Inorganica Chimica Acta 362 (2009) 543-550

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Crystal engineering of mixed-ligand frameworks: Ligand-directed assembly
and structural diversity

Cui-Juan Wang?, Yao-Yu Wang®*, Jian-Qiang Liu? Hong Wang?, Qi-Zhen Shi?, Shie-Ming Peng®

2 Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry, Northwest University, Xi’an, Shaanxi 710069, PR China
b Department of Chemistry, National Taiwan University, Taipei, Taiwan

ARTICLE INFO ABSTRACT

Article history:

Received 13 October 2007

Received in revised form 24 April 2008
Accepted 1 May 2008

Available online 7 May 2008

Four new coordination networks based on dipyridyl linkages 2,6-(N,N'-di(4-pyridyl)amino)pyridine
(dpap) or 1,3-bis(4-pyridyl)propane (bpp) and different dicarboxylates have been synthesized and struc-
turally characterized. Using dpap to react with two different dicarboxylates, maleic acid (Hmal) and 4,4’'-
sulfonyldibenzoate (Hpsdba), respectively, two different two-dimensional (2D) coordination polymers of
Cd(II), [Cd(dpap)(mal)], (1) and {[Cd(dpap)(sdba)] - 2H,0}, (2) were obtained. Compound 1 features a 42-
membered bimetallic macrocyclic structural motif which is extended by mal groups to form a 2D net-
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all structure of {[Mn(dpap)(sdba)] - 1.5H,0}, (3) similar to that of 2 despite the presence of different
metal ions. When dpap was replaced by bpp to react with Co(NOs), - 6H,0, another 1D coordination poly-
mer, {[Co(bpp)(H20),] - sdba},,(4) was constructed. The 1D chains join sdba to make an overall 3D supra-
molecular architecture by hydrogen-bonding interactions (R; (22),R; (12)). The Cd coordination polymers
exhibit strong solid-state luminescence emission at room temperature. Thermal stability of these crystal-
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line materials has been explored by thermogravimetric analysis of mass loss.
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1. Introduction

The design and construction of coordination polymers with un-
ique structural motifs and unique chemical and physical properties
has attracted extensive interest in supramolecular chemistry and
materials chemistry [1-3]. In the past decade, plenty of metal-or-
ganic hybrids exhibiting fascinating structures [4] and various
properties such as luminescence [5], magnetics [6], sorption [7],
ion exchange [8], nonlinear optics [9], high dielectric constants
[10] have been synthesized by chemists. In principle, the extended
coordination framework solids with desired structural features
and/or physicochemical properties greatly depend on the nature
of the organic ligands (spacers) and metal ions (nodes). Changes
in flexibility, length, symmetry of organic ligands, and metal ions
can result in a remarkable class of materials bearing diverse archi-
tectures and functions. As a consequence, nowadays, utilizing suit-
able organic tectons with functional groups that are capable of
bridging metal centers to construct such tailored crystalline mate-
rials has revealed to be a fast developing field of crystal engineer-
ing research [11,12].
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In the previous work [13], we reported five isostructural coordi-
nation polymers derived from 2,6-(N,N'-di(4-pyridyl)amino)pyri-
dine (dpap) and copper(ll) salts. These superstructures were
slightly affected by the incorporation of different solvent mole-
cules and anions, concomitant with an increase or decrease in
the channel dimensions. To extend the work about dpap, we intro-
duced the dicarboxylic acids as second ligand, which were chosen
for their versatile coordination capabilities as well as their sensi-
tive character to acidity in such building blocks [14-16]. Among
them, dicarboxylate species with different orientations of the func-
tional groups such as maleic acid (H,mal) and fumaric acid
(Hxfum) have been widely used [17]. Then, a typical example of
semi-rigid V-shaped dicarboxylate ligand, 4,4’-sulfonyldibenzoate
(Hysdba) [18] (Scheme 1), also attracts our great interests: (1) as
compared with mal, the influence of semi-rigid dicarboxylate li-
gand sdba on the framework structures may be contrasted to some
extent, and the same inorganic counter anions will be introduced
to illuminate the effect of dicarboxylate ligand; (2) it also holds
dicarboxylate coordination sites that provide a high likelihood for
the generation of structures with high dimensions; (3) the depro-
tonated carboxyl groups generally act as anions organic ligands
to complete the metal coordination as well as compensate the
charge. Therefore, mal and sdba can provide directional conforma-
tion of network structure via dative bonds and also noncovalent
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cooperative forces such as hydrogen bonding and aromatic stack-
ing. Also, another deviation of 4,4'-dipyridine molecule, bpp (1,3-
bis(4-pyridyl)propane), also attracts our attention because it can
assume different conformations that display quite different N-to-
N distances [19]. Now, we have concentrated on the construction
of mixed-ligand metal-organic frameworks based on the flexible
ligands dpap, bpp and dicarboxylates.

2. Experimental
2.1. Materials and physical measurements

The ligand dpap was prepared as we reported before [13]. All
reagents and solvents employed were commercially available and
used as received without further purification. Infrared spectra on
KBr pellets were recorded on a Nicolet 170SX FT-IR spectropho-
tometer in the range 4000-400 cm~!. Elemental analyses were
determined with a Perkin-Elmer model 240C instrument. Thermal
analyses were performed on a NETZSCH STA 449C microanalyzer
with a heating rate of 10 °C min~! under air atmosphere. Lumines-
cence spectra for the solid samples were recorded with a Hitachi
850 fluorescence spectrophotometer.

2.2. synthesis of [Cd(dpap)(mal)], (1)

Complex 1 was obtained by the reaction of Cd(NOs), - 4H,0,
dpap, Homal and NaOH in molar ratio of 1:1:1:2 mixed with
15mL of aqua-methanol (water/methanol=1:1 (v/v)) under
hydrothermal conditions (at 150 °C for 6 days and cooled to room
temperature with a 5 °C h~! rate). The colorless block crystals were
washed with water and ethanol, and dried in air. Yield: 52% (based
on Cd). C;9H;5CdN50,4 (489.76): Anal. Calc. C, 46.59; H, 3.09; N,
14.30. Found: C, 46.48; H, 3.01; N, 14.41%.

2.3. synthesis of {[Cd(dpap)(sdba)] - 2H>0},, (2)

The synthesis methods of 2 are similar to that of 1 except for
H,sdba instead of Hymal. Yield: 43% (based on Cd). CogH25CdN50gS
(715.98): Anal. Calc. C, 48.53; H, 3.51; N, 9.76. Found: C, 48.48; H,
3.41; N, 9.65%.

2.4. synthesis of {{[Mn(dpap)(sdba)] - 1.5H,0},, (3)

The synthesis methods of 3 are similar to that of 2 expect for
Mn(AcO), - 4H,0 as a substitute for Cd(NOs), - 4H,0. Yield: 36 %

(based on Cd). Co9H24MnN507 50S (649.51): Anal. Calc. C, 53.62; H,
3.72; N, 10.78. Found: C, 53.50; H, 3.61; N, 10.81%.

2.5. synthesis of {{Co(bpp)(H20)4] - sdba},, (4)

A methanol solution (5 mL) of bpp (0.1 mmol, 0.020 g) was
added to a methanol solution (5 mL) of Co(NOs), - 6H,0 (0.1 mmol,
0.029 g). An aqueous solution (5mL) of Nasdba (0.1 mmol,
0.035 g) was then added dropwise to give a transparent solution.
After six days, pink block crystals of 4 were obtained as a single
phase, as confirmed by XRPD. Compound 4 can also be obtained
by hydrothermal conditions following the same methods of 1-3.
Co7H30CoN3040S (633.52): Anal. Calc. C, 51.18; H, 4.78; N, 4.42.
Found: C, 51.25; H, 4.71; N, 4.31%.

2.6. Crystal structure determination

Diffraction experiments for 1-4 were carried out with MoKgy,
radiation using a BRUKER SMART APEXCCD diffractometer at
293(2) K. A summary of the crystallography data and structure
refinement is given in Table 1, and selected bond lengths and an-

Table 1
Crystal data and structure refinements for 1-4
Complex 1 2 3 4
Empirical Cy9H15CdN504 Ca9Hp5CdN5OgS Co9Ha4MnNsO75S Co7H30CoN2010S
formula
Formula mass 489.76 716.01 649.51 633.52
Crystal system monoclinic monoclinic monoclinic monoclinic
Space group  P2(1)/n P2(1)/c 2Jc P2(1)/n
a(A) 8.0741(9) 22.3808(2) 22.213(8) 6.2948(4)
b (A) 8.7580(10) 14.9314(1) 14.269(5) 25.7829(2)
c(A) 25.713(3) 20.4597(2) 19.978(7) 16.9050(1)
B(°) 90.733(2) 114.4980(10) 112.402(7) 96.7530(1)
V (A3) 1818.1(4) 6221.6(8) 5854(4) 2724.6(3)
V4 4 8 8 4
Deaic (gcm™3)  1.789 1.529 1.474 1.544
u (mm~1) 1.240 0.825 0.580 0.769
F[000] 976 2896 2672 1316
Data/ 3235/0/263  10988/48/793 5783/0/393 4858/8/403
restraints/
parameters
Goodness-of-  1.003 0.997 1.023 1.033
fit on F?
Ry [I>2a()]* 0.0520 0.0495 0.0689 0.0316
WR; (all data) 0.1178 0.1291 0.0974 0.0802

% Ry = X||Fo| — |Fel/SIFol; WRy = [ w(F% — F2)2/ S w(Fa)*]'2.
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Table 2
Selected bond lengths [A] and angles [°] for 1-4
Complex 1
Cd(1)-N(2) 2231(6)  Cd(1)-0(2) 2.301(5)
Cd(1)-N(1) 2242(5)  Cd(1)-0(1) 2.473(5)
Cd(1)-0(3)#1 2237(5)  Cd(1)-O(4)#1 2.638(5)
N(2)-Cd(1)-N(1) 128.3(2) N(2)-Cd(1)-0(4)#1 88.91(2)
N(1)-Cd(1)-0(3)#1 108.6(2) N(1)-Cd(1)-0(2) 105.6(2)
0(3)#1-Cd(1)-0(2) 88.00(2) N(1)-Cd(1)-0(1) 87.83(2)
0(3)#1-Cd(1)-0(4)#1 52.70(2) 0(2)-Cd(1)-0(1) 54.08(2)
Complex 2
Cd(l) N(1) 2216(4)  Cd(1)-N(10) 2.262(4)
cd(1)-0(7) 2.283(3)  Cd(1)-0(1) 2.342(4)
Cd(1)-0(2) 2.411(4) Cd(1)-0(8) 2.500(4)
Cd(2)-N(6) 2.254(4)  Cd(2)-N(5) 2.279(4)
Cd(2)-0(11)#1 2.304(4)  Cd(2)-0(5)#2 2.320(4)
Cd(2)-0(6)#2 2.405(4)  Cd(2)-0(12)#1 2.444(4)
N(1)-Cd(1)-N(10) 100.16(2) N(1)-Cd(1)-0(1) 106.75(2)
0(7)-Cd(1)-0(2) 86.47(1) 0(1)-Cd(1)-0(2) 54.91(1)
N(1)-Cd(1)-0(8) 98.83(2) 0(7)-Cd(1)-0(8) 54.25(1)
N(6)-Cd(2)-N(5) 93.21(2) N(6)-Cd(2)-0(5)#2 106.48(2)
N(5)-Cd(2)-0(6)#2 98.29(1) 0(5)#2-Cd(2)-0(6)#2 55.37(1)
N(5)-Cd(2)-0(11)#1 96.82(2) O(11)#1-Cd(2)-0(12)#1 55.06(1)
Complex 3
Mn(1)-N(4)#1 2.043(8)  Mn(1)-0(2) 2.071(6)
Mn(1)-N(1) 2.076(7)  Mn(1)-0(5)#2 2.113(6)
Mn(1)-0(6)#2 2273(6)  Mn(1)-0(1) 2.343(6)
N(4)#1-Mn(1)-0(2) 101.06(3) N(4)#1-Mn(1)-N(1) 99.2(3)
N(1)-Mn(1)-0(5)#2 104.3(3) 0(5)#2-Mn(1)-0(6)#2 60.8(2)
0(2)-Mn(1)-0(1) 59.5(2) 0(6)#2-Mn(1)-0(1) 82.3(2)
Complex 4
Co(1)-0(2) 2.0943(2)  Co(1)-0(3) 2.0984(2)
Co(1)-N(2) 2.1143(2)  Co(1)-0(1) 2.1179(2)
Co(1)-N(1) 2.1203(2)  Co(1)-0(4) 2.1495(2)
0(3)-Co(1)-N(2) 88.25(7) 0(2)-Co(1)-0(1) 85.03(7)
0(2)-Co(1)-N(1) 88.73(7) 0(3)-Co(1)-0(4) 86.03(7)
N(1)-Co(1)-0(4) 89.03(7) N(2)-Co(1)-0(1) 88.86(7)

Symmetry codes: 1: #1 —x+1/2,y —1/2, —z+1/2. 2: #1 —x, y — 1/2, —z+1/2; #2
—Xx+1,y+1/2, —z+1/2.3: #1 —x+2,y, —z+3[2; #2x+1/2,y +1/2, z.

gles of four complexes are listed in Table 2. All structures were
solved by direct methods and refined with the full-matrix least-
squares technique on F? using the sHEixs-97 [20] and SHELxL-97
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[21] program. All non-hydrogen atoms present were anisotropi-
cally refined. All hydrogen atoms of water were located in succes-
sive different Fourier Maps and the other hydrogen atoms were
treated as riding method.

3. Results and discussion
3.1. Description of the structures

3.1.1. [Cd(dpap)(mal)],, (1)

The structure of compound 1 crystallizes in the Monoclinic form
with P2(1)/n space group, and the coordination geometry around
cadmium(II) center is a distorted octahedron, the equatorial plane
of which comprises four oxygen atoms from two chelating carbox-
ylate groups of different mal anions; nitrogen atoms from two dif-
ferent dpap ligands occupy the remaining apical coordination sites,
as shown in Fig. 1. The Cd-0=2.237(5)-2.638(5)A and Cd-
N =2.231(6)-2.242(5) A, which are consistent with the values re-
ported for Cd-carboxylate and Cd-pyridyl complexes [22]. The
Cd(II) octahedra are connected to each other to form an infinite
wave-like 1D chain that consists of a 42-membered bimetallic
macrocycle-containing building block (Fig. 1). In each elliptical
ring, the Cd(Il) - - - Cd(II) contact is around 9.3 A, which is shorter
than the corresponding lengths found in similar framework com-
plex such as [Cd(L;)y(NOs)]|(L; = 2,5-bis(4-(1H-1,2,4-triazol-yl-
methyl)phenyl)-1,3,4-oxadiazole) [23]. It is noteworthy that two
adjacent macrocycles are not coplanar, and the centroid-centroid
separation is 13.90 A and the dihedral is about 40.35°, respectively.
Therefore, such macrocycles are extended by mal groups to a 2D
corrugated network ((Fig. S1)). Interestingly, Cd(Il) ions are bridged
by mal groups to generate two hetero-chiral helical chains (Fig. 2a),
which are alternately arranged in bc plane. Adjacent Cd-mal het-
ero-chiral helices are interconnected through the dpap ligands.
As shown in Fig. 2b, the left-handed and right-handed metal-mal
helical chains with a pitch of 8.758 A run along crystallographic
21 screw axis. A more revealing description from the viewpoint
of network topology is that the adjacent Cd" nodes are extended
along the (011) plane via mal and Cd(II) connectors to form a 2D
(6,3) network (Fig. S2).

Fig. 1. ORTEP figure of 1 showing 42-membered macrocycle-containing building block surrounding Cd(II) octahedra (30% ellipsoids).
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3.1.2. {[Cd(dpap)(sdba)] - 2H,0},, (2), {{Mn(dpap)(sdba)] - 1.5H,0},
3)

The structures of 2 and 3 are similar, except the different free
water molecules and space group. So, only the structure of com-
pound 2 will be discussed in detail. The X-ray crystallographic
study shows that 2 crystallizes in the space group P2(1)/c and
the asymmetric unit of 2 contains two distinct Cd centers (Fig.
3). Cd(1) atom is coordinated to two N atoms of pyridine unit from
different dpap (Cd(1)-N, 2.216(4)-2.262(4) A) and four additional
positions are occupied by O atoms from two carboxylate groups
(Cd(1)-0, 2.342(4)-2.500(4) A). Therefore, the local coordination
geometry around Cd(1) can also be regarded as a distorted octahe-

M

dron with N,O4 donor set. Cd(2) has a similar coordination geom-
etry with N,O4 binding set, but with longer distance of Cd(2)-N
(2.254(4)-2.279(4) A) and shorter distance of Cd(2)-0 (2.304(4)-
2.444(4) A). The position of two dpap is different from those of 1,
the dihedral angle between two dpap ligands are nearly 75.5°
and the Cd(Il) - - - Cd(II) contact is 7.9 A. Depending on the confor-
mation of sdba, two different layers (A and B) can be achieved.
As shown in Fig. 4a, in layer A, the V-shaped sdba are arranged
in a transverse pattern while in layer B these are arranged in a ver-
tical manner. Dpap ligands link two layers and protrude from the
sheets. Each layer is formed by parallel arrangement of metal-or-
ganic chains (Fig. 4b). Such a regular crossing coordination fashion

Fig. 2. (a) A view of 2D network structure of 1 with hetero-chiral helical chains alternately arranged in bc plane, emphasizing the right (yellow) and left (green)-handed helix
chains. (b) The left (M) is a left-handed helical chain and the right (P) is a right-handed helical chain with 2, screw axis.
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is still rare in the system of multi-carboxylate, and it plays an
important role in the formation of a bilayer structure [24]. Rather,
the bilayers are parallel and stacked without interpenetrating with
3-connected (8210) metal nets (Fig. S3), which is analogous to that
of [Cu(Mtta)], (Mtta=5-methyl tetrazolate) [25], but different
from that of {[PhsPCH,Ph] [Cd(tp) - Cl] - 2H;0},, (tp = terphthalate)
[26], which contains 2-fold interpenetration of the 3D (8210) net-
work. Of further interest, the bilayer arrays of 2 display a unique
structural feature of butterfly network, which propagated along
[011] direction (Fig. 5).

Complex 3 crystallizes in the monoclinic system, C2/c space
group and the coordination environment around Mn(Il) ion is
shown in Fig. S4 along with atom numbering scheme.

3.1.3. {[Co(bpp)(H20)4]- sdba}, (4)

Compound 4 consists of the cationic 1-D helix chains
{[Co(bpp)(H;0),]}+* and sdba®~ anions. As shown in Fig. 6a, the
Co(II) center exhibits a slightly distorted octahedral geometry, with
two N donor atoms from different bpp ligands composing the api-
cal position and four water molecules completing the six-coordi-
nated sphere at the equatorial plane. All coordinated bonds are
also within the normal range [27]. Each bpp ligand with TG confor-
mation [28] connect two Co(1) ions, forming a left-handed helical
chain along the b axis. As shown in Fig. 6b, the chain is generated
by a 2; axis with a pitch of 25.8 A. Furthermore, the coordinated
02, 03 atoms act as the donors of 02-H2B --- 06, 02-H2C - -- 09,
and 03-H3C--- 07, 03-H3B--- 08 interactions, linking the sdba
from adjacent chains. As a consequence, these 1D chains are ex-
tended to a 2D network along the bc plane, and two new hydro-
gen-bonding patterns marked as C [Rj (22)], D[R; (12)] come into
being [29] (Fig. 6¢). In addition, these 2D coordination layers are
interlinked via another two hydrogen-bonding interactions (0O4-
H4B --- 08, 01-H1B - -- 010) to finally produce a 3D supramolecu-
lar architecture (see Fig. S5).

When H,sdba was replaced by H,fum, we obtained {[Co(bp-
p)2(H20);] - fum - 8H,0}, (5), which has been reported by us before
[30]. The compound 5 also has a 1D polymeric chain ([Co(bp-
p)2(H20)]?*) and free fumaric dianion. An unprecedented 2D
(6,3) net topology of hydrogen-bonded water layers results from
free water molecules through templating with fum. The free water
molecules of sdba?~ and fum?~ may be attributed to the much
greater flexibility of bpp compared to that of the dpap ligand, as
well as ions effect. Comparison of polymers 1 and 2, containing
the same metal salt and dpap ligand, led to the demonstration of
the significant role that the dicarboxylate connectors had in their

F'S

T1A) NIS))

>

preparation and structure. Compound 1 exhibits a (6,3) topological
metal network, whereas 2 is a 3-connected (8210) metal net. Dpap
exhibits similar coordination modes in 1 and 2. The presence of
mal acid was essential to construct hetero-chiral helical chains
and semi-rigid V-shaped sdba was also significant to build crossing
bilayers because without it, the cornu(V-shape) was not formed.
Compound 3 was obtained by different metal salts introduced to
2, which was not tampered with metal effect. A comparison of
polymers 2 and 4, with the same dicarboxylate connectors, showed
that changes in flexibility, and length of organic ligands have a sig-
nificant influence on the overall structure.

3.2. Fluorescence properties

Compounds constructed from d'° metal centers and conjugated
organic links are promising candidates for hybrid photoactive
materials with potential applications such as light-emitting diodes
[31]. The solid-state emission spectra of dpap, 1 and 2, have been
investigated at room temperature, as depicted in Fig. 7. The peak
of 466 nm (/ex =390 nm) for compound 1 may be assigned to the
intraligand fluorescent emission [32] of dpap (442 nm,
Jex =390 nm). Complex 2 exhibits a broad emission band with
the maximal emission at 455 nm (Jex =390 nm), which is red-
shifted compared with free dpap and sdba (329 nm) [18b]. Accord-
ing to the Ref. [18b], the emission of 2 may be attributed to the li-
gand-to-metal charge transfer. The different emission bands of 1, 2
may be due to the significant difference of their topological struc-
ture because the fluorescence behavior is closely associated with
the metal ions and the ligands coordinated around them [33].

3.3. TGA analyses

Thermogravimetric analyses (TGA) of complexes 1-4 were per-
formed on single crystal samples. Complex 1 exhibits high thermal
stability, as there is no weight loss below 352 °C (Fig. S6). The TGA
indicates that2 lost 5.2% of total weight in the 80-110 °C tempera-
ture range, corresponding to the loss of two H,0 molecules per for-
mula unit (expected 5.0 %). When the temperature is above 285 °C,
the product begins to decompose and oxidize, all assigned to the
decomposition of organic ligands (Fig. S7). The TGA of 3 are similar
to that of 2. Compound 3 experienced 4.3% weight loss in the 85-
118 °C temperature range for H,O molecules per formula unit (ex-
pected 4.1%). The decomposition of the organic ligands occurs at
275.8 °C (Fig. S8). While, TGA display that the weight of 4 remains
almost unchanged from 40 to 190 °C. In the temperature range of

Fig. 3. ORTEP drawing of Cd center of 2 at the 30% probability level (hydrogen atoms and water molecules are omitted for clarity).
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Fig. 4. (a) Two-dimensional bilayer (A and B) structure of 2 with dpap ligands link two layers; (b) dpap are omitted for clarity. The purple and blue color show the A and B

layers, respectively (for clarity, only two chains are represented by color codes in (a)).

190-240 °C, the complex undergoes large weight loss of 56.5%,
which belongs to sdba and coordinated H,O molecules losing to-
gether (calculated: 59.7%) (Fig. S9). Then, the bpp begin to decom-
pose and oxidize above 290 °C.

3.4. Conclusion

Two polymers of Cd(ll), [Cd(dpap)(mal)], (1) and
{[Cd(dpap)(sdba)] - 2H,0}, (2) exhibit novel framework due to dif-
ferent dicarboxylate anions. Same direction and relative short dis-
tance of dicarboxylate species in 1 help to generate Cd-carboxylate

helical chains, which are alternately arranged to form a 2D (6,3)
framework. While the semi-rigid V-shaped and relatively long li-
gand sdba results in two different layers (A and B) of 2. The regular
crossing bilayers are parallel and stacked without interpenetrating
with (8210) topology. Compound 3 was obtained by different metal
salts introduced to 2, which was not tampered with metal effect.
The formation of the 1-D chains of {[Co(bpp)(H,0)4] - sdba},, (4)
herein obviously resulted from the flexible nature of bpp as well
as metal effect. It is noteworthy that a variety of framework struc-
tures can be achieved on the basis of the choice of the different nat-
ure of ligand and dicarboxylate groups as building blocks.
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Fig. 5. The butterfly network of 2 along a axis.
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Fig. 6. (a) ORTEP drawing of 4 showing Co(II) octahedra (30% ellipsoids) and free sdba dianions. Hydrogen atoms are omitted for clarity; (b) a left-handed 2, helix of complex
4 along the crystallographic a axis, emphasizing the left-handed (red) helix chain; (c) 2D hydrogen-bonding sheet in bc plane.
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Fig. 7. Solid-state fluorescence emissions recorded at room temperature for dpap
(red), 1 (black) and 2 (green). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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