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Abstract—A switch block M with W terminals on each side is said to be universal if every set of nets satisfying the dimension
constraint (i.e., the number of nets on each side of M is at most W) is simultaneously routable through M [2]. In this paper, we present
an algorithm to construct N-sided universal switch blocks with W terminals on each side. Each of our universal switch blocks has
(5)W switches and switch-block flexibility N — 1 (i.e., Fs = N — 1). We prove that no switch block with less than (§) W switches can be
universal. We also compare our universal switch blocks with others of the topology associated with Xilinx XC4000-type FPGAs. To
explore the area performance of the universal switch blocks, we develop a detailed router for hierarchical FPGAs (HFPGAs) with 5-
sided switch blocks. Experimental results demonstrate that our universal switch blocks improve routability at the chip level. Based on
extensive experiments, we also provide key insights into the interactions between switch-block architectures and routing.

Index Terms—Analysis, architecture, design, digital, gate array, programmable logic array.

1 INTRODUCTION

conventional FPGA (see Fig. 1a) consists of an array of

logic blocks that can be connected by routing resources
[1]. The logic blocks contain combinational and sequential
circuits which are used to implement logic functions. The
routing resources consist of wire segments and switch
blocks. The intersection of a horizontal and a vertical
channel is referred to as a switch block; the switch block
serves to connect wire segments and this requires using
programmable switches inside it. Fig. 1b illustrates a switch
block in which the programmable switches, denoted by
dashed lines between terminals, are shown.

The studies by [5], [12] have proposed a new routing
architecture called an 8-way mesh. (See Fig. 2a for the
architecture.) Similar to a conventional architecture, an 8-
way mesh structure also consists of a two-dimensional
array of logic blocks. However, unlike the conventional
architecture, the pins of a logic block in an 8-way mesh are
directly connected to their nearest four switch blocks in
diagonal directions. A switch block used in the 8-way mesh
is then not only connected by its four nearest neighboring
switch blocks, but also by the four diagonal neighboring
logic blocks. Thus, the switch blocks used in 8-way mesh
FPGAs are 8-sided. (See Fig. 2b for an 8-sided switch block.)
A topology of the architecture similar to the 8-way mesh
architecture for interchip routing was also studied in [4].

A hierarchical FPGA (HFPGA) (see Fig. 3a and Fig. 3c) has
a hierarchical interconnection structure [6], [3], [8]. An
HFPGA can be hierarchically constructed by connecting
logic blocks into clusters. First, k logic blocks are connected
with a switch block. This step forms a one-level HFPGA.
Then, k clusters are recursively connected together as a
supercluster. As k clusters are connected into a supercluster,
the number of levels of the hierarchy will be increased by
one. It is called a k-HFPGA if a cluster has k subclusters [8].
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For example, Fig. 3a is a four-level 2-HFPGA and Fig. 3cis a
two-level 4-HFPGA.

In an HFPGA, the switch blocks are not the same as the
conventional 4-sided switch blocks. For a k-HFPGA, each
switch block, except the top-level one, is connected with k
logic blocks and another switch block; therefore, the switch
block can be considered a (k + 1)-sided polygonal block. For
example, the switch block of 2-HFPGA is 3-sided (see
Fig. 3b) and the switch block of 4-HFPGA is 5-sided (see
Fig. 3d). Therefore, switch blocks could have arbitrary
numbers of sides and it is significant to consider the design
and analysis of switch blocks with multiple sides.

For the work on conventional switch blocks (4-sided
blocks), Rose and Brown in [10] defined the flexibility of a
switch block, represented by Fg, as the number of
programing switches between a terminal and others. They
investigated the effects of different switch-block flexibilities
on routing and suggested that Fg =3 should often be
sufficient for high routability. Chang et al. first presented a
class of universal switch blocks in [2]. A switch block M
with W terminals on each side is said to be universal if every
set of nets satisfying the dimension constraint (i.e., the
number of nets on each side of M is at most W) is
simultaneously routable through M [2]. They proved that
each of the universal switch blocks can accommodate
significantly more routing instances than the Xilinx
XC4000-type one of the same size. Recently, a report on
the layout implementations of the universal switch blocks
and the XC4000-type ones has also concluded that the
universal switch blocks need smaller silicon areas—the
decomposition property’ of the universal switch blocks makes
their layout very regular and compact [14].

In this paper, we present an algorithm to construct
generic universal switch blocks with multiple sides. Each of
our universal switch blocks has (§)W switches and switch-
block flexibility N —1 (i.e., Fg = N —1). We prove that no
switch block with less than ()W switches can be universal.

1. A formal definition of the decomposition property will be given in
Section 3.1.
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Fig. 1. A conventional FPGA and its switch block. (a) A conventional
FPGA architecture. (b) A conventional 4-sided switch block.

We also compare our universal switch blocks with others of
the topology associated with Xilinx XC4000-type FPGAs. To
explore the area performance of the universal switch blocks,
we develop a detailed router for 4-HFPGA. We model an
HFPGA as a graph and apply a graph-search technique to
HFPGA routing. Experimental results demonstrate that our
universal switch blocks improve routability at the chip
level. Based on extensive experiments, we also provide key
insights into the interactions between switch-block archi-
tectures and routing.

The remainder of this article is organized as follows:
Section 2 introduces some notation and definitions. Section 3
proposes an algorithm to construct generic universal switch
blocks with multiple sides. Section 4 presents a graph
modeling of HFPGAs and a graph-search technique for
HFPGA routing. Section 5 shows our experimental results
and discusses the interactions between the universal switch-
block architectures and routing.

2 PRELIMINARIES

An NSB is an N-sided switch block with W terminals on
each side of the block. We represent an NSB by My w (T, S),
where T is the set of terminals and S the set of
programming switches. Label the terminals

ti, b2, tiwsta, tao, - taw, - IN T EN 2, - EN W,

starting from the first terminal on one side and proceeding
clockwise. Fig. 4a and Fig. 4b show the examples of
M;3(T,S) and M;3(T,S), respectively. Let T, =
{tig,...,tiw} and S; = {(tyn, tuw)|, there exists a program-
mable switch between terminals t,,, and t,,, t,, € T; or
tuw € Tj,m <wu} for 1 <i < N. Let L, w(T;,S;) denote the
terminals of side ¢ and all switches connected with these
terminals. Therefore, S=UY S, T=UY T, and
Myw(T,S) =UY, L, w(T;,S;). For convenience, we often
refer to My w(T,S) and L;w(T;,S;) simply as My and
L; w, respectively, omitting T"and S, if there is no ambiguity
about T and S or T and S are not of concern in the context.

In an NSB, the switches are electrically noninteracting
unless they share a terminal. A connection is an electrical
path between two terminals (say ¢,,, and t,,) on different
sides of a switch block. If the switch (ty,, tu,) is
programmed to be “ON,” then a connection between these
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Fig. 2. An 8-way mesh FPGA and its switch block. (a) The architecture
of an 8-way mesh. (b) The switch block used in (a).

two terminals is established. Because each connection is
characterized by two sides of a block, we can classify all
connections passing through a switch block into a number
of categories. For an NSB, connections can be of (}) types.
Fig. 5a and Fig. 5b show the type definitions of 3-sided and
5-sided switch blocks, respectively.

A routing requirement vector (RRV) 7 for an NSB is an ([;[ )-
tuple (Tll,z, N3y, NI N, M23,- -, M2 N, ,nN_LN), where
n;; is the number of type-(i,j) connections required to be
routed through an NSB, 0 <n;; < Wfor1<i<j<N.An
RRV 17 is said to be routable on an NSB My yy if there exists a
routing for @ on My . For example, in a 3-sided switch
block, Fig. 6a shows a routing instance with four nets
corresponding to the RRV (1,2,1), and Fig. 6b and Fig. 6¢
show two switch blocks with the same flexibility (Fg = 2).
The RRV (1,2,1) is routable on the switch block shown in
Fig. 6b and a routing solution is illustrated by the thick
lines. In Fig. 6c, however, there is always one net that
cannot be routed into M,;. Thus, the RRV (1,2,1) is not
routable on the switch block shown in Fig. éc.

The routing capacity of a switch block M is referred to as the
number of distinct routable vectors on M; that is, the routing
capacity of M is the cardinality |[{|7 is routable on M}|. A
switch block M with W terminals on each side is called
universal if every set of nets satisfying the dimension
constraint (i.e., the number of nets on each side of M is at
most W) is simultaneously routable through M. The
dimension constraint can be denoted by an N-tuple
DqNﬁW = (W, W,...,W). For an RRV 1, its dimension require-
ment vector (DRV) d is an N-tuple (di,ds,...,dy) (ie., the
routing requirements on sides 1,2,..., N are di,ds, ..., dy,
respectively), where d; =37, _,.yn;; for 1 <i< N,n;;=
Ny and Ni; = 0.

Note that RRVs and DRVs correspond to different
concepts. An RRV, an (‘g)-tuple, is used to characterize
nets routed through a switch block; however, a DRV, an N-
tuple, is used to characterize nets routed through each side of
a switch block. An RRV 17 satisfies the dimension constraint
of size W if its DRV d < D'Nyw (i.e., di <W for 1 <i < N).
Let the DRV of an RRV 7 be d. We have the following
definition.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 14, 2009 at 01:18 from IEEE Xplore. Restrictions apply.



350

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 4, APRIL 2000

Fig. 3. Two HFPGA architectures. (a) A four-level 2-HFPGA. (b) A 3-sided switch block in the 2-HFPGA. (c) A two-level 4-HFPGA. (d) A 5-sided

switch block in the 4-HFPGA.

Definition 1. A switch block My w is called universal if d <
Dy w is the necessary and sufficient condition for 7 to be
routable on My .

Note that the number of nets routed through each side of
a switch block cannot exceed W, therefore, a universal
switch block has the maximum routing capacity.

3 UNIVERSAL SWITCH BLOCKS

To identify a universal switch block, we first consider the
clique-based one used in the Xilinx XC4000-series FPGAs.
Fig. 6¢c and Fig. 7a and Fig. 7b show three such clique-based
switch blocks of three, four, and five sides, respectively.
Nevertheless, as shown in Fig. 6c, it is obvious that the
clique-based switch blocks are not universal since the RRV
(1,2,1) which satisfies the dimension constraint is not
routable on the 3-sided clique-based switch block of size
three.

In the following, we consider a type of switch blocks
which can be shown to be universal later.

3.1 Symmetric Switch Blocks

Let N (N =2,3,4,5,...) be the number of sides of a switch
block and W the size of the switch block. Algorithm
Symmetric_Switch_Block, shown in Fig. 8, constructs a
switch block My . We refer to the topology of the switch
block constructed by the algorithm as the symmetric topology
and the switch block as the symmetric switch block. Fig. 9
shows three examples of symmetric switch blocks. For a

Fig. 4. Two examples of N-sided switch blocks. (a) A 3-sided switch
block (M;5(T, S)). (b) A 5-sided switch block (M; 3(T,.5)).

symmetric switch block, it has a flexibility (Fs) of N —1;
thus, the total number of switches used in the symmetric
% = w W = (Z;) W. For example,
the total number of switches used by the 3-sided symmetric
switch block, the square symmetric switch block, and the 5-
sided symmetric switch block are 3W, 6W, and 10W,
respectively. Note that the switch block shown in Fig. 9b is a

universal switch block proposed in [2].
For the symmetric switch blocks, we have the following
properties:

switch block is

Lemma 1 (Decomposition Property). A symmetric switch
block can be partitioned into |W /2] symmetric subblocks of
size two and (W mod 2) symmetric subblock(s) of size one.

Proof. Consider Algorithm
Symmetric_Switch_Block(N, W). For each k in line 3,
we construct a symmetric subblock of size two in lines 4-
6. Therefore, we have |W /2| subblocks of size two after
| W /2] iterations (see line 3). Further, all these symmetric
switch blocks of size two constructed in lines 4-6 have
the same topology. Lines 7-10, just for an odd W,
construct a clique of N vertices (i.e., a subblock of size
one) from the middle terminal of each side of the switch
block. Thus, we have ( W mod 2) such subblock of size
one (see lines 7-10). O

Lemma 2 (Reduction Property). My v is a symmetric switch
block, where N > 3, so is

My_1w=Myw\ Liw,1 <i < N.

(1,2) (1,3)

(@)

Fig. 5. Examples of types definitions. (a) Three types of connections in a
3-sided switch block. (b) Ten types of connections in a 5-sided switch
block.
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Fig. 6. An example of routing on two 3-sided switch blocks of the same size and flexibility. (a) A routing instance (1,2,1). (b) (1,2, 1) is routable on

M,. (c) (1,2,1) is not routable on M,.

Fig. 10 illustrates the decomposition property. Note that
the subblocks of each of the symmetric switch blocks are
noninteracting to each other, thus each subblock can be
considered independently. Lemma 1 is not only an
important property in the proof of the universality of
symmetric switch blocks, but is also the key to the layout
implementation of a symmetric switch block with a smaller
silicon area—the symmetric subblock of size two is a
building block for a larger symmetric switch block (see
Fig. 10), which can make the layout of a symmetric switch
block very regular and compact [14]. Fig. 11 illustrates the
reduction property; after removing one side ¢ (terminals
and switches) from a symmetric switch block Ms,, the
remainder is a symmetric switch block M.

3.2 Universality of Symmetric Switch Blocks

Let R(N,W) denote the set of all RRVs that satisfy the
dimension constraint for an N-sided switch block of size W.
We can rewrite Definition 1 as follows:

Definition 2. A switch block My yw is universal iff 7i is routable
on My yw for each it € R(N,W).

We shall prove that each RRV in R(N, W) is routable on
our symmetric switch blocks. The space of R(N,W),
however, grows dramatically with NV and W. (Specifically,
the cardinality of R(N,W) grows in O(W(‘;)).) It is thus
desirable to identify “critical” RRVs in R(N, W).

3.2.1 Minimal Dominating Set of RRVs

For each ni, 7 € R(N, W), 7 is said to dominate 1 if and only
if @ > T?L, i.e., n; j > mi"j,i,j = 1727. . .7N. Any RRV ni is
routable on a switch block My yy if there exists another RRV

N T/
A N AN
TRV
L %7 7
< SN 7
-\,\///\,( Q/

Fig. 7. Clique-based switch blocks. (a) A 4-sided one. (b) A 5-sided one.

71 that is routable on My and 7 > m [13]. We have the
following definition.

Definition 3. A subset Ry(N, W) of R(N,W) is a dominating
set of R(N, W) if Vi € R(N,W), 3ii € Ry(N, W) such that
i >m. A dominating set Ry(N,W) is minimal if
Vit 1) € Ra(N, W), i # j, 7 17 and 1i; 2 .

Similarly to [13], we have the following lemma.
Lemma 3. The minimal dominating set of R(N, W) is unique.

Proof. Suppose that Ry (N,W) and Rgp(N,W) are two
different minimal dominating sets of R(N, W). Consider
the case when Ry (N, W) ¢ Rgo(N,W). In this case, there
exists an 7 such that @ € Rq (N, W) and 7@ & Rge(N, W).
Since Rg(N,W) is a dominating set, there exists a 1 €
Rapp(N,W) such that m > 7. Since Ry (N,W) is also a
dominating set, there exists a p € Ry (IV,W) such that
p > m and, thus, p > 7; a contradiction. Similarly, there is
a contradiction in the case when Ry (N, W) ¢ Ry (N, W).
Hence, the minimal dominating set of R(N,W) is
unique. O

An RRV 7 € R(N,W) is called a maximal RRV (MRRV) if
there exists no other RRV in R(N, W) that dominates 4. The
following lemma is the key to find the minimal dominating
set of R(N,W).

Lemma 4. T'(N, W) = {7 | ¥ is an MRRV in R(N, W)} is the
minimal dominating set of R(N,W).

Proof. I'(V,W) is a dominating set since, for any RRV
i € R(N,W), there exists an MRRV ¥ € I'(N, W) such
that ¥> 7. T'(N,W) is minimal since, for any two
MRRVs in T'(N, W), they cannot be dominated by each
other. 0

Lemma 5. A switch block My y is universal iff 7 is routable on
Af]\ryw, V’V € F(N, W)

Proof. For each 77 € R(N, W), there exists ¥ € I'(N, W) that
dominates 7. Since 7 is routable on My, 7 is also
routable on My . Hence, My is universal. On the
other hand, if My is universal, each ¥ € T'(N,W) C
R(N,W) is routable on My . O

3.2.2 Disjoint Routing Requirement Cycle Set

Based on Lemma 5, we shall focus our discussions on
['(N,W). If we can prove that each MRRV in I'(N, W) is
routable on our symmetric NSB of size W, by Lemma 5, our
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Algorithm: Symmetric_Switch_Block(N, W)

Input: N—number of sides of the polygonal switch block;
W-—number of terminals on each side of the switch block.

Output: My w(T,S)—the N-sided symmetric switch block of size W
T: set of terminals; S: set of switches.

/* See Figure 4 for the terminal labeling. */

1 Tty Vi=12,...,N, Vj=
2 S+

3 fork=1to [¥] do

4 for i =1to N do

5 for j =1to N do

6 ifi#j

7 S SU{ltig, tjw_rs1)};
8 if W is odd

9 for i =1to N do

10 for j =1to N do

11 ifi#j

13 Output ]\/[N,W'(Tv S)

1,2,...,W;

Fig. 8. Algorithm for constructing an N-sided symmetric switch block of size W.
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Fig. 9. Three symmetric switch blocks (W = 3). (a) A 3-sided symmetric switch block. (b) A square symmetric switch block. (c) A 5-sided symmetric

Swi

tch block.

symmetric switch blocks are universal. Hence, the MRRV
plays a very important role in our proof for universal switch
blocks. We have the following lemma associated with
MRRVs.

Lemma 6. When an MRRV ¥ € I'(N, W) is routed on an N-

sided switch block of size W, all unused terminals, if any, are
on the same side and the number of unused terminals
Gunused = 2k + (N 2)(W mod 2), where k=0,1,2,..., or
[W/2].

Proof. If there are two unused terminals on the different

sides (say side i and side j, i < j), we can increase v, ; by
1 without violating the dimension constraint, which
implies that v is not maximal; a contradiction. Hence, all
unused terminals, if any, must be on the same side.
The total number of terminals is ¢,y = NW. Assume
that there are ¢,.q used terminals; obviously, ¢ys.q is
even since each switch is incident on two terminals and
Ototal — Gusea < W since all unused terminals, if any, must
be on the same side. If N or W is even, ¢y is even. We
have ¢upused = Protal — Pusea = 2k, where k =0,1,2,..., or
|[W/2]. If N and W are both odd, ¢ita is 0odd. We have

Gunused = Ptotal — Pused = 2k 41, where k= 0,1,2,..., or
|[W/2]. Hence, o¢uusea = 2k~+ (N mod 2)(W mod 2),

where £k =0,1,2,..., or [IW/2].

Fig. 10. Two 5-sided symmetric switch blocks and their subblocks. (a)
Decomposition of the symmetric switch block of W = 4. (b) Decom-
position of the symmetric switch block of W = 3.
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Fig. 11. Reduction of a 5-sided symmetric switch block.

We first consider the MRRVs in I'(JV, 2). By Lemma 6, we
can classify the MRRVs into two types. One type is that all
terminals are used (i.e., pynusea = 0) and we call it a complete
MRRYV (see Fig. 12a). The other type is that two terminals on
some side are unused (i.e., Punused = 2) and we call it a
degenerate complete MRRV (see Fig. 12c).

For an RRV 7, we introduce an undirected routing
requirement graph (RRG) G. Each vertex v; in V(G) represents
one side s; of 7. If there is a routing requirement between
two different sides s; and s;, we introduce an edge between
vertices v; and v;. For a complete MRRV in I'(V, 2), since all
terminals are used, the degree of each vertex in the
corresponding RRG is two (see Fig. 12b). For a degenerate
MRRYV in I'(N, 2), since all terminals are used except two
terminals on some side, say side s;, the degree of each
vertex in the corresponding RRG is two except that the
degree of v; is zero (see Fig. 12d). We refer to an RRG with
the degree of each vertex two as a 2-RRG. A cycle in an RRG
is called a routing requirement cycle (RRC). Two routing
cycles C; and C} are disjoint if V(C;) N V(Cj) = 0. A disjoint
routing requirement cycle set (DRRCS) A is a set of disjoint
RRCs. We have the following lemmas associated with
DRRCS.

Lemma 7. A connected 2-RRG forms a cycle.

Proof. Since the graph is connected and the degree of each
vertex is even, there exists a Eulerian circuit. Since the
degree of each vertex is 2, the Eulerian circuit forms a
cycle. ]

Lemma 8. A 2-RRG G can be divided into a DRRCS A such that
uC; = G, IV(C)| = |V(G)|,VC; € A.

Proof. An RRG G can be divided into & (k> 1) connected
components Ci, (s, ..., C, where

UG =G,> V(G| =V(G)|
and
V(C)nV(Cy) = 0,4,5=1,2,..., ki #].

Let A={C,C,...,Cy}. By Lemma 7, each
component C(; forms a <cycle. Since
V(C)NV(Cy) =0,4,5=1,2,...,k,i # j, Ais a DRRCS.O

For example, in Fig. 12b, the DRRCS is
{< V1, V3,04 >, < V2, Vs >}.

Lemma 9 (MRRV Decomposition Property). In an RRG G
with the degree of each vertex larger than two, there exists a
DRRCS A such that

353
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Fig. 12. Two routing examples of MRRVs in I'(5,2) and their
corresponding RRGs. (a) A complete routing example. (b) The
corresponding RRG of (a). (c) A degenerate complete routing example.
(d) The corresponding RRG of (c).

UC; C G, V(G| = V(G),VYC;i € A,
Proof. Since the degree of each vertex in G is larger than 2,
there exists a 2-RRG G’ C G, where |V(G')| = |V(G)|. By
Lemma 8, there exists a DRRCS A such that

UCi =G C G V(C)| = V(G = [V(G),VC; e A. O

By Lemmas 7 and 8, an RRG constructed by a DRRCS is a
2-RRG. Thus, we shall focus our discussions on the relation
between DRRCSs and symmetric switch blocks of size two.

3.2.3 Proof of Universality

We proceed to prove the universality of symmetric switch
blocks. Based on the reduction property of symmetric
switch blocks (Lemma 2), we have the following lemma by
induction.

Lemma 10. Given a DRRCS A, where
STV(Cy)| = N,VYC; € A. The RRV corresponding to A is
routable on the symmetric switch block My ».

Proof. We can prove this lemma by induction. When N = 2,
by the definition of symmetric switch blocks, this lemma
holds. Assume that the lemma holds for N < k. When
N =k, assume there are p disjoint RRCs in
A ={Cy,Cy,...,C,}. Let the RRV corresponding to A
be 4. There are two cases for p. In case 1, when p > 1,
then |[V(CY)| < k. Let A = Ay U Ay, where Ay = {C4} and
Ay = {Cy, C;, .o, C } Let the RRVs correspondmg to Al
and A, be +/ and fy”, respectively, where 7=+ + 47
Since |V(C})| < k, + is routable on the symmetric switch
block My ()2 and must be routable on My ». ~' thus can
first be routed on M. Let My_jy(c,)2 = Mra \ {Ls, 2|,
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each side s; used by v} By Lemma 2, Mj,_y(c,) 2 is still a
symmetric switch block. Since

S

'y7’ is routable on M;,_jy(¢,)2- Hence, 7 is routable on Mj.»
in case 1. In case 2, when p = 1, there is only one RRC in
A and |V(C)| =k Let the RRC sequence be
< Wiy, iy, - - -, Uy, > . By the definition of symmetric switch
block, the RRC sequence can be successfully routed by
using k switches

(ts"l 1 tszz ,2)7 (ts,,z 1 ts,:} ,2)7 s

‘ —k? |V(Cl)| <l€,\V/CZ; €A27

9 (ts;k71,17 ts,'k,Z)v (ts,kia ts;] 72)-
Therefore, 7 is routable on M}, in case 2. a

Before proving the universality of generic symmetric
switch blocks, we first consider the universality of sym-
metric switch blocks of size one and that of size two. Based
on the definition of symmetric switch blocks and Lemma 10,
we have the following lemmas.

Lemma 11. The N-sided symmetric switch blocks of size one are
universal.

Proof. For an RRV 77 € R(N, 1), let the corresponding RRG
of 7 be G. Since there is only one terminal on each side,
the routing requirements in 7 correspond to pairs of
vertices in G, where all vertices are distinct. Let the pairs
of vertices be (v;,vi,), (Vig,v4,), - - -, (Vi |5 Vip,), Where
2k < N. By the definition of symmetric switch blocks,
the routing requirements of 7 can be successfully routed
by using k switches

(ts,l 1 tsq,l)v (ts,'g,la ts,l.l)a e

Therefore, the N-sided symmetric switch blocks of size
one are universal. O

3 (ts,zk;l 1 ts,zk,l)-

Lemma 12. The N-sided symmetric switch blocks of size two are
universal.

Proof. By Lemma 6, there are two types of MRRVs in
I'(N,2): One is the complete MRRYV; the other is the
degenerate complete MRRV. For a complete MRRV
¥ eTI'(N,2), the corresponding RRG is a 2-RRG. By
Lemmas 8 and 10, 7 is routable on the symmetric switch
block Mys. For a degenerate complete MRRV
¥ € I'(N,2), the degree of each vertex in its correspond-
ing RRG G is two except one vertex, say v;, with the
degree zero. Then, G' = G\ {v;} is a 2-RRG. Let the
MRRV corresponding to G’ be 4 € (N —1,2). For a
symmetric switch block My, by Lemma 2, My_15 =
Mno\ Ly, 2 is still a symmetric switch block. By
Lemmas 8 and 10, ’?’ is routable on My_; 2 and must be
routable on My . Since the degree of v; is zero, i.e., there
is no routing requirement on side s;, 7/ and 4 have the
same routing requirements. v is thus routable on My .
The degenerate complete MRRYV is thus routable on the
symmetric switch block of size two. Therefore, by
Lemma 5, the symmetric switch blocks of size two are
universal. O
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Based on Lemmas 11 and 12 and the decomposition
property of symmetric switch blocks, we have the following
theorem by induction.

Theorem 1. The N-sided symmetric switch blocks of size W are
universal.

Proof. We can prove this lemma by induction. By Lemma 12,
the symmetric switch block My, is universal. Assume
that the symmetric switch block My - is universal for
W < k, where k > 3. Now, we shall prove the univers-
ality of the symmetric switch block My ;. By Lemma 6,
there are two types of MRRVs in I'(N,W): One is
0 < bunusea < 1; the other is 2 < ¢ynysea < W. By Lemma 1,
we can decompose My ;, into two universal switch blocks
Mpy and My j—o. For the first type MRRV 7 € I'(N, k), let
the DRV of 4 be J, where d < D N - SINCe Pynysed < 1, the
degree of each vertex in the RRG of 7 is larger than 2. By
Lemmas 9 and 10, there exists a DRRCS A
(O°|V(C)| = N) in which the corresponding RRV for A
is routable on My, and can first be routed on M N2
Then 7 is reduced to 7, where the DRV of v is
d=d- DN2 It is clear that d < DNk 9, 1e., 'y satisfies
the dimension constraint of size k— 2. Then, '?’ is
routable on My ;—». Hence, the first type MRRVs are
routable on My j.

For the other type MRRV 7 € I'(V, k), let the DRV of ¥
be d, where d < Dy. Suppose the side with unused
terminals is s;. Let the RRG of ¥ be G and G’ = G \ {v;}.
Since Tynused = 2, the number of terminals on each side
connected to side s; is at most £ — 2. Hence, the degree of
eachvertexin G’ islarger than 2. By Lemmas 9 and 10, there
exists a DRRCS A (3" |V(Ci)| =N —1) in which the
corresponding RRYV for A is routable on My_; » and must
be routable on My . Then, the RRV Correspondmg to A
can firstbe routed on My and 7yisreduced toy/, where the
DRV of /' isd and d, = d; — 2 for1 < i < kexceptd, = dj,.
Slnce Ounused = 2 d, = =d,; <k-2 It is clear that
d <D N -2, €., 7 satlsf1es the dimension constraint of
size k — 2. Then, 7/ is routable on My ;_2. Hence, the other
type MRRVs are routable on My . By Lemma 5, the
symmetric switch block My is universal, implying that
the N-sided symmetric switch blocks of size W are
universal. O

We have shown the universality of our generic sym-
metric switch blocks in Theorem 1, i.e., our generic
symmetric switch blocks provide the maximum routing
capacity. Next, we shall show that our generic symmetric
switch blocks use the minimum number of switches. We
have the following theorem.

Theorem 2. No NSB of size W with less than ()W switches
can be universal.

Proof. By Definition 1, an RRV with only one nonzero
component W, such as

(W,0,...,0),(0,W,0,...,0),...,(0,0,...,0,W),

is routable on a universal NSB. Hence, it needs at least W
noninteracting switches for each type of connections to
construct a universal NSB. Since there are (}) types of
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Fig. 13. (a) A 3-sided symmetric switch block. (b), (c) Two 3-sided
isomorphic switch blocks of (a).

connections in an NSB, the least number of switches
needed to construct a universal NSB is (1;[ JW. O

As mentioned in Section 3.1, the total number of switches
used in an N-sided symmetric switch block of size W is
(‘;[) W. Thus, our symmetric switch blocks are the “cheap-
est” universal ones, i.e., it uses the minimum number of
switches to provide the maximum routing capacity. Note
that the (%)W requirement is quite small compared to a
fully connected switch block which has (})W? switches.

3.3 Isomorphism of Switch Blocks

In order to identify not only a single, but also a whole class
of universal switch blocks, we apply the terminology
isomorphism used in [2]. Here, we give its definition.

Definition 4. Two NSBs My w(T,S) and My (1", ') are
isomorphic if there exists a bijection f: T — T’ such that
(L tuw) €S Uf (f(timn), f(tun)) € S" and for any two
terminals tp,,,ty, €T, iff f(tmn), f(tuw) € T, where
p,gq=1,2,... N.

In other words, Myw(T,S) and M}, (T",5') are iso-
morphic if we can relabel the terminals of M to be the
terminals of M’, maintaining the corresponding switches in
M and M’ and, for terminals on the same side of M, their
corresponding terminals are also on the same side of M’
Fig. 13 shows three 3-sided isomorphic switch blocks on
which their corresponding terminals are indicated by the
same number. For any two isomorphic switch blocks, we
have the following theorem.

Theorem 3. Any two isomorphic switch blocks have the same
routing capacity.

Proof. If My w(T,S) and My, (T",5") are isomorphic, we
can relabel the types of connections and have the same
switch-connection configuration with respect to each
type (see Fig. 14 for illustration). Let n/ be a permutation
of 7 so that 77 and n/ correspond to the original and new
definitions of the types of connections, respectively. It is
obvious that 7 is routable on My (T, S) if and only if n
is routable on M}\,’W(T’, S"); thus, Myw(T,S) and
My yw (T, 5") have the same routing capacity. O

Corollary 3.1. For any two isomorphic switch blocks
Myw(T,S) and My . (T',S"), Myw(T,S) is universal iff
My (1", 8") is universal.

By Corollary 3.1, we can obtain a whole class of universal
switch blocks by performing isomorphism operations on a
symmetric switch block.
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Fig. 14. (a) A switch block and the original type definition. (b) An
isomorphic switch block of (a) and its new type definition.

4 GRAPH MODELING FOR DETAILED ROUTING

To explore the area performance of switch blocks, we
develop a detailed router for 4-HFPGAs. We first model a
4-HFPGA as a graph and apply a graph-search technique to

4-HFPGA routing. For the purpose of easier illustrations, in

Y

p2 pl

logic
module

(© (d

Fig. 15. The graph modeling. (a) A 2-HFPGA architecture. (b) The tree
corresponding to (a). (c) The switch connections inside a switch block
and that between a logic block and a switch block. (d) The graph
corresponding to (c). (e) The switch connections inside switch blocks
and that between two switch blocks. (f) The graph corresponding to (e).
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TABLE 1
Minimum Number of Tracks Needed for Routing Completion in Situation 1)

Architecture Minimum number of tracks for 100% routing

p | Net order | of switch block | 100 | 200 [ 300 | 400 | 500 | 600 | 700 | 800 | total
1.0 - Universal 8 15 19 23 29 34 34 37 199
- Clique 8 15 20 25 31 35 37 38 209

Original Universal 7 13 21 23 27 32 38 41 202

net order Clique 7 13 21 25 27 34 40 43 210

0.9 Longest Universal 7 12 20 23 27 34 39 42 204
net first Clique 7 14 20 24 28 34 41 44 212
Shortest Universal 7 14 20 22 27 31 38 42 201

net first Clique 8 15 21 23 27 33 41 42 210
Original Universal 9 13 21 24 30 33 38 38 206

net order Clique 10 13 22 24 32 36 39 42 218

0.8 Longest Universal 9 13 21 24 29 32 36 40 204
net first Clique 9 14 23 26 30 34 40 42 217
Shortest Universal 9 14 26 28 31 39 41 47 235

net first Clique 10 14 27 | 30 33 42 43 49 248
Original Universal 8 15 20 24 28 33 38 43 209

net order Clique 9 15 22 24 31 37 39 46 223

0.7 | Longest Universal 8 14 20 22 29 32 37 43 205
net first Clique 8 15 21 24 31 36 39 46 220
Shortest Universal 10 | 21 26 | 31 39 | 44 50 | >30 | >271

net first Clique 11 21 26 31 40 49 | >50 | >50 | »>278

this section, we use a 2-HFPGA as an example to
demonstrate the graph modeling.

For a 2-HFPGA (see Fig. 15a), we first transform it into a
tree architecture (see Fig. 15b). There are three situations for
switch connections: 1) the switch connections inside a
switch block (see Fig. 15a and Fig. 15c), 2) those between a
logic block and a switch block (see Fig. 15c), and 3) those
between two switch blocks (see Fig. 15e). We use a vertex to
represent a switch-block terminal or a logic-block pin. If
there is a switch connected between two terminals in a
switch block or between two switch blocks, or between a
logic-block pin and a terminal, we introduce an edge
between the two corresponding vertices.

For Situation 1), Fig. 15¢ shows the switch connections
inside a switch block of size two. We introduce a vertex for
each terminal (¢1,%s, ..., % in Fig. 15d) and an edge for each
corresponding pair of terminals ((¢1,t3), (t1,t5), .. -, (L4, t5) in
Fig. 15d). For Situation 2), we introduce an edge for a
connection between a logic-block pin and a terminal on the
adjacent side of a switch block. Fig. 15¢ shows the modeling
for the case when the switch connections between a logic
block and a switch block are fully connected. We introduce
two vertices p; and p, for the two pins of the logic block.
Since both p; and ps can be connected to t; and ¢, we
construct the edges (p1, t1), (p1, t2), (p2, t1), and (ps, t2) in
Fig. 15d). For Situation 3), we introduce an edge for a
connection between two adjacent switch blocks. Fig. 15e
shows the modeling for the case when each terminal on a
switch block connects to only one terminal on the adjacent
side of another switch block. We construct two edges (as, b4)
and (as, bs) in Fig. 15f).

Based on the graph modeling, we may formulate the
routing problem as finding a set of disjoint trees, one tree
for a net and each tree connecting all terminals of a net. Any

graph search-based algorithm such as a maze router can be
used for detailed routing.

5 EXPERIMENTS AND RESULTS

5.1 Area Performance

In our experiments, we implemented a maze router based
on the graph modeling mentioned in the preceding section
to explore the effects of switch-block architectures on
routing. The router was written in the C language and ran
on a SUN Ultra workstation.

We generated connections with lengths based on the
geometric distribution function because it closely relates to
most industrial circuit configurations (e.g., the benchmark
circuits in [10], [13], [11]). (Note that no industrial bench-
marks for HFPGAs are available.) The geometric distribu-
tion function is given as follows:

P(p, k) =p(1 —p)* ",

where k is related to connection length and p is a user
specified parameter. In the experiments, we randomly
generated a set of benchmark circuits on a three-level
4-HFPGA (64 logic blocks) based on the geometric
distribution function with p = 1.0, 0.9, 0.8, and 0.7. The
5-sided switch blocks used in the experiments were the
universal and clique-based (Xilinx-like) ones with the same
number of switches. We assume that all pins of a logic block
can be connected to any terminals on the adjacent side of
the switch block and each terminal on a switch block
connects to only one terminal on the adjacent side of
another switch block.

The quality of a switch block was evaluated by the area
performance of the detailed router. We determined the
minimum number of tracks (W) required for 100 percent
routing completion for each circuit, using the two kinds of

OSpS17 k:1727"'7
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TABLE 2
Minimum Number of Tracks Needed for Routing Completion in Situation 2)

Architecture Minimum number of tracks for 100% routing

p | Net order | of switch block | 100 | 200 [ 300 | 400 | 500 [ 600 [ 700 | 800 | total
1.0 - Universal 6 14 19 22 30 33 34 37 195
- Clique 6 14 18 22 30 33 34 36 193

Original Universal 7 12 19 21 26 31 37 40 193

net order Clique 7 12 19 22 27 32 38 41 198

0.9 | Longest Universal 7 12 19 21 26 31 37 40 193
net first Clique 7 12 19 22 27 32 38 41 198
Shortest Universal 6 13 20 23 27 30 37 40 198

net first Clique 6 13 20 22 27 30 38 39 197
Original Universal 9 13 20 23 29 32 35 37 198

net order Clique 10 13 20 25 30 32 36 39 205

0.8 | Longest Universal 9 13 20 23 29 32 36 38 200
net first Clique 10 13 20 25 32 32 39 39 210
Shortest Universal 10 14 22 29 32 36 42 47 232

net first Clique 10 13 22 28 33 38 43 48 235
Original Universal 9 14 18 21 27 31 35 41 196

net order Clique 9 14 19 23 30 33 38 44 210

0.7 | Longest Universal 9 14 18 21 28 31 36 41 195
net first Clique 9 14 19 23 30 33 38 44 210
Shortest Universal 10 20 27 31 40 50 >50 | >50 | >278

net first Clique 9 21 25 34 | 41 | >50 | >b0 | >50 | >280

switch blocks. Because net ordering often affects the
performance of a maze router, we routed the benchmark
circuits by using the following three net-ordering schemes
to avoid possible biases: 1) original net order in the
benchmark circuits, 2) longest net first, and 3) shortest net
first. Also, since our main goal is to make fair comparisons
for various switch-block architectures, no rip-up and
reroute phase was incorporated in the maze router.

In our maze router, we used a shortest-path algorithm to
find a routing path for a net. During the process of the

shortest-path algorithm, the algorithm chose an unmarked
vertex with minimum-cost value for further processing.
However, there may be more than one vertex with the
minimum-cost value. For the set M, of the vertices with the
minimum cost, we can randomly choose one vertex from
the set M. or just choose the first vertex in the set.

In the experiments, we also considered the constraint for
the number of switches inside a switch block used by a net.
With the switch-number constraint, a net can use exactly
one switch when it passes through a switch block. Without

TABLE 3
Minimum Number of Tracks Needed for Routing Completion in Situation 3)

Architecture Minimum number of tracks for 100% routing

p | Net order | of switch block | 100 | 200 [ 300 | 400 | 500 [ 600 [ 700 | 800 | total
1.0 - Universal 6 14 18 22 28 33 34 36 191
- Clique 6 14 18 22 30 33 34 36 193

Original Universal 6 12 19 21 26 31 36 40 191

net order Clique 7 12 19 22 27 32 38 41 198

0.9 | Longest Universal 6 12 19 21 26 31 36 40 191
net first Clique 7 12 19 22 27 32 38 41 198
Shortest Universal 6 12 19 22 26 30 36 40 191

net first Clique 6 12 19 21 26 29 38 39 190
Original Universal 9 12 19 23 29 32 35 37 196

net order Clique 10 13 20 25 32 32 39 39 210

0.8 | Longest Universal 9 12 19 23 29 32 36 37 197
net first Clique 10 13 20 25 32 32 39 39 210
Shortest Universal 9 13 | 21 29 | 27 33 42 47 221

net first Clique 10 13 22 28 33 38 43 48 235
Original Universal 9 14 18 21 27 31 35 40 195

net order Clique 9 14 19 23 30 33 38 44 210

0.7 | Longest Universal 9 14 18 21 28 31 36 40 197
net first Clique 9 14 19 23 30 33 38 44 210
Shortest Universal 10 18 27 | 30 | 40 50 | >50 | >50 | >265

net first Clique 9 21 25 34 41 | >50 | >50 | >50 | >280

Authorized licensed use limited to: National Taiwan University. Downloaded on January 14, 2009 at 01:18 from IEEE Xplore. Restrictions apply.



358

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 4, APRIL 2000

Fig. 16. The example of the blocking anomaly in universal switch-block architectures. Suppose we are to route netl — netb sequentially after
netl — net4d have been routed. (a) net5 cannot be routed on a symmetric switch block of W = 3. (b) net5 still cannot be routed after increasing W by
one. (c) net5 finally can be routed when W is increased to five. (d) The blocking anomaly does not affect the routing in clique-based switch-block

architectures.

the switch-number constraint, the number of switches used
by a net for passing through a switch block is not limited.
Thus, our experiments are classified into three categories by
the following situations:

1. Randomly extract a minimum-cost vertex and route
a net with the switch-number constraint.

2. Extract the first minimum-cost vertex and route a net

with the switch-number constraint.

3. Extract the first minimum-cost vertex and route a net

without the switch-number constraint.

The experimental results of Situations 1), 2), and 3) are
shown in Tables 1, 2, and 3, respectively. The results show
that, no matter in which situation and with which net-
ordering scheme, our universal switch blocks usually
outperform the clique-based (Xilinx-like) ones in the chip-
level area performance.

5.2 Interactions between Switch-Block
Architectures and Routing

We explore the interactions between our universal switch-
block architectures and routing. We are interested, how-
ever, in the case of Situation 2), with p = 1.0, in which the
total number of tracks needed for the universal switch
blocks and the clique-based ones are 195 and 193,
respectively—a 1 percent increase in area for the universal
switch blocks. In the situation, the router always chose the
first minimum-cost vertex and this selection may block
subsequent routing nets. Fig. 16a, Fig. 16b, and Fig. 16c
illustrate the situation. Fig. 16a shows a 5-sided universal
switch block of size three. Suppose we have routed netl —

netd and are routing net5. Satisfying the dimension
constraint, net5 still cannot be routed on the 5-sided switch
block. (Note that the universality concept is for routing nets
simultaneously, but, in this case, we routed the nets
sequentially.) If we increase W by one and reroute all nets
sequentially, net5 still cannot be routed on the 5-sided switch
block of size four (see Fig. 16b). This is because the router
always chose the first minimum-cost vertex in the shortest-
path algorithm; thus, the terminals on one side would be
selected by nets based on the physical order of the
terminals. This phenomenon is called blocking anomaly.
The blocking anomaly introduced by always choosing the
first minimum-cost vertex is not favorable to our universal
switch blocks, but does not affect the routing in clique-
based switch blocks (see Fig. 16d). Therefore, the 1 percent
increase in area is caused by the biased router, but not the
quality of switch-block architectures. The blocking anomaly
is also associated with the switch-number constraint for
routing on a switch block. In our experiments for Situation 3),
when a net was routed without the switch-number
constraint, the blocking anomaly did not affect the routing
on our universal switch blocks. It is thus significant to
consider the interactions between architectures and CAD
[11], [15]—even with a best architecture, unsuitable (or
biased) routers might offset the advantages of the archi-
tecture. Based on our studies, we have four suggestions to
avoid the blocking anomaly in our universal switch-block
architectures: 1) do not fix the scenario for selecting
terminals for routing based on their physical order,
2) consider an appropriate switch-number constraint,
3) increase the switch connections between two adjacent
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switch blocks to facilitate track permutations, and 4) use a
concurrent (nonsequential) router such as hierarchical
routers [9], [7] to route all nets simultaneously.

6 CONCLUSIONS

We have proposed algorithms to construct a class of generic
universal switch blocks. Our universal switch blocks not
only have the maximum routing capacities, but also use the
minimum numbers of switches. Further, the decomposition
property of a universal switch block provides a key insight
into its layout implementation with a smaller silicon area.
We also developed a maze router for 4-HFPGAs for
experimentation. Experimental results show that our uni-
versal switch blocks usually outperform the clique-based
(Xilinx-like) ones in the chip-level area performance. We
further explored the interactions between the universal
switch-block architectures and routing. It is significant to
consider architectures and CAD simultaneously—even
with a best architecture, unsuitable (or biased) routers
might offset the advantages of the architecture.
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