558.

13. Lin, W., Goh, K.H., Tye, B.J., Powell, G.A., Ohya, T., &
Adachi, S. (1997). Real time H. 263 video codec using parallel
DSP. Proceedings IEEE International Conference on Image
Processing, 586–589.

14. Chiu, C.N., Tseng, C.T., & Tsai, C.J. (1997). Tightly-coupled
MPEG-4 video encoder framework on asymmetric dual-core
platforms. IEEE International Symposium on Circuits and
Systems, 586–589.

15. Dutta, S., Singh, D., Mehra, V., Semicond, P., & Sunnyvale,
C.A. (1999). Architecture and implementation of a single-
chip programmabledigital television and media processor.
IEEE Workshop on Signal Processing Systems, 321–330.

16. Wyland, D.C. (2000). Media processors using a new mi-
crosystem architecture designed for the Internet era. In
Media Processors 2000, Proceedings of the SPIE (vol. 3970,
pp. 2–15). San Jose, CA, USA.

17. Sudharsanan, S., Sriram, P., Frederickson, H., & Gulati, A.
(2000). Image and video processing using MAJC 5200. In
Proceedings of the 2000 IEEE International Conference on
Image Processing. Vancouver, Canada.

18. de With, P.H.N., & Jaspers, E.G.T. (1999). A video display
processing platform for future TV concepts. IEEE Transac-
tions on Consumer Electronics, 45, 1230–1240.

19. van der Tol, E.B., & Jaspers, E.G.T. (2002). Mapping of
MPEG-4 decoding on a flexible architecture platform. In
Media Processors 2002, Proceedings of the SPIE (pp. 1–13).
San Jose, CA, USA.

20. Wang, S.H., Peng, W.H., He, Y., Lin, G.Y., Lin, C.Y., Chang,
S.C., et al. (2005). A software-hardware co-implementation
of MPEG-4 advanced video coding (AVC) decoder with
block level pipelining. The Journal of VLSI Signal Processing,
41,(1), 93–110.

21. Rodriguez, A., Gonzalez, A., & Malumbres, M.P. (2006).
Hierarchical parallelization of an H.264/AVC video encoder.
Proceedings of the International Symposium on Parallel Com-
puting in Electrical Engineering (PARELEC’06), 00, 363–
368.

22. Chen, Y.K., Tian, X., Ge, S., & Girkar, M. (2004). Towards
efficient multi-level threading of H. 264 encoder on Intel
hyper-threading architectures. Proceedings of 18th Interna-
tional Parallel and Distributed Processing Symposium.

23. Chen, Y.K., Li, E.Q., Zhou, X., & Ge, S. (2005). Implemen-
tation of H.264 encoder and decoder on personal computers.
Journal of Visual Communications and Image Representa-
tions, 17, 509–532.

24. Aho, A.V., Sethi, R., & Ullman, J.D. (2007). Compilers:
principles, techniques, and tools. Boston: Addison-Wesley
Longman.

25. Schoffmann, K., Fauster, M., Lampl, O., & Boszormenyi,
L. (2007). An evaluation of parallelization concepts for
baseline-profile compliant H. 264/AVC decoders. Lecture
Notes in Computer Science, 4641.

26. Zhao, Z., & Liang, P. (2006). Data partition for wavefront
parallelization of H.264 video encoder. IEEE Proceedings of
International Symposium on Circuits and Systems.

27. JVT (2003). Recommendation and Final Draft Interna-
tional Standard of Joint Video Specification (ITU-T Rec.
H.264| ISO/IEC 14496-10 AVC). Joint video team (JVT) of
ISO/IEC MPEG and ITU-T VCEG, JVTG050.

28. van der Tol, E.B., Jaspers, E.G., & Gelderblom, R.H. (2003).
Mapping of H. 264 decoding on a multiprocessor archi-
tecture. Proceedings SPIE Conference on Image and Video
Communications and Processing.

29. Nichols, B., & Buttlar, D. (1996). Pthreads programming.
Sebastopol: O’Reilly.

ftp://download.intel.com/design/Pentium4/manuals
ftp://download.intel.com/design/Pentium4/manuals

J Sign Process Syst

Sung-Wen Wang received his Ph.D. degree in computer science
from National Taiwan University, Taipei, Taiwan, in 2008. His
general research interests are in the field of digital video coding,
codec-processor architecture co-design and multimedia systems
optimization, especially in video coding technology optimization.

Shu-Sian Yang received the B.S. and M.S. degrees in com-
puter science and information engineering from National Taiwan
University, Taiwan, in 2005 and 2007, respectively. His current
research interests include video compression, image processing,
and multimedia application. He is currently working at PixArt
Imaging Inc., HsinChu, Taiwan as a senior engineer.

Hong-Ming Chen received the B.S. degree in computer science
and information engineering from National Taiwan University,
Taiwan, in 2007. He is currently pursuing the M.S. degree in
the same department in National Taiwan University. His current
research interests include video compression, image processing,
digital content analysis, and multimedia application.

Chia-Lin Yang received the B.S. degree from the National
Taiwan Normal University, Taiwan, R.O.C., in 1989, the M.S.
degree from the University of Texas at Austin in 1992, and
the Ph.D. degree from the Department of Computer Science,
Duke University, Durham, NC, in 2001. In 1993, she joined VLSI
Technology Inc. (now Philips Semiconductors) as a Software En-
gineer. She is currently an Associate Professor in the Department
of Computer Science and Information Engineering, National
Taiwan University, Taipei, Taiwan, R.O.C. Her research interests
include energy-efficient microarchitectures, memory hierarchy
design, and multimedia workload characterization. Dr. Yang is
the recipient of a 2000-2001 Intel Foundation Graduate Fellow-
ship Award and 2005 IBM Faculty Award.

J Sign Process Syst

Ja-Ling Wu (SM ’98, Fellow ’08) received his Ph.D. degree
in electrical engineering from Tatung Institute of Technology,
Taipei, Taiwan, in 1986.

From 1986 to 1987, he was an Associate Professor of the
Electrical Engineering Department, Tatung Institute of Technol-
ogy. Since 1987, he transferred to the Department of Computer
Science and Information Engineering(CSIE), National Taiwan
University(NTU), Taipei, where he is presently a Professor.
From 1996 to 1998, he was assigned to be the first Head of the
CSIE Department, National Chi Nan University, Puli, Taiwan.
During his sabbatical leave (from 1998 to 1999), Prof. Wu was

invited to be the Chief Technology Officer of the Cyberlink
Corp. In this one year term, he involved with the developments of
some well-known audio-video softwares, such as the PowerDVD.
Since Aug. 2004, Prof. Wu has been appointed to head the
Graduate Institute of Networking and Multimedia, NTU. Prof.
Wu has published more than 200 technique and conference
papers. His research interests include digital signal processing,
image and video compression, digital content analysis, multime-
dia systems, digital watermarking, and digital right management
systems.

Prof. Wu was the recipient of the Outstanding Young Medal
of the Republic of China in 1987 and the Outstanding Research
Award three times of the National Science Council, Republic of
China, in 1998, 2000 and 2004, respectively. In 2001, his paper
“Hidden Digital Watermark in Images” (co-authored with Prof.
Chiou-Ting Hsu), published in IEEE Transactions on Image
Processing, was selected to be one of the winners of the “Hon-
oring Excellence in Taiwanese Research Award”, offered by
ISI Thomson Scientific. Moreover, his paper “Tiling Slideshow”
(co-authored with his students) won the Best Full Technical
Paper Award in ACM Multimedia 2006. Professor Wu was se-
lected to be one of the lifetime Distinguished Professors of NTU,
November 2006.

Prof. Wu has been elected to be IEEE Fellow, since 1 January
2008, for his contributions to image and video analysis, coding,
digital watermarking, and rights management.

	A Multi-core Architecture Based Parallel Framework for H.264/AVC Deblocking Filters
	Abstract
	Introduction
	Related Works
	Background
	Deblocking Filtering of H.264/AVC
	MB-Wavefront Realization of Deblocking Filter and Its Synchronization Overhead

	Limited Propagation Effect of Filtering Stages
	Parallel Deblocking Algorithm
	Proposed Algorithm
	Discussion

	Experimental Results
	Speedup Analysis
	Synchronization Overhead Analysis

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

