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Given a real number sequence A = (a1,a2, . . . ,an), an average lower bound L, and
an average upper bound U , the Average-Constrained Maximum-Sum Segment problem
is to locate a segment A(i, j) = (ai,ai+1, . . . ,a j) that maximizes

∑
i�k� j ak subject to

L � (
∑

i�k� j ak)/( j − i + 1) � U . In this paper, we give an O (n)-time algorithm for the
case where the average upper bound is ineffective, i.e., U = ∞. On the other hand, we
prove that the time complexity of the problem with an effective average upper bound is
�(n log n) even if the average lower bound is ineffective, i.e., L = −∞.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Given a real number sequence A = (a1,a2, . . . ,an), de-
fine the length, sum, and average of a segment A(i, j) =
(ai, . . . ,a j) to be j − i + 1,

∑ j
h=i ah , and (

∑ j
h=i ah)/( j −

i + 1), respectively. The Maximum-Sum Segment problem,
which finds a segment maximizing the sum, is widely for-
mulated in pattern recognition [16,22], image processing
[15], biological sequence analysis [1,13,17,20,23,25], and
data mining [14,15]. It was first surveyed by Bentley in his
“Programming Pearls” column of CACM [6,7] and is linear-
time solvable using Kadane’s algorithm [6]. Since then,
there have been many variants proposed. The k Maximum-

Sum Segments problem [3–5,10,12,18,19] is to locate the
k segments whose sums are the k largest among all pos-
sible sums, and is solvable in O (n + k) time [10,21]. The
Range Maximum-Sum Segment Query (RMSQ) problem is
to preprocess the input sequence such that any range max-
imum-sum segment query can be answered quickly, where
a range maximum-sum segment query specifies two in-
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tervals [i, j] and [k, l] and the goal is to find a segment
A(x, y) with maximum sum subject to i � x � j and k �
y � �. Chen and Chao [11] showed that the RMSQ prob-
lem can be solved in O (n) preprocessing time and O (1)

time per query. The Length-Constrained Maximum-Sum

Segment problem is to find the maximum-sum segment
among all segments satisfying the given length constraints
and is solvable in O (n) time [9,13,20].

For certain applications in the biological sequence anal-
ysis, it has been shown that maximizing the sum of
a segment sometimes yields a lengthy segment consist-
ing of poor regions [2,24]. To guarantee the quality of
the target segment, its average should be taken into ac-
count. In this paper, we consider the Average-Constrained

Maximum-Sum Segment (ACMS) problem, which is to find
the maximum-sum segment among all segments satis-
fying the given average lower bound and upper bound.
Specifically, given are a sequence A = (a1,a2, . . . ,an) of
real numbers, an average lower bound L, and an av-
erage upper bound U . Let A(i, j) denote the segment
(ai,ai+1, . . . ,a j), and let S(i, j) denote the sum of A(i, j).
The Average-Constrained Maximum-Sum Segment prob-
lem is to find a segment A(i, j) maximizing S(i, j) sub-
ject to L � S(i, j)/( j − i + 1) � U . In Section 4 we show
that Bernholt et al.’s result [9] implies an O (n log n) time
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algorithm for this problem. We also give an O (n)-time al-
gorithm for the case where only an average lower bound is
imposed and prove that no algorithm can cope with an ef-
fective average upper bound in o(n log n) time even if the
average lower bound is ineffective.

2. An O (n)-time algorithm for the ACMS problem with
an ineffective average upper bound

In this section, we assume that the average upper
bound U is ineffective (i.e., U = ∞) and give a linear time
algorithm for finding the maximum-sum segment among
segments with averages no less than the average lower
bound L. For ease of exposition, we assume L > 0 in sub-
sequent discussion. This restriction can be overcome as
follows. Let ai∗ = maxn

i=1 ai . If ai∗ < L � 0, then report that
there is no feasible solution. If L � ai∗ � 0, then output
A(i∗, i∗). If L � 0 and ai∗ > 0, then it is safe to output the
segment that maximizes the sum without worrying about
the average lower bound.

Let P denote the prefix-sum array of A, where P [i] =∑
1�k�i ak for i = 1,2, . . . ,n and P [0] = 0. It is easy

to see that S(i, j) = P [ j] − P [i − 1]. Let B = 〈a1 − L,

a2 − L, . . . ,an − L〉, and denote its prefix-sum array by P B .
Since S(p,q) = P B [q] − P B [p − 1] + (q − p + 1) × L,
S(p,q)/(q − p + 1) � L if and only if P B [q] � P B [p − 1].

Definition 1. Given an index q > 0, an index p is said to
be a “partner” of q if and only if p < q and P B [p] � P B [q].

Definition 2. Given an index q > 0 with at least one part-
ner, let s∗ = max{S(i + 1,q): 0 � i < q and P B [i] � P B [q]}.
We say that p is the “best partner” of q if and only if p
is the largest partner of q with S(p + 1,q) = s∗ . Let π(q)

denote the best partner of q.

Our strategy is that for every index i, we find the
segment having the largest sum among all the segments
which end at i and satisfy the average constraint. Obvi-
ously, the maximum-sum segment satisfying an average
constraint is the largest one of them. Therefore, we have
the optimal solution when the best partner of each index
is computed. It is easy to see that not every index is a best
partner for some other index. With careful observations,
we eliminate the indices that are not the best partner by
Lemma 1.

Lemma 1. For any index q, π(q) �= v if P B [u] � P B [v] and
0 � u < v < q.

Proof. Suppose for contradiction that π(q) = v . It follows
that A(v + 1,q) is the maximum-sum segment among all
the segments satisfying the average constraint and ending
at q. It is easy to see that S(u + 1,q) = P B [q] − P B [u] +
(q − u) × L > P B [q] − P B [v] + (q − v) × L = S(v + 1,q).
Moreover, we know P B [u] � P B [v] � P B [q] by definition.
Therefore, u is a partner of q better than v , which leads to
a contradiction. �

To compute the best partner of each index, we con-
struct a list C to record candidates of best partners as
Algorithm 1. ComputeCandidateL(A, L)

1: B ← 〈a1 − L,a2 − L, . . . ,an − L〉;
2: P ← the prefix-sum array of A;
3: P B ← the prefix-sum array of B;
4: C ← an empty list;
5: create n empty lists R1, R2, . . . , Rn;
6: initialize array HaveParners[1..n] with 0’s;
7: for i ← 0 to n do
8: j ← the last element of C ;
9: if j = NULL or P B [i] < P B [ j] then

10: while j �= NULL and P [i] � P [ j] do
11: delete j from C ;
12: insert j at the beginning of Ri ;
13: j ← the last element of C;
14: end while
15: insert i at the end of C ;
16: else
17: HavePartner[i] ← 1;
18: end if
19: end for
20: output C , P , P B , HavePartner[1..n], and R1, R2, . . . , Rn;

follows. In the beginning, the list C is empty. We then
scan P and P B , two prefix-sum arrays, on the fly and ver-
ify whether i should be added to C for every index i. Let j
denote the latest index added to C . By Lemma 1, we know
that i may be a best partner candidate for indices greater
than i only when P B [i] < P B [ j]. Thus, if P B [i] � P B [ j], we
can bypass i; otherwise, we distinguish between the fol-
lowing two cases: P [i] > P [ j] and P [i] � P [ j]. If P [i] >

P [ j], we insert i at the end of C . If P [i] � P [ j], we first
delete all indices x in C with P [x] � P [i] and then in-
sert i at the end of C . The deleted indices are stored in
list Ri . The detailed descriptions of the construction are
given in Algorithm 1. For all i = 0,1, . . . ,n, let Ci denote
the contents of C immediately after the ith iteration of the
for-loop, Ni = |Ci |, and ci, j denote the jth element in Ci . It
is easy to verify the following four properties.

Property 1. The values of P B [ci,1], P B [ci,2], . . . , P B [ci,Ni ]
are in decreasing order, and the values of P [ci,1],
P [ci,2], . . . , P [ci,Ni ] are in increasing order.

Property 2. If i ∈ Ck and i � j < k, then Ci is a prefix of C j
and ends with i, that is, Ci = 〈c j,1, c j,2, . . . , c j,Ni 〉 and
c j,Ni = i.

Property 3. HavePartner[ j] = 1 if and only if ∃i < j such
that P B [i] � P B [ j].

Property 4. (Ci\{i}) · Ri = Ci−1, where the symbol “·”
means concatenation.

We now analyze the time complexity. The total number
of operations of the algorithm is clearly bounded by O (n)

except for the while-loop body in lines 10–14. In each it-
eration of the while-loop, we remove exactly one element
from the end of C . Moreover, each index is inserted into
C at most once. Therefore, the while loop totally have at
most O (n) iterations, and we have the following theorem.

Theorem 1. ComputeCandidateL(A, L) runs in O (n) time.

The next lemma ensures that the best partner of any in-
dex q must reside in Cq−1. Therefore, by Property 1, finding
π(q) is equivalent to finding the smallest index i ∈ Cq−1
such that P B [i] � P B [q].
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Lemma 2. For any index q, if π(q) exists, it must be in Cq−1 .

Proof. Let p = π(q). We first prove that p will be in-
serted into C in the pth iteration of the for-loop, i.e., p ∈
C p . Suppose for contradiction that p /∈ C p . It follows that
there exists j < p such that P B [ j] � P B [p]. By Lemma 1,
p �= π(q), a contradiction. We next prove that p remains
in Ci for all i ∈ [p + 1,q − 1]. Suppose for contradiction
that p is removed from C in the ith iteration for some
i ∈ [p + 1,q − 1]. Note that deletion of p occurs only when
P [i] < P [p] and P B [i] < P B [p] are both satisfied. It implies
that i is a partner better than p with respect to q, a con-
tradiction. �

We next prove that A(π(p) + 1, p) is not an optimal
solution if there exists some q > p such that π(q) < π(p).

Lemma 3. S(π(q) + 1,q) > S(π(p) + 1, p) when π(q) <

π(p) and p < q.

Proof. Consider the following two cases. Case 1: P [p] �
P [q]. In this case, P [π(p)] > P [π(q)] for otherwise π(p) is
a better partner for q than π(q), a contradiction. Thus, we
have S(π(q) + 1,q) = P [q] − P [π(q)] > P [p] − P [π(p)] =
S(π(p) + 1, p). Case 2: P [p] > P [q]. In this case, P B [p] >

P B [q] � P B [π(q)]. Therefore, P [π(p)] � P [π(q)] for other-
wise π(q) is a better partner for p than π(p), a contradic-
tion. It follows that P B [q] � P B [π(q)] > P B [π(p)], so π(p)

is a partner of q. Furthermore, since P [π(p)] � P [π(q)]
and π(p) > π(q), π(p) is a better partner for q than π(q),
a contradiction. Thus, Case 2 is impossible to happen. �

A linear-time algorithm for finding the maximum-sum
segment satisfying an average lower bound L is given in
Algorithm 2. We first call procedure ComputeCandidateL
to compute C, P , P B , HavePartner[1..n], and R1, R2, . . . , Rn .
Initialize variables r and l with n + 1 and n, respectively,
so that C = Cl and l � r − 1 hold in the beginning. We
then compute π(r) for r from n to 1. Whenever the value
of r is decremented by one, we will accordingly update
l and C such that l � r − 1 and C = Cl still hold. When
computing π(r), if l = r − 1, then by Lemma 2, π(r) ∈ Cl .
Thus we can find π(r) by scanning the list C = Cl = Cr−1
from the end until the smallest index i ∈ C such that
P B [i] � P B [r] is located and then reset l to π(r) = i. Oth-
erwise, we have l = π(q) for some q > r. By Property 2,
Cπ(q) = 〈cr−1,1, cr−1,2, . . . , cr−1,Nπ(q)

〉 is a prefix of Cr−1,

where cr−1,Nπ(q)
= π(q) = l. By Lemma 2, π(r) ∈ Cr−1.

Thus, if we cannot find π(r) in Cl , then π(r) > π(q) = l.
By Lemma 3, A(π(r) + 1, r) is not the optimal solution
and we can bypass the computation of π(r). In summary,
we shall first scan the list C = Cl from the end until find-
ing the smallest index i ∈ C such that P B [i] � P B [r]. If i �=
NULL, then π(r) = i and we reset l to i = π(r); otherwise,
A(π(r) + 1, r) is not the optimal solution and we bypass
the computation of π(r).

We next analyze the running time. By Lemma 1, the
procedure ComputeCandidateL takes O (n) time. It is clear
that the total time spent on updating C is bounded by
O (n). When scanning the list C = Cl to find the smallest
Algorithm 2. MaxSumAvgL(A, L)

1: C , P , P B , HavePartner[1..n], and
R1, R2, . . . , Rn ← ComputeCandidate(A, L);

2: Smax ← −∞;
3: r ← n + 1;
4: l ← r − 1;
5: while r > 1 do
6: repeat
7: r ← r − 1;
8: if r − 1 < l then
9: l ← r − 1;

10: C ← (C\{l + 1}) · Rl+1;
/* Update C such that C = Cl . */

11: end if
12: until HavePartner[r] = 1 or r = 1
13: scan C from the end until the smallest index i ∈ C

such that P B [i] � P B [r] is located;
14: /* If i = NULL, then π(r) > l; otherwise, π(r) = i. */
15: if i �= NULL then
16: if P [r] − P [i] > Smax then
17: Smax ← P [r] − P [i];
18: (α∗, β∗) ← (i + 1, r);
19: end if
20: while l > i do
21: l ← l − 1;
22: C ← (C\{l + 1}) · Rl+1;

/* Update C such that C = Cl . */
23: end while
24: end if
25: end while
26: output A(α∗, β∗);

candidate i ∈ C such that P B [i] � P B [r], if P B [l] > P B [r],
then i = NULL and only one element is scanned. If P B [l] �
P B [r], then at most k = l − i + 2 elements are scanned and
l is reset to i = l − k + 2. That is, the value of l will de-
crease by at least k − 2 if k elements in the list C = Cl are
scanned. Initially l = n, so the total time spent on scanning
C is bounded by O (n). It follows that the running time of
MaxSumAvgL(A, L) is O (n).

Theorem 2. The Average-Constrained Maximum-Sum Seg-

ment problem can be solved in O (n) time if the upper bound U
is ineffective.

3. An �(n log n)-time lower bound for the ACMS problem
with an effective average upper bound

In this section, we assume that the average lower
bound is ineffective and prove that the problem of finding
a segment A(i, j) maximizing S(i, j) subject to (

∑ j
k=i ak)/

( j − i + 1) � U has an �(n log n) lower bound.

Definition 3 (Element uniqueness problem). Given a number
sequence X = (x1, x2, . . . , xn), determine whether there ex-
ist i �= j such that xi = x j .

Lemma 4. (See Ben-Or [8].) The Element Uniqueness prob-
lem has an �(n log n) lower bound in the algebraic decision tree
model.

Theorem 3. The problem of finding the maximum-sum segment
among all segments with averages no greater than U has an
�(n log n) lower bound in the algebraic decision tree model.
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Proof. We reduce the Element Uniqueness problem to
our problem in O (n) time as follows. Given an Element

Uniqueness problem instance X = (x1, x2, . . . , xn), without
loss of generality, assume that xi �= 0 for i = 1,2, . . . ,n.

Let A = (a1,a2, . . . ,an) and U = 0, where a1 = x1 and
ai = xi − xi−1 for i = 2,3, . . . ,n. Let x0 = 0. Then for all
1 � i � j � n, we have A(i, j) = x j − xi−1. It follows that

there exists i < j such that xi = x j

⇔ A has a zero sum segment

⇔ the maximum-sum segment of A

satisfying average � U has zero sum. �
4. An O (n log n)-time algorithm for the ACMS problem

In this section we demonstrate why the Average-

Constrained Maximum-Sum Segment problem can be
solved in O (n log n) time by using Bernholt et al.’s algo-
rithm [9], which is the best possible time bound for the
general case by Theorem 3. Given a sequence A = (a1,a2,

. . . ,an) of real numbers, a set of k linear constraints on
the length and sum of the located segment, and a score
function f : R × R → R, Bernholt et al. [9] showed that
locating a segment A(i, j) = (ai,ai+1, . . . ,a j) maximizing
f ( j − i + 1, S(i, j)) subject to the given constraints can
be done in O (k log k + k · n log n) time as long as the
score function is quasiconvex. A function f : R × R → R

is said to be quasiconvex if and only if for all points u, v ∈
R × R and all λ ∈ [0,1], we have f (λ · u + (1 − λ) · v) �
max{ f (u), f (v)}. Define the score function f : R × R → R

by letting f (�, s) = s for each point (�, s) ∈ R × R. The
Average-Constrained Maximum-Sum Segment problem is
equivalent to finding a segment A(i, j) = (ai,ai+1, . . . ,a j)

maximizing f ( j − i + 1, S(i, j)) subject to the following
two linear constraints on the sum and length of A(i, j):
S(i, j) � ( j − i + 1) · U and S(i, j) � ( j − i + 1) · L. Since
the function f (�, s) = s is quasiconvex, by Bernholt et al.’s
algorithm, we have the following theorem.

Theorem 4. (See Bernholt et al. [9].) The Average-Constrained

Maximum-Sum Segment problem can be solved in O (n log n)

time for the general case.
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