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Abstract

This work presents a two-well method to evaluate transverse dispersion coefficients for tracer tests conducted in a radially
convergent flow field. A two-dimensional mathematical model is derived and applied to illustrate how transverse dispersion
influences tracer transport in a convergent radial tracer test. A curve-fitting procedure is proposed to evaluate simultaneously
the longitudinal and transverse dispersivities. A hypothetical experiment is used to demonstrate the application of the method.
The proposed method allows one to evaluate the transverse dispersivity from field tracer tests, as long as the observed break-
through curves at the pumping well and an observing well are known.q 1999 Elsevier Science B.V. All rights reserved.

Keywords:Tracer test; Transverse dispersion; Radially convergent flow field; Laplace transform finite difference method; Finite Fourier cosine
transform

1. Introduction

Tracer tests are performed by introducing an easily
measured chemical tracer into the aquifer and
observing it in another well. Tracer tests attempt to
determine and characterize the solute transport
parameters, such as kinematic aquifer porosity,
dispersion tensor and the hydrogeological properties
of an aquifer. In numerical modeling, the dispersion
coefficient is the major input solute transport para-
meter that needs to be estimated in the field condition.
Under many circumstances, tracer experiments in a
radially convergent flow field, are preferred over
other methods. Many investigators have extensively

developed the one-dimensional mathematical models
in cylindrical coordinates to determine longitudinal
dispersivity from the convergent tracer test. (Sauty,
1980; Carrera and Walters, 1985; Guvanasen and
Guvanasen, 1987; Moench, 1989; Wang and Cram-
pon, 1995; Chen et al., 1996). They assumed that
effects due to transverse dispersion do not appear at
the pumping well. These authors worked on the break-
through curve at pumping well, without benefitting
from information on other observation wells.

Consider the one-dimensional model in cylindrical
coordinates developed in previous investigations. The
one-dimensional model approach implies that once all
streamlines merge in the pumping well, the effect of
transverse dispersion is not visible. However, because
of variations in microscopic velocity (in both magni-
tude and direction, within each pore channel and from
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one channel to another) force water molecules to
move along tortuous flow paths which may be parallel
or normal to the average flow direction, and cause
spreading of the solute. Leij and Dane (1991)
indicated that applying the one-dimensional advection–
dispersion equation in Cartesian coordinates to
determine longitudinal dispersion coefficients in a
heterogeneous medium, with concentration gradient
in the transverse direction, leads to erroneous values
for longitudinal dispersion, since the profile cannot be
described by Gaussian spreading. A similar conclu-
sion was reached by Domenico and Robbins (1984).

Sauty (1980) pointed out that the one-dimensional
model does not yield transverse dispersivity.
However, the magnitude of the transverse dispersion
coefficient influences both the region to which the
pollution is extended, and the intensity of the pollu-
tion. Increasing the transverse dispersion coefficient
causes the plume to spread out over a large area. If

low levels of contaminant are acceptable, increasing
the transverse dispersion coefficient is highly desir-
able. Substances which threaten groundwater quality,
even at a low concentration, and must subsequently be
removed, should be confined to the smallest possible
region and therefore have a low transverse dispersion
coefficient. The above reasons account for the impor-
tance of determination of the transverse dispersion
coefficient.

In a related work, Guvanasen and Guvanasen
(1987) considered transverse dispersion in their
model, to describe how the geometrical configuration
of tracer plumes influences the tracer test by deriving
an approximate two-dimensional, semi-analytical
solution in streamline and equipotential coordinates.
Their solution is appropriate for breakthrough curve
generation only because the advection term, longitu-
dinal and transverse dispersion terms of the governing
equation are linearized from the injection point to the
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Fig. 1. Schematic diagram of radially convergent tracer test: (A) side view on top; (B) plane view on bottom.



observation point in order to eliminate the depen-
dency of velocity, longitudinal dispersion and trans-
verse dispersion on radial distance. The three defined
parameters must be adjusted to reflect accurately the
spatial position of all observation points, in order to
obtain the spatial distribution of concentration at a
specific time. Adjustment of the parameters is a rather
complex process because a numerical experiment
must be performed to determine the range within
which the parameters should be applied. Guvanasen
and Guvanasen (1987) observed a discrepancy
between their approximate analytical solution and a
verified finite element solution for a small Peclet
number.

Relatively few field values of the transverse coeffi-
cient obtained from natural-gradient dispersion tests,
have been reported (Sudicky and Cherry, 1979;
Sudicky et al., 1983). For instance, Moltyaner and
Killey (1988) obtained a vertical-transverse dispersiv-
ity of 0.0001–0.0019 m for natural-gradient tests at
the Chalk River Nuclear Laboratories in Ontario.

Therefore, field experiments are necessary first and
numerical simulators could interpret them as a first
step.

In light of above developments, this study derived a
numerical solution for a two-dimensional model, so
that the effects of longitudinal and transverse disper-
sion could be simultaneously estimated. A two-well
method, which applied a curve-fitting procedure
involving a type curve at the pumping well and a
breakthrough curve at one of the observation points,
is proposed to determine the transverse dispersivity
for a tracer test. The developed two-well method is
useful in determining the longitudinal and transverse
dispersivities for the field tracer test in a radially
convergent flow field.

2. Mathematical model

The dispersion problem of a tracer test in a radially
convergent flow field is considered. Fig. 1 depicts the
conceptual configuration. The flow field is generated
by a fully penetrating well of radiusrc located along
the vertical axis atr � 0; and pumping fluid at a
constant volume rateQ from a homogeneous, isotro-
pic aquifer of infinite horizontal extent. (Table 1 lists
all variables, their meanings and dimensions). The
average pore velocity,V, in the radial direction is
described by

V � 2
A
r

�1�

where A� Q=2pbne: Also, b and ne represent the
aquifer thickness and effective porosity, respectively.

When a field test is started, once water levels are
stabilized, a tracer is introduced into the injection
borehole of radiusrw, located atr � R; u � p and
flows out of the injection well borehole. For mathe-
matical convenience, the initial tracer is assumed to be
uniformly distributed on a cylinder, centered at the
injection well. The packed interval’s thickness equals
the aquifer’s thickness. Fig. 1 also indicates that the
area of the tracer plumepr2

w is approximately equal to
the area elementrDrDu in cylindrical coordinates.
The injected tracers are transported within the aquifer
by advection, mechanical dispersion and molecular
diffusion. Mechanical dispersion consists of longitu-
dinal, vertical-transverse and horizontal-transverse
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Table 1
The variables used in this study and their meanings and dimensions

Variable Meaning Dimension

rc The radius of pumping well [L]
Q Pumping rate [L3/T]
b Aquifer thickness [L]
ne Effective porosity [ ]
A A� Q=2pbne [L 2/T]
V Effective porosity [L/T]
rw The radius of injection borehole [L]
R The distance between pumping well and

injection well
[L]

C Concentration [M/L3]
aL Longitudinal dispersivity [L]
aT Transverse dispersivity [L]
r Radial distance [L]
u Transverse angle [L]
M The injected tracer mass [M]
Dr Dr � 2rw [L]
Du Du � prw=2R [ ]
H(·) Heaviside unit step function [ ]
d(·) Dirac delta function [T21]
t Dimensionless time [ ]
r Dimensionless radial distance [ ]
Pe Peclet number,Pe� R=aL [ ]
Cr Cr � M=RbneDrDu [M/L 3]
X Dimensionless ratio of dispersivity [ ]
L or L21 Laplace transform or its inverse
F or F21 Finite Fourier cosine transform or its inverse



dispersion. Solutes move along the advective flow
path by advection and longitudinal dispersion. Hori-
zontal-transverse and vertical-transverse dispersion
cause solute to spread and deviate from the advective
flow path. For simplicity, concentrations in the aquifer
are taken as an average value over aquifer thickness.
Correspondingly, only horizontal-transverse disper-
sion is considered for the transverse dispersion.

We assume that longitudinal and transverse
mechanical dispersion occurs in accordance with
Fick’s law, and that both the longitudinal and trans-
verse dispersion coefficient are proportional to the
velocity. The effects of molecular diffusion are
assumed to be markedly smaller than those of
mechanical dispersion. The configuration in Fig. 1 is
symmetrical around the line passing through the
pumping and injection wells. Therefore, only one
half-plane is considered. The governing equation for
the radially convergent dispersion with instantaneous
slug injection at the injection well, can be formulated
in cylindrical coordinates as

aLA
r

22C

2r2 1
A
r
2C
2r

1
aTA

r3

22C

2u2 1 f �r�g�u�d�t� � 2C
2t
�2�

where

f �r� � M
RbneDrDu

H R1
Dr
2

� �
2 H R2

Dr
2

� �� �
;

g�u� � H�p�2 H p 2
Du

2

� �� �
where M denotes the tracer mass,Dr � 2rw;Du �
prw=2R; H(·) represents the Heaviside unit step func-
tion, d ( ) is the Dirac delta function, andaL and aT

denote the longitudinal and transverse dispersivity,
respectively.

The aquifer’s initial tracer concentration is assumed
to be zero before starting the test:

C�r ; u;0� � 0 rc # r , ∞ �3�
The pumping well is treated as a mathematical sink.

The concentration inside the wellbore is assumed to
be instantaneously in equilibrium with the surround-
ing media. This assumption implies that during the
pumping period, a zero concentration gradient exists
at the interface between the well and its immediate
adjacent aquifer atrc. Therefore, the boundary

condition atrc is prescribed as

2C�r ; u; t�
2r

� 0 at r � rc t . 0 �4�

Regarding the numerical solution’s accuracy, we
select a computational domain�rL ; rL . R� which is
superior to the well-piezometer distance (R) as indi-
cated by Wang and Crampon (1995). The other
boundary condition in ther-direction, as required
for a unique solution to Eq. (3), is imposed at (rL)
by stating

C�r ; u; t�1 aL
2C�r ; u; t�

2r
� 0

at r � rL ; rL . R; t . 0

�5�

whererL is the limit distance.
The physics of the problem stipulates thatC is

single-valued in the aquifer. In addition,C, besides
being single-valued, is obviously continuous and
symmetrical acrossu � 0; u � p: Thus, the bound-
ary conditions in the transverse direction are given by

2C�r ;0; t�
2u

� 0 �6�

2C�r ;p; t�
2u

� 0 �7�

Let t be the dimensionless time,r be the dimen-
sionless radial distance, andX be the dimensionless
ratio of dispersivity. The governing Eq. (3) can be re-
expressed in the following form:

1
r

22C

2r2 1
1
r

2C
2r

1
X

r3

22C

2r2 1 f1�r�g�u�d�t� � 2C
2t

�8�
wheref1�r� � Cr�H�Pe1 Dr=2� 2 H�Pe2 Dr=2��; r
� r=aL ; Pe� R=aL ; rc � rC=aL ; rw � rw=aL ; t� At=aL ;

X � aT=aL ; Cr � M=RbneDrDu; Pe is Peclet number,
Cr is defined as the reference concentration.

Consequently, the initial and boundary conditions
become

C�r; u;0� � 0 �9�

2C�rc; u; t�
2r

� 0 �10�
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C�rL ; u;p�1
2C�rL ; u; t�

2r
� 0 �11�

2C�r; 0; t�
2u

� 0 �12�

2C�r;p; t�
2u

� 0 �13�

whererL � rL =aL :

In this study, we adopt the revised Laplace Trans-
form Finite Difference (LTFD) method to solve the
tracer test problem. The detailed derivation of the
revised LTFD method is given in the Appendix A.
The LTFD method was first developed by Moridis
and Reddell (1991) to solve the partial differential
equation of transient flow through porous media.
The Laplace transform numerical method is preferred
over conventional time-marching schemes. In this
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Fig. 2. Schematic diagram of computation domain for the verification case of a Laplace transform solution derived by Moench (1989),r � 0 is
pumping well,r � R is the injection well and the outer boundary is set at the injection well.

Fig. 3. Verification of dimensional breakthrough curves for the proposed model versus the Moench’s (1989) model.
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approach, the Laplace transform is initially
employed to eliminate the temporal derivative
and obtain a frequency domain (p-space) spatially
distributed equation. The numerical method is then
applied to obtain thep-space concentration at any
spatial node. The solutions for different times are
independent of each other, without evaluation of the
solution at an intervening time. Also, the solution is
exact in time, and the numerical error is restricted
only to that introduced by discretizing space and eval-
uating the eigensystem (Sudicky, 1989; Moridis and
Reddell, 1991; Sudicky and McLaren, 1992). In this
study, we develop a revised LTFD solution which
differs from the conventional LTFD technique. The
space discretization is only performed in the radial
direction. Before discretizing the radial distance, the

finite Fourier cosine transform is performed with
respect to the transverse angle variable. The proposed
method is highly attractive since, in the resulting
system of simultaneous equations, possible errors
are diminished by an analytical transform which is
used instead of the spatial discretization in a trans-
verse direction. The required space-discretized
nodes are only the number of discretizations in the
radial direction. The method proposed here does not
require any discretization in the transverse direction.
After solving the Laplace-finite Fourier cosine
domain concentration at node points using the
conventional finite difference theory, the solution in
the original domain is ultimately recovered using a
Laplacian inversion and a finite Fourier cosine trans-
form inversion.
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Fig. 4. (a) The dependence of the numbers of the required series term (N) for solution’s convergence�Pe� 1�; (b) The dependence of the
numbers of the required series term (N) for solution’s convergence�Pe� 10�; (c) The dependence of the numbers of the required series term (N)
for solution’s convergence�Pe� 100�:

Fig. 4. (Continued).



3. Model verification

Two verification problems are used to test the
accuracy of the revised LTFD model for simulating
the tracer transport behavior. A one-dimensional
Laplace-domain analytical solution, the Moench
(1989) solution, is the first problem of a convergent
tracer test without upstream dispersion that we
addressed. The revised LTFD solution is compared
with the analytical solution, for verification purposes.
The second problem is a two-dimensional, finite
element solution used by Guvanasen and Guvanasen
(1987) to verify their approximate solution.

3.1. Case 1

Case 1 is a test problem that Moench (1989) inves-
tigated, representing the one-dimensional, convergent
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Fig. 5. Schematic diagram of domain discretized by finite elements
(not to scale).

Fig. 6. Comparison between finite element solution (FEM) presented by Guvanasen and Guvanasen (1987) and the proposed model’s solution
of Dimensionless breakthrough curves at four observation points (see Fig. 5) between an initially rectangular tracer pulse and the pumping well.

Fig. 7. (a) Geometrical configuration of the developed steady state flow field of a convergent tracer test. (b) Concentration contours at a time
t � 20�T�. (c) Concentration contours at a timet � 40�T�. (d) Concentration contours at a timet � 60�T�. (e) Concentration contours at a time
t � 80�T�. (f) Concentration contours at a timet � 100�T�:
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Fig. 7. (Continued).
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Fig. 7. (Continued).
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radial dispersion transport. An input boundary is
imposed at the injection well. The input boundary
approach implies that no dispersive flux is allowed
upstream of the injection well. Fig. 2 schematically
depicts the test problem. In the current model,rL is set
to R. Although the model developed by Moench
(1989) is mathematically one-dimensional, from a
two-dimensional perspective, the solution is equiva-
lent to that of an axisymmetric problem with an initial
annulus plume. In the revised LTFD model,Du is set
to 2p . The following hypothetical parameters are
used: distance between centers of wells, 5 [L]; pump-
ing rate 2 [L3 T21]; aquifer thickness, 10 [L]; effective
porosity, 0.2; injected mass, 10 [M]; radius of
pumping well, 0.02 [L]; longitudinal dispersivity,
aL � 5; 0.5 and 0.05 [L] (that is, a Peclet number of

1, 10 and 100); and transverse dispersivity,aT � 1;
0.1 and 0.01 [L] (that is, a dimensionless ratio of
transverse over longitudinal dispersivity, whereX �
aT=aL is 0.2). The fine-grid�Dr � 0:001� spacing in
the radial flow direction is used to avoid numerical
dispersion. The revised LTFD solution does not
require discretization in the transverse direction.

Fig. 3 displays breakthrough curves at the pumped
well for various Peclet numbers, and compares them
to Moench’s solution. According to this figure,
concentrations obtained from the revised LTFD
formulation agree with those obtained from the
Laplace analytical solution.

To provide further insight into the solution’s
convergence, we investigate the dependence of the
numbers of the required series term for the finite
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Fig. 8. (Continued).

Fig. 8. (a) Comparisons of dimensional breakthrough curves of dimensionless dispersivity ratio ofX � 0:2 and 0.4 at observation point atr � 1
[L], u � p for the two-dimensional solution of the proposed model and one-dimensional averaging solution in a hypothetical condition�Pe�
1�: (b) Comparisons of dimensional breakthrough curves of dimensionless dispersivity ratio ofX � 0:2 and 0.4 at observation point atr � 1 [L],
u � p for the two-dimensional solution of the proposed model and one-dimensional averaging solution in a hypothetical condition�Pe� 10�:
(c) Comparisons of dimensional breakthrough curves of dimensionless dispersivity ratio ofX � 0:2 and 0.4 at observation point atr � 1 [L],
u � p for the two-dimensional solution of the proposed model and one-dimensional averaging solution in a hypothetical condition�Pe� 100�:
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Fourier cosine inversion on dimensional radial
distance and dimensionless dispersivity ratio. Figs.
4(a)–(c) present the dependence for a time equal to
20 [T] and for various Peclet numbers.

3.2. Case 2

The second solution verification case is the two-
dimensional, finite element solution, as employed by
Guvanasen and Guvanasen (1987) to verify their
approximate solution to the problem of convergent
radial dispersion of a tracer in a configuration similar
to that in Fig. 2. Fig. 5 illustrates the shape of the
initial pulse and the domain discretized by finite
elements. The non-axisymmetric transport of a tracer

pulse is initially located between 0.98R and 1.02R of
radial distance, and transverse anglesu � 08 andu �
2:58: The upstream zone is extended to 1.4R from the
center of pumping well. Only a sector of 17.58 is used
to represent the entire transport domain in Guvanasen
and Guvansen’s study (1987) because the finite
element solution is valid as long as the tracer concen-
tration has not reached the lateral boundary and the
total numbers of nodes can be reduced. Fig. 6 presents
the breakthrough curves at four observation points.
Fig. 5 illustrates the locations of these points. At all
observation points, the finite element and revised
LTFD solutions agree well with each other.

Comparing the above analytical and finite element
solutions reveals that the revised LTFD model can
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Fig. 9. (Continued).

Fig. 9. (a) Comparison of longitudinal concentration profiles from the proposed model for dimensionless dispersivity ratiosX � 0:2 and 0.4,
and from the one-dimensional averaging solution�Pe� 1�: (b) Comparison of longitudinal concentration profiles from the proposed model for
dimensionless dispersivity ratiosX � 0:2 and 0.4, and from the one-dimensional averaging solution�Pe� 10�: (c) Comparison of longitudinal
concentration profiles from the proposed model for dimensionless dispersivity ratiosX � 0:2 and 0.4, and from the one-dimensional averaging
solution�Pe� 100�:
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effectively and accurately handle the radial advec-
tion–dispersion equation.

4. Effect of transverse dispersion

The verified revised LTFD model is applied to
illustrate how transverse dispersion influences tracer
transport in a convergent radial tracer experiment. A
hypothetical field case as shown in Fig. 7(a) is
designed herein to simulate the transport behavior of
solute from the injection well into the pumping well,
and to analyze the effect of transverse dispersion in a
convergent flow field. The input parameters are the
same as those for the model verification in Case 1 in
the previous section. The steady-state convergent flow

field is depicted in Fig. 7(a). The arrows and their
adjacent values depict the direction and magnitude
of the velocity of groundwater flow. Figs. 7(b)–(f)
plot the simulated concentration contours for times
20, 40, 60, 80 and 100 [T] with Peclet number�
100: Initially, the tracer plume spreads in the long-
itudinal and transverse directions as a circular shape
(Fig. 7(b)). Later, owing to the convergent flow field,
the tracer plume is pulled by the advection and long-
itudinal dispersion along the straight line which is
connected by the pumping and injection wells. The
tracer plume gradually changes to an oval shape
(Figs. 7(c) and (d)). Eventually, most of the tracer is
drawn into the pumping well and the tracer plume is
shrunk to a smaller size, then disappears. The two-
dimensional concentration contours do not clearly
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Fig. 10. (a) Comparison of transverse concentration profiles from the proposed model for dimensionless transverse dispersivity ratiosX � 0:2
and 0.4, and from one dimensional averaging solution�Pe� 1�: (b) Comparison of transverse concentration profiles from the proposed model
for dimensionless transverse dispersivity ratiosX � 0:2 and 0.4, and from one dimensional averaging solution�Pe� 10�: (c) Comparison of
transverse concentration profiles from the proposed model for dimensionless transverse dispersivity ratiosX � 0:2 and 0.4, and from one
dimensional averaging solution�Pe� 100�:

Fig. 10. (Continued).



display how transverse dispersion influences the
tracer transport in the radially convergent flow field
(Figs. 7(b)–(f)).

To illustrate clearly how transverse dispersion
influences the breakthrough curve at any given obser-
vation well, both the two-dimensional solution and the
one-dimensional averaging solution are constructed.
Figs. 8(a)–(c) display the breakthrough curves of the
two-dimensional revised LTFD model atr � 1 [L],
u � p for Peclet numbers of 1, 10 and 100, respec-
tively. The dashed lines denote the breakthrough
curves of the average concentration atr � 1; where
no concentration variation occurs in the transverse
direction. The average concentrations,�C; are calcu-
lated by averaging the tracer concentration from trans-
verse angleu � 0 to u � 2p at fixed radial distance,
�C�r ; t� � 1=2p

R2p
0 C�r ; u; t� du; and then set to be one-

dimensional solutions. Notably, arrival times of peak
concentrations are nearly identical for both the two-
dimensional solution and the one-dimensional aver-
aging solution. Since the dispersive process only
causes spreading of the solute, when transverse
dispersion is considered, the solute moves transver-
sely owing to the concentration gradient in the trans-
verse direction. The direction of transverse solute
transport is normal to the advection flow path. The
total mass of the tracer in a given concentric circle
(e.g. the concentric circle ofr � 1 in Fig. 7(a)) area
remains unchanged. In addition, the mass conserva-
tion in the concentric circle area preserves the arrival
time of peak concentration. The transverse dispersion
only affects the magnitude of the peak concentration.
Figs. 8(a)–(c) also reveal that the peak concentration
in two-dimensional solutions exceeds that in a one-
dimensional averaging concentration. This concentra-
tion difference increases with a decrease of dimen-
sionless dispersivity ratio (X) and an increase of
Peclet numbers.

To further illustrate how transverse dispersion
influences the spatial distribution of the solute, Figs.
9(a)–(c) and 10(a)–(c) display the radial (longitudi-
nal) concentration profiles atu � p and transverse
concentration profiles (concentric circle) atr � 1
[L] for a time of 60 [T]. Fig. 9(a)–(c) reveals that
the two-dimensional concentration curves always
exceed the one-dimensional averaging concentration
curves. Fig. 10(a)–(c) shows that the transverse
concentration profiles are symmetrical around the

line connecting the pumping well to the injection
well, or at u � p: The maximum concentration in
the transverse concentration profile is whereu � p:
This finding suggests that the transverse dispersion
causes the tracer to spread in the transverse direction
(or normal to flow direction) and are symmetrically
redistributed aroundu � p: Increasing the transverse
dispersivity (dimensionless dispersivity ratio) enhances
the spreading of the tracer extensively and decreases the
difference between the maximum tracer concentration
�u � p� in a two-dimensional solution and the one-
dimensional average tracer concentration. Fig. 10(a)–
(c) also can be used to explain the results shown in Figs.
8(a)–(c) and 9(a)–(c). If the observation well is chosen
to be close to the line connecting the pumping well and
the injection well, the concentration in two-dimensional
solutions exceeds the one-dimensional averaging
concentration. Far from the axis, therefore, the two-
dimensional solution shows a lower concentration
than a one-dimensional average solution.

From the above discussion on breakthrough curves
and the spatial profile of tracer concentration, we can
infer that transverse dispersion spreads the concentra-
tion in lateral directions and lowers the peak concentra-
tion. However, the arrival time of the peakconcentration
remains the same as in the one-dimensional solution.
This finding also suggests that the different transverse
dispersion profiles that depend on the dimensionless
dispersivity ratio can be employed to determine the
transverse dispersivity of a field tracer test.

5. Determination of transverse dispersivity

If the formation thickness, injection tracer mass and
pumping rate are known, it is theoretically possible to
determine, in a convergent tracer test, the following
transport properties: effective porosity, longitudinal
dispersivity and lateral dispersivity using the devel-
oped two-dimensional solution. By matching the
theoretical and observed breakthrough curve at the
pumping well, the effective porosity and longitudinal
dispersivity can be determined. If an observation is
made between the injection well and the pumping
well, breakthrough curves registered in this latter
well can be utilized to determine the dimensionless
dispersivity ratio, the ratio of lateral to longitudinal
dispersivity (Guvanasen and Guvanasen, 1987). The
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curves in Fig. 8(a)–(c) facilitate the determination of
transverse dispersivity.

Analysis of the proposed method consists of the
following steps:

1. The longitudinal dispersivity and effective porosity
are estimated.

(a) The concentrations measured at the pumping
well are normalized relative to the peak concen-
tration and are plotted semi-logarithmically
against the real time.
(b) The experimental data are matched against
the type curves of Moench (1989), and the Peclet
numbers are obtained (Sauty, 1980).
(c) The longitudinal dispersivity and effective
porosity are calculated from

aL � R
Pe

ne � Qt

pR2btD

2. The transverse dispersivity is estimated.

(a) The experimental concentration observed at
other observation well is plotted against real time.
(b) The theoretical breakthrough curves for
different dimensionless dispersivity ratios at this
well are generated from the revised LTFD model
for Peclet numbers obtained from step 1.
(c) The experimental breakthrough curves are
matchedagainst thetheoreticalbreakthroughcurves
and the dimensionlessdispersivity ratio is obtained.
(d) The transverse dispersivity is calculated from

aT � aLX

Next, a hypothetical example is presented to illus-
trate the analysis according to the proposed method.

5.1. Example

Consider a hypothetical tracer test. The distances
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Fig. 11. Hypothetical tracer test data for breakthrough curve at observation at well ofr � 1; u � p:



between the pumping well and the injection well,
R, are 5 m. The concentrations measured at the
pumping well are normalized relative to the peak
concentration. The estimated Peclet number is 1.0
for the matching of the hypothetical data against
the type curves. Longitudinal dispersivity is then
computed from

aL � R
Pe
� 5:0�m�

1:0
� 5:0�m�

Fig. 11 plots the experimental breakthrough curve
at the observation atr � 1; u � p: The theoretical
breakthrough curves atr � 1; u � p as shown in
Fig. 8(a)–(c), can be generated from the revised
LTFD model for a Peclet number of 1. As curves
are satisfactorily matched, the dimensionless
dispersivity ratio can be obtained as shown in Fig.

12. Transverse dispersivity is then computed

aT � XaL � 0:2 × 5�m� � 1:0�m�
Theoretically, one pumping well and an observa-

tion well are enough to determine longitudinal and
transverse dispersivity. If concentrations data are
available at several intermediate wells, they can be
used to cross-check the value of transverse dispersiv-
ity or can be interpreted together to obtain a coherent
identification and to explain apparent anomalies.

6. Conclusions

This work presents a two-well method to evaluate
transverse dispersion coefficients for tracer tests in a
radially convergent flow field. A revised LTFD model
developed on the basis of a conceptual model,
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Fig. 12. The hypothetical tracer test data at observation point,r � 1 �L�; u � p; matched with the theoretical breakthrough of the revised
LTFD model.



provides further insight into the transverse spreading
of contaminants for a convergent tracer test. Results
indicate that the transverse dispersion spreads the
concentration in the transverse direction and preserves
the arrival time of peak concentration. This finding
suggests that different breakthrough curves can be
employed to determine the transverse dispersivity of
a field tracer test, according to different transverse
dispersivities. Then, a curve-fitting method involving
a theoretical breakthrough curve, is proposed to eval-
uate transverse dispersivity. A hypothetical experi-
ment demonstrates the applicability of the proposed
model. The two-well method is useful in determining
the transverse dispersion coefficient for tracer tests in
a radially convergent flow field.
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Appendix A

In this appendix the revised LTFD solution of Eq.
(8) subjected to boundary conditions Eqs. (9)–(13) is
derived.

Initially proceeding with the Laplace transform of
Eq. (8) and its associated boundary conditions (9)–
(13), with respect tot , we obtain

1
r

d2G

dr2 1
1
r

dG
dr

1
X

r3

22C

2u2 1 CR�H�r 1 rw�

2 H�r 2 rw��
h
H
� Du

2

�
2 H�0�1 H�2p�

2H 2p 2
Du

2

� �
� � pG �A1�

dG�r; u;p�
dr

� 0 at rc �A2�

G�r; u;p�1
dG�r; u;p�

dr
� 0 r � rL �A3�

2G�r;0; t�
2u

� 2G�r;2p; t�
2u

� 0 �A4�

2G�r;0; t�
2u

� 2G�r;2p; t�
2u

� 0 �A5�

wherep denotes the Laplace transform parameter and
G represents the Laplace transform ofC, as defined by

G�r; u;p� �
Z∞

0
C�r; u; t� e2pt dt �A6�

C�r; u; t� � L21�G�r; u;p��

� 1
2pi

Zc1 i∞

c2 i∞
G�r; u;p� e2pt dp �A7�

Using the finite Fourier cosine transform with respect
to u of (A1)–(A5), we obtain

1
r

d2W

dr2 1
1
r

dW
dr

2 p 1
Xn2

r3

 !
W � f1�r� �g�n� �A8�

where

�g�n� � Fc�g�u��

�
Du

2
if n� 0

1
n
�sin�np�2 sin np 2

Du

2

� �� �
if n

8>>><>>>:
. 0;n� 1; 2;3…

The symbol Fc� � represents the finite Fourier
cosine transform.

dW�r; n;p�
dr

� 0 at r � rc �A9�

W�r; n;p�1
dW�r; n;p�

dr
� 0 at r � rL �A10�

wheren denotes the finite Fourier cosine transform
parameter andW represents the finite Fourier cosine
transform ofG, as defined by

W�r; n;p� � Fc{ G} �
Zp

0
G�r; u;p� cos�nu� du �A11�
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Such a transform is advantageous in that the inversion
is directly given by the following formula (Sneddon,
1972):

G�r; u; p� � F21
c �W�r; n;p��

� 1
p

W�r;0;p�1
2
p

X∞
n�1

W�r; n;p� cos�nu�

�A12�
A finite difference method is employed by discre-

tizing the radial distance of the transformed partial
differential equation. The advection terms are
approximated using the upwind difference formulae.
After the difference formulae are substituted into the
transformed partial differential equation, the algebraic
equation thus obtained takes the following form:

1
ri

Wi11 2 2Wi 1 Wi11

Dr2 1
1
ri

Wi11 2 Wi

Dr

2

 
p 1

xn2

r3
i

!
Wi � f1�ri� �g�n� �A13�

By grouping and rearranging terms, the final form
of the finite difference equation in the Laplace-finite
Fourier cosine domain is

aWi11 1 bWi 1 cWi21 � d �A14�
where a� r2

i 1 r2
i Dr, b� 22r2

i 2 r2
i Dr 2

Dr2�pp3
i 1 Xn2�; c� r2

i ; andd � r3
i Dr

2f1�ri� �g�n�:
Written in matrix notation, the finite difference

system of simultaneous equations (A14) becomes

�V��W� � �D� �A15�
where [V ] denotes the coefficient matrix, [W]
represents the vector of the unknown transformed
concentration, and [D] is the known right-hand
side vector. The system of algebraic equations, as
represented by Eq. (A15), can be solved using direct
Gaussian elimination or other types of solvers (e.g.,
iterative types) to yield a value of Laplace-finite Four-
ier cosine transformed concentration at the node
points. In addition, a FORTRAN subroutine DLSACB
can be used (see Visual Numerics Inc., 1994). The
solutions in original domainC�r; u; t� are the Laplace
and finite Fourier cosine inversions ofWi. For conve-
nience, the finite Fourier cosine inversion is first

performed.

C�r; u; t� � 1
p

L21�Wi�0; p��

1
2
p

X∞
n�1

L21�Wi�n; p� cos�nu�� �A16�

Such an infinite series can be straightforwardly
evaluated. However, it is important to consider the
point at which a sufficient number of terms have
been summed. Thus, the series behavior for a large
n must be first analyzed and then discussed. For a
large n, whereb q a . c, Wi can be approximately
expressed as

Wi <
d
b

<
r3

i f1�ri� �g�n�
pr3

i 1 Xn2 �A17�

Assuming that we only sum the first, say,N terms,
the remainder,Rn of the infinite series, is

uRnu #
X∞

n�N 1 1

uL21�Wi�u #
X∞

n�N 1 1

L21
r3

i f1�ri� 1n
pr3

i 1 Xn2

2664
3775

�
X∞

n�N 1 1

L21 f1�ri�
n�p 1 Xn2=r3

i �

" #

# L21 f1�ri�
�N 1 1��p 1 X�N 1 1�2=r3

i

" #
# 1

�A18�
(A18)whereRn denotes the remainder, ande repre-
sents the tolerance error.

Once the solution is obtained, the Laplace trans-
form of the nodal concentrations must be inverted in
the Laplace transform domain. Also, the Laplace
inverse of (A16) must be determined numerically. A
FORTRAN subroutine DINLAP/INLAP (Visual
Numerics Inc., 1994) based on the de Hoog et al.
(1982) algorithm, is employed to perform the Laplace
inversion.
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