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a b s t r a c t

This work presents a novel methodology, genetic programming (GP), for developing environmental
response functions for Formosan Landlocked Salmon (Oncorhynchus masou formosanus); these functions
are then applied to evaluate the impacts of climate changes. Average daily temperature and maximal
flows between two sampling periods were adopted as principal factors for categorizing environmental
conditions. The GP successfully identified the response functions for various environmental categories.
The response functions were further applied to assess the impact of climate change. Fourteen future
possible climate scenarios were derived based on the equilibrium and transition experiments by GCMs.
Impact assessment results indicated that climate change may significantly influence populations of
Formosan Landlocked Salmon due to more frequent higher temperatures. Adaptation strategies are
required to mitigate the impact of global climate change as current conservation measures for Formosan
Landlocked Salmon habitat only reduce local human-induced effects. In the situation of complicated
relationships between fish population and environmental conditions, GP provides a useful tool to obtain
some information from the limited data.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Formosan Landlocked Salmon (Oncorhynchus masou formosanus)
is a very important species as it is the salmon living at the lowest
latitude. Although widely distributed in the upper Dajia Creek in
early 1900s, it is currently only found in the uppermost reaches of
Dajia Creek, Chichiawan Creek and Gaoshan Creek tributaries as in
Fig. 1. Human-induced land use changes, hydraulic structures, poor
water quality, increased water temperature and flooding are prin-
cipal factors reducing habitat and endangering Formosan Land-
locked Salmon. Conversion of land uses from forest to agriculture
has been forbidden in the upper Dajia Creek, and some hydraulic
structures have been removed and new construction prohibited. The
factor endangering Formosan Landlocked Salmon most will be
climate change. Climate change may influence streamflows, water
temperature and habitats.

Increased water temperature, the primary effect of climate
change, affects growth and survival rates of fish and other aquatic
creatures, as well as migration patterns, breeding, and competitive
ability of fish. Moreover, transmission of pollutants and resulting
chemical reactions are also influenced by water temperature. These
x: þ886 2 2363 5854.
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landlocked salmon only live in a water temperature range of
9–17 �C and, during spawning, the temperature must be below
12 �C (Tzeng, 1999). Generally, water temperature increases as it
flows downstream. According to recent surveys (1985–1997), the
12 �C isotherm has moved 1.56 km upstream in the upper section of
Dajia creek (Yang, 1997). This reduction in suitable spawning
stream habitats can seriously influence the distribution of these
landlocked salmon. Additionally, high flow rates also impact For-
mosan salmon. Sediment and increased flow generated by storm
events degraded habitat and flushed fish downstream into inhos-
pitable reaches. However, increased streamflow can also benefit
habitats by reducing any increases in water temperature.

Numerous researchers, who have investigated the relationship
between fish populations and environmental conditions, have
identified decreasing populations of salmon and trout. Bradford
and Irvine (2000) evaluated the impact of land use change, climate
change and over-fishing on the population density of salmon. Shaw
and Richardson (2001) assessed the direct and indirect effects of
sediment pulse duration on rainbow trout survival. Cattaneo et al.
(2002) concluded that flooding is the predominant factor influ-
encing salmon and trout populations. Developed by Chen et al.
(2000), the fuzzy logic model can assess the functional relationship
between the number of spawners and sea surface temperature,
reconstruct historical fish recruitment time series and predict the
future fish populations.
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Fig. 1. The habitat of Formosan Landlocked Salmon – the upstream of the Dajia River.
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According to IPCC 2007, ambient CO2 concentrations will
increase mean global air temperature by 1.1–6.4 �C by 2100 (IPCC
WG I, 2007). Moreover, recent local research concluded that climate
change may result in increased stream temperatures (Tung and Lee,
2006) and flows (Tung and Lee, 2001) in Formosan Landlocked
Salmon’s habitat. Thus, identifying response functions for assessing
the impacts of climate change on Formosan Landlocked Salmon is
necessary.

Differing environmental conditions impact ecosystems differ-
ently; thus, a predefined response function will likely limit
predictability. In this study, environmental conditions are classified
into several categories and a response function is then optimized by
genetic programming (GP) for each category. GP is utilized here
because it can find functions of various forms, not merely those
involving a pre-determined polynomial with unknown coefficients.
GP enhances the predictability particularly for this unknown situ-
ation. The study’s goal is to identify environmental impact func-
tions and their parameters for Formosan Landlocked Salmon.
Section 2 describes the method employed to optimize response
functions and Section 3 presents an analysis of critical environ-
mental factors. Section 4 then addresses the method of evaluating
climate change impacts on specific environmental factors. Simu-
lation results and conclusions are presented in Sections 5 and 6,
respectively.

2. Development of response functions

Different environmental conditions can have varying impacts of
varying magnitudes on an ecosystem; thus, different functions may
be required to predict the effects of various environmental condi-
tions. GP generating functions helps us to know the response of
a fish population to various environmental conditions. Further-
more, the functions can be applied to predict possible fish pop-
ulations in the future. Environmental conditions in this study are
categorized prior to optimizing response functions by GP. A brief
description of the selection of environmental factors, data classifi-
cation, and GP follows.

2.1. Selection of environmental factors

The most important environmental factors representing
different environmental conditions are selected based on previous
studies and available data. Then the relationships between these
factors and the Formosan Landlocked Salmon population are
analyzed. The final environmental factors adopted are utilized as
predictors in the environmental response functions. Section 3
presents a detailed analysis of environmental factors.

2.2. Data classification

Environmental conditions are categorized based on environ-
mental factor values. Each factor contains two groups: high and low
values. A threshold (kx) is chosen first for each environmental factor
(X). If Xi > kx, it is assigned to the high group, otherwise it is
assigned to the low group. There are 2n categories and associated
functions if there are n environmental factors. For example, of two
environmental factors, X1 and X2, there are 22 ¼ 4 categories and
functions.

Category I if x1i > kx1 and x2i > kx2; then YI;i ¼ FIðx1i; x2iÞ
Category II if x1i > kx1 and x2i � kx2; then YII;i ¼ FIIðx1i; x2iÞ
Category III if x1i � kx1 and x2i > kx2; then YIII;i ¼ FIIIðx1i; x2iÞ
Category IV if x1i � kx1 and x2i � kx2; then YIV ;i ¼ FIV ðx1i; x2iÞ

(1)

where x1i and x2i are the ith sampled data of environmental factors
X1 and X2, and Yj,i is predicted fish population for category j by
function Fj (j ¼ I,.,IV). The GP can be applied to identify functions
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for each category with the objective function of minimizing root
mean square error as Eq. (2).

Min Z ¼
"

1
nj

Xnj

i¼1

�
Yj;i � yo

j;i

�2
#1=2

(2)

where yj,i
o is the observed fish population and nj is the number of

observation data in category j. Thresholds kx, which are determined
by data analyses, can also be decision variables in an optimization
process, although this study does not employ such optimization
process.
2.3. Genetic programming

Genetic programming is an efficient method for constructing
a relationship function comprising multiple independent variables
(predictors). The GP optimizes both the coefficients and constants
in a function and the function type itself. A possible function is
determined by given mathematical operators, such as þ, �, �, sin,
exp, etc. The GP encodes a function as a tree with nodes and
branches, and then optimizes functions based on natural principles.
The GP procedure is similar to that of a genetic algorithm, which
generates solutions as a parent population, and then improves
solutions by Selection, Crossover, and Mutation processes. The
general procedure and primary components of GP are briefly
described as follows (Koza, 1992).

Step 1 Generate initial parent population.
Step 2 Evaluate fitness of all alternatives.
Step 3 Select two parent alternatives for reproduction according to

their fitness. Those with higher fitness are assigned greater
probabilities to mate.

Step 4 Crossover to reproduce offspring and determine whether
mutation occurs.

Step 5 Repeat steps 3–4 until the pre-determined population size is
attained.

Step 6 Use the offspring population as a new generation and return
to step 2 unless the stop criterion is met.
2.3.1. Encode and generate initial parent population
Different trees in GP represent different functions. For example,

the functions of y ¼ x1 þ x2 and y ¼ (0.5 � x1) þ exp(x2) can be
expressed as Fig. 2(a) and (b), respectively. The end node of each
branch can only be filled with one constant or variable, whereas
other nodes can only be filled with mathematical operators. These
operators can beþ,�,�, O, and any other operator, such as sin, cos,
x1

+

x2

y = x1 + x2

a

-

+

exp

0.5 x1 x2

y = (0.5 _ x1) + exp (x2)

b

Fig. 2. The tree structure of the genetic programming method.
log, exponential, etc. Different operators have different child
branches. For example, operators þ, �, �, O have two branches
each, whereas sin and exponential have only one branch each. A
function is only limited by given mathematical operators.

The initial parent population needs to be randomly generated.
To generate a parent population, two sets must be defined, of which
one set (S1) contains variables and constants and the second set (S2)
contains designated mathematical operators. Fig. 3 presents the
flowchart used to generate a tree (function). First, the maximum
number of layers should be defined, allowing a node to continue
branching downward until it reaches the predefined lowest layer or
is filled with a constant or variable. A tree is generated when no
more nodes are available for branching.

2.3.2. Selection
Selection can lead a search process toward a defined goal in the

solution space. The principle of roulette wheel selection is used in
this study. The solution that has superior fitness has an increased
likelihood of being selected as a parent to generate new offspring
(or a new solution). Since the objective function is to minimize root
mean square errors as Eq. (2), the smaller values of the objective
function, the better. Selection probabilities are assigned to solutions
based on their objective function values using Eq. (3).

Pi ¼
1=ziXM

i¼1

1=zi

(3)

where Pi is the probability to select ith solution and zi is the value of
objective function of ith solution, and M is the population size.
Uniformly distributed random numbers (3) in the range between
0 and 1 are generated to select solutions among parent populations
based on the criteria given in Eq. (4). One selects the kth solution
when accumulated probability from the first to kth solutions is
larger than the generated random number. For example, consider
four solutions, and their probabilities P1¼0.1, P2¼ 0.3, P3¼ 0.4, and
P4¼ 0.2, respectively. If we generate a random number 3¼ 0.6, then
the third solution is selected due to P1 þ P2 ¼ 0.5 < 3 ¼ 0.6
< P1 þ P2 þ P3 ¼ 0.8.

3 � min
k

Xk

i¼1

Pi (4)

2.3.3. Crossover
The crossover process produces new solutions by recombining

parent chromosomes. One exchange node is first randomly deter-
mined for each selected parent tree. Then, the selected nodes and
branches below the nodes are swapped. Fig. 4 shows with the right
node (dot in tree (a)) and the left node (dot in tree (b)) selected as
exchange nodes; crossover results in new solutions for trees (c)
and (d).

2.3.4. Mutation
Mutation, a random change at a branch or node in an individual

tree, diversifies the search process which avoids being restricted at
a local optimum. Trees can be mutated in two ways. First, the
content of one node is altered. A randomly chosen node is replaced.
If the node was originally filled with an operator, only a new
operator selected from set S2 can replace the original operator. But
the new operator must also have the same attributes (i.e. the
number of child branches). For example, ‘‘þ’’ requiring 2 branches
can’t be replaced with ‘‘exp’’ requiring only one branch. The second
method changes one node and its following branches, providing
more diversification than the first method. In applying this method,
one node is first randomly selected and its branches deleted. A
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Fig. 3. The flowchart to generate a tree for genetic programming.
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constant, a variable or an operator can be selected to replace the
item in the node, and then new branches are generated with the
same procedure used to generate a new tree described in Section 2.
This study employs the first mutation method.

3. Analysis of environmental factors

Considerable researchers have concluded that the most impor-
tant factors affecting fish populations include stream temperature,
flow, sediment and nutrient levels (Yang, 1997; Shaw and
Richardson, 2001; Cattaneo et al., 2002). The nutrient concentra-
tion meets water quality standards in the study area and is not
considered to be a factor limiting fish population stability or
growth. Furthermore, based on monitoring data from the study
area, three factors were selected for further analysis: water
temperature, streamflow and suspended sediment. The following
analysis is applied to determine final indicators and their thresh-
olds for classification.
3.1. Water temperature

Formosan Landlocked Salmon are very sensitive to water
temperature. Suitable temperatures are in the range of 9–17 �C and
must be below 12 �C during spawning (Tzeng, 1999). As a relation-
ship exists between water and air temperatures (Mohseni and Ste-
fan, 1999), air temperature is selected as an indicator to project
climate change impact. The salmon population is measured twice in
one year, once in summer and once in winter. Cumulative heat input
to streams from winter in the previous year to summer influenced
the population counted in summer, and the cumulative heat from
summer to winter influenced the population measured in winter.
Thus, average daily temperature between two sampling times can
represent cumulative heat input to the stream in this study.

Fig. 5 presents the population of Formosan Landlocked Salmon
plotted against average daily air temperature. Two data groups
were easily identified, and the threshold between 17 �C and 18 �C
was chosen. A linear decreasing trend was observed when
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Fig. 4. An example of crossover in GP, where nodes with dot circle tree (a) and (b) are
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Fig. 6. The plot of fish population versus maximal daily streamflow.
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temperature increased. Variation in the low temperature group was
greater than in the high temperature group, suggesting that the
indicator of average daily temperature is less dominant in the lower
temperature group than the high temperature group. Based on
these findings, average daily temperature between two sampling
times was selected as an indicator, and air temperature of 17.5 �C
was adopted as the threshold for separating temperature data into
low and high temperature groups.
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3.2. Streamflow

Fig. 6 shows the maximal flow observed between two sampling
times versus the salmon population. Two groups were identified
with a flow threshold between 40 cm and 60 cm. According to data
analysis, a maximal daily streamflow threshold of 50 cm was
adopted to separate flow data into low and high groups. The high
flow group had fewer fish than the low flow group (Fig. 6).
However, fish population changes in both groups due to streamflow
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Fig. 5. The plot of fish population versus average daily air temperature.
increase were not significant – this change is further examined in
Section 4.
3.3. Suspended sediment

Suspended sediment also affects stream habitat of these salmon.
However, suspended sediment is not selected as an indicator in
response function development, as suspended sediment and
maximal streamflow are closely related. Fig. 7a presents the log
linear relationship between suspended sediment and daily
streamflow. Fig. 7b shows the linear relationship between average
daily streamflow (total daily flow) and maximal daily streamflow.
Thus, total suspended sediment and maximal daily streamflow are
interdependent. Since maximal daily streamflow has been selected,
suspended sediment is not included in response functions.
4. Climate change impact assessment

This section describes the procedure employed to assess the
impact of climate change. First, future climate change scenarios
derived from GCM simulations must be input into a weather
generation model to produce weather data. Second, average daily
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Fig. 7. (a) The plot of log sediment versus log daily streamflow; (b) the plot of maximal
daily streamflow versus average daily streamflow.
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air temperature and maximal streamflow in different climate
conditions require evaluation. Then, the resulting data is input into
the identified response functions to assess the impact of climate
change on the population of Formosan Landlocked Salmon.

4.1. Climate change scenarios

4.1.1. Future climate scenarios
Climate scenarios are derived from various GCMs and experi-

ments, including equilibrium experiments and transition experi-
ments based on SRES (the Special Report on Emissions Scenarios)
(Nakicenovic et al., 2000). Change in future temperature in the
study area was assumed to be the same as the difference between
the temperatures simulated by GCMs for future and current
conditions at the nearest grid point. Thus, future climate scenarios
can be estimated as

m0mT ¼ mmT þ
�
mmT;Future � mmT;Current

�
(5)

where mmT and mmT
0 are current and future mean monthly

temperatures (�C), respectively, and mmT,current and mmT,Future are
simulated mean monthly temperatures (�C) under current and
future climate conditions, respectively. Change in precipitation is
assumed as the ratio of the precipitation under future conditions to
that under current conditions:

m0mP ¼ mmP
�
mmP;Future=mmP;Current

�
(6)

where mmP and mmP
0 are current and future mean monthly precip-

itation values (cm), respectively, and mmP,Current and mmP,Future are
simulated mean monthly precipitation values (cm) under current
and future climate conditions, respectively.

The GCM predictions based on equilibrium experiments (1995
version) were downloaded from the US Country Studies Program
on the NCAR ftp site (ftp://ncardata.ucar.edu/pub). Output from the
CCCM (Canadian Center for Climate Modeling) and GISS (Goddard
Institute for Space Studies) models was adopted. Table 1 lists the
change of mean monthly temperature and the ratio of precipitation
between 1 � CO2 and 2 � CO2 conditions.

The transitional experiments by CGCM2 and HADCM3 models
based on A2 and B2 scenarios of SRES were applied to establish
other future climate scenarios in this study. Three future scenarios
are considered: short-term (2010–2039), mid-term (2040–2069),
and long-term (2070–2099). Future climate scenarios are also
determined by Eqs. (5) and (6), in which mmT,Current and mmP,Current

are averaged from the GCM base simulation for 1961–1990 and
mmT,Future and mmP,Future are average values of different periods.
Table 1
Changes of mean monthly temperature (DT, �C) and ratios of mean monthly
precipitation (Rp, cm/cm) – equilibrium experiments.

Month CCCM GISS

DT Rp DT Rp

1 2.71 0.81 2.74 1.13
2 3.66 1.05 2.59 0.68
3 4.73 0.67 3.31 1.03
4 4.16 1.11 3.75 1.33
5 4.21 1.13 3.58 0.91
6 2.52 1.39 4.69 1.51
7 2.09 1.00 4.52 1.30
8 1.75 1.19 4.18 1.23
9 2.62 1.40 3.52 1.30
10 2.45 1.01 2.92 0.98
11 2.39 0.86 3.72 1.15
12 3.42 0.66 2.42 0.94

Average 3.02 1.02 3.50 1.12
Tables 2 and 3 present the climate change estimates based on A2
and B2 scenarios, respectively.

4.1.2. Weather generation
A weather generation model generated daily air temperature

and precipitation values for various climate scenarios. The weather
generation model used in Tung and Haith (1995) and Tung and
Haith (1998) was applied in the study. A sequence of daily precip-
itation and air temperature over 100 years was generated for each
current or future climate scenario.

4.2. Impact assessment

The populations of Formosan Landlocked Salmon under
different climate scenarios were predicted by input average daily
temperatures and maximal flows. Two environmental factors
under different climate scenarios were evaluated first. The
streamflow component of the Generalized Watershed Loading
Functions (GWLF) (Haith and Shoemaker, 1987) simulated
streamflows. The plausibility of predictions by the streamflow
model has been verified by Tung and Lee (2001) for the ChiChaWan
Creek. The model requires daily temperature and precipitation as
inputs and was modified to produce maximal flows. Generated
weather data for both current and future climates input into the
model determined maximal streamflows. Average daily tempera-
tures were simply calculated from current and future synthetic
weather data.

4.3. Data and model setup

The population of Formosan Landlocked Salmon has been
surveyed twice a year since 1987. The fish population between
Dam1 and Dam3, which includes major habitats for Formosan
Landlocked Salmon, was used in the GP model. Daily air temper-
atures and streamflows in 1987–2001 were utilized to identify
response functions, for which data were obtained from the
SungMao weather station and Chichiawan gauge station, respec-
tively. Data were classified into three categories: High Tempera-
ture/High Flow (HH); High Temperature/Low Flow (HL); and, Low
Temperature/Low Flow (LL). No data exist for the Low Tempera-
ture and High Flow (LH) category.

The followings are the necessary settings for GP. Set S1 contains
two variables {X1, X2} representing average daily air temperature and
maximal streamflow, whereas set S2 has operators {þ, �, �, O}.
Six maximal layers and a population (parents and offspring) of 1000
are adopted. The stop criterion for GP is 1000 generations. Air
temperature and flow in each category are standardized to eliminate
unit effects before applying in GP.

5. Results and discussions

The response functions identified are addressed first. These
functions are then applied to assess the impact of climate changes
on Formosan Landlocked Salmon.

5.1. Calibration of response functions

The thresholds of 17.5 �C for temperature and 50 cm for
streamflow were applied to categorize data. Then, GP was applied
to identify response functions for different categories. To verify
identified response functions, observed data in each category were
randomly selected as a data set for validation. Response functions
based on the remaining data were then used to construct response
functions shown as Eq. (7).

ftp://ncardata.ucar.edu/pub


Table 2
Changes in mean monthly weather parameters predicted by the CGCM2 and HCCPR general circulation models for SRES-A2 scenario.

Month CGCM2 HADCM3

DT Rp DT Rp

S M L S M L S M L S M L

1 0.94 1.62 2.76 1.22 1.12 1.02 0.84 1.82 3.11 1.13 0.85 0.95
2 1.81 2.57 3.27 1.35 1.01 0.89 0.46 1.55 2.40 0.95 0.68 1.00
3 1.25 2.64 3.78 1.3 1.03 0.88 0.52 1.44 2.45 0.95 1.07 0.92
4 0.6 1.82 4.64 1.13 0.8 0.76 0.61 1.52 2.49 1.13 1.31 1.28
5 �0.46 2.78 4.54 1.1 0.82 0.54 0.29 1.35 2.20 1.08 1.30 1.38
6 1.09 3.62 5.62 1.03 0.79 0.7 0.63 1.35 2.33 1.30 1.21 1.01
7 1.18 2.26 4.52 0.92 0.93 0.7 0.53 1.32 2.28 1.14 1.10 1.37
8 0.52 2.05 3.45 1.19 1.03 1.23 0.40 1.37 2.23 1.21 1.27 1.39
9 0.45 1.9 3.12 1.18 0.97 1.29 0.60 1.46 3.04 1.27 0.98 1.25
10 0.43 1.81 2.68 0.92 0.99 1.09 0.91 1.50 2.99 1.07 1.53 1.47
11 0.47 2.1 2.53 1.1 1.24 0.8 0.75 1.47 2.59 0.85 0.80 0.91
12 1.41 2.43 2.81 0.96 0.88 0.69 0.90 1.75 3.10 1.08 1.00 0.88

Average 0.81 2.30 3.64 1.12 0.97 0.88 0.62 1.49 2.60 1.10 1.09 1.15
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For HH category : Pop ¼ F

3Tð2F þ TÞ � T þ F
T2

For HL category : Pop ¼ Fð2T � FÞ �
T
2
� 1

T
2T2 þ 2T3

For LL category : Pop ¼ 3F þ T � 9TF

Pop ¼ pop
1800

; F ¼ f
181:12

; T ¼ t � 14:42
20:21� 14:42

(7)

where pop, f, and t represent observed fish population, maximal
streamflow, and average air temperature in measured units. Pop, F
and T represent standardized fish population, maximal streamflow,
and average air temperature, respectively. 1800 and 181.1 cms is the
historical observed maximal fish population and streamflow;
20.21 �C and 14.42 �C are the observed maximal and minimal
average air temperature during the study period. Standardization
makes the magnitude of three variables of the same order to prevent
the functions from being dominated by some variables. In fact, GP
has the ability to adjust each variable to the most suitable magnitude
in the function (through the combination of operator nodes and
constant child branches). However, pre-standardization makes GP
more efficient in searching the optimal solution. After the response
functions were constructed, validation data sets were then used to
test the forecast ability of the functions. The results are as follows.
Table 3
Changes in mean monthly weather parameters predicted by the CCCM and HCCPR gene

Month CGCM2

DT Rp

S M L S M L

1 1.36 1.71 1.65 1.14 1.00 0.8
2 1.48 1.81 2.54 1.45 0.91 1.0
3 0.71 2.44 3.26 1.18 0.97 0.9
4 0.62 2.28 3.09 1.15 0.98 0.8
5 1.69 1.76 2.75 0.83 0.95 0.7
6 2.60 1.72 3.18 0.76 1.18 0.9
7 1.59 1.47 2.60 0.96 0.97 0.9
8 0.72 1.16 1.84 1.12 1.07 1.2
9 0.73 1.28 1.80 1.07 1.04 1.1
10 1.11 1.37 1.58 1.02 1.08 1.3
11 0.55 1.72 1.80 0.82 0.94 1.0
12 1.60 1.30 2.63 0.94 0.56 0.7

Average 1.23 1.67 2.39 1.04 0.97 0.9
5.1.1. High temperature and high streamflow (HH)
Fig. 8a shows the scatter plot of simulated versus observed fish

populations. The root mean square error and the correlation
coefficient for this category were 158 and 0.85, respectively.
Fig. 8b and c presents the plotted sensitivity of the response
function, showing the changes of fish population when air
temperature (Fig. 8b) or maximal flow (Fig. 8c) is fixed to average
value and within 90% confidence interval. The salmon population
increased slightly as flow increased under fixed air temperature,
indicating that increasing flows to reduce stream temperature is
favorable when air temperature is high and fixed (Fig. 8b). The
salmon population decreased as air temperature increased under
fixed flow (Fig. 8c).

As flooding can threaten fish populations, a fish population
may decrease when streamflow increases. However, this rela-
tionship was not significant in this study. To confirm this
analytical finding, the relationship between observed fish pop-
ulation and the maximal streamflow in the reach – a heavy storm
caused by a typhoon – was analyzed (Table 4). No significant
relationship between the number of surviving fish and maximal
flow can be found for the study reach. Fish population decreased
under some scenarios and increased under others, such as the
AMBER and BILIS typhoons. The most upstream fish population
may be flushed into the study reach to increase mainstream
population, indicating that future studies need to extend the
study area upstream.
ral circulation models for SRES-B2 scenario.

HADCM3

DT Rp

S M L S M L

3 0.75 1.48 1.93 0.85 0.94 0.77
1 0.56 1.01 1.66 1.09 0.86 0.91
5 0.48 0.99 1.49 0.99 1.08 0.85
5 0.51 1.12 1.86 0.99 1.13 1.39
7 0.62 1.31 1.72 0.87 1.11 1.60
5 0.88 1.40 1.78 1.03 1.15 1.11
7 0.71 1.31 1.75 1.30 1.20 1.04
6 0.50 1.24 1.67 1.36 1.14 1.45
9 0.79 1.45 2.22 1.21 1.27 1.17
9 0.60 1.08 2.03 0.70 1.13 1.23
0 0.61 1.30 1.96 0.78 1.20 1.09
6 0.7 1.73 2.39 1.00 0.98 1.15

9 0.64 1.29 1.87 1.01 1.10 1.15
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Fig. 8. (a) The scatter plot of simulated versus observed fish population; (b) the
relationship between fish population and maximal daily streamflow; (c) the rela-
tionship between fish population and average daily air temperature – the category of
High temperature and High streamflow.
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Fig. 9. (a) The scatter plot of simulated versus observed fish population; (b) the
relationship between fish population and highest daily streamflow; (c) the relationship
between fish population and average daily air temperature – the category of High air
temperature and Low streamflow.
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5.1.2. High temperature and low flow (HL)
Fig. 9a shows the plotted relationship between the simulated

population versus observed population. The root mean square error
(RMSE) and correlation coefficient were 142 and 0.93, respectively.
Fig. 9b and c shows sensitivity analysis results. The population will
increase when streamflow increases and air temperature is fixed,
indicating that increased flow reduces stream temperature and is
favorable to Formosan Landlocked Salmon under high air temper-
atures (Fig. 9b). Comparing Fig. 9b with Fig. 8b, the population
increase rates for HL category were higher than those of the HH
category, indicating that increasing streamflow benefits salmon
more when flow is low. The identified response function for the HL
Table 4
The relationship between fish population and the highest discharge due to typhoon.

Typhoon’s name Date Qpeak (cms) Population
before typhoon

Population
after typhoon

SARAH 1989/09/12 175.3 1136 606
DOT 1990/09/08 133.5 941 679
DOUG 1994/08/08 131.8 263 319
HERB 1996/08/31 181.1 675 631
AMBER 1997/08/29 78.1 1009 1127
BILIS 2000/08/23 68.6 305 341
XANGSANE 2000/11/01 15.4 341 164
category successfully shows that the Formosan Landlocked Salmon
does not favor higher temperature when streamflow is low and
fixed (Fig. 9c).

5.1.3. Low temperature and low flow (LL)
Fig. 10 shows the relationship between simulated and observed

salmon populations. The RMSE and correlation coefficient were 519
and 0.20, respectively. The identified function tends to predict the
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Fig. 10. The scatter plot of simulated versus observed fish population – the category of
Low air temperature and Low streamflow.



Table 5
The results of verifications of response functions for different categories.

Category Air temperature Streamflow RMSE Correlation coefficient

Category 1 – HH High High 158 0.85
Category 2 – HL High Low 142 0.93
Category 3 – LH Low High N/A N/A
Category 4 – LL Low Low 519 0.20

Table 6
The performance of linear and GP methods. The root mean square error (RMSE) and
correlation coefficient (r) of the corresponding data sets (Calibration/Validation/
Calibration & Validation) in the combined High temperature and High flow (HH) and
High temperature and Low flow (HL) category.

Linear GP

RMSE r RMSE r

Calibration 179 0.87 151 0.91
Validation 251 �0.52 100 0.79
Calibration & Validation 196 0.82 142 0.91
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mean salmon population (Fig. 10). The identified function did not
respond to changes of the two environmental indicators, indicating
that the two environmental indicators are not factors limiting the
Formosan Landlocked Salmon population in this category. The
factors influencing fish populations require further research.
5.2. Validation of response functions

Table 5 presents a summary of response function results. The
functions had good predictability for categories HH and HL, but only
forecast the mean value for category of LL. Thus, response functions
for HH and HL categories were further validated. Fig. 11 presents
these validation results. The solid and hollow dots in Fig. 11 repre-
sent the remaining and removed observed data for HH, respectively,
and the solid and hollow triangles represent the remaining and
removed observed data for HL, respectively. Due to limited available
data, only three records for fish populations were used for validation.
The response functions successfully predicted populations for HH
and HL (Fig. 11). The response functions provided reasonable
predictions for the categories of HH and HL and, thus were further
applied to climate change impact assessment.

Comparing the performance of GP to the commonly used linear
regression method, Table 6 shows the respective RMSE and corre-
lation coefficient of the calibration and validation. Estimated values
from both HH and HL categories are combined for evaluation. The
LL category is ignored because both linear regression and GP esti-
mate a mean value only and hence are undiscriminating. It is
apparent that the GP method has the overall superiority. In the
validation set, the correlation coefficient estimated by linear
regression method is even less than zero. This means that the linear
regression method can only delineate the overall trend of the data
sets used and is not adequate for emulating the true data-gener-
ating process. Compared to the linear regression method, GP has
the better ability to simulate how the fish population reflect to two
of the variables that are indicative of existing environmental
conditions.
Table 7
The percentage of change of fish population under different climate scenarios� the
‘‘HH’’ and ‘‘HL’’ categories.

HH HL

P25 P50 P75 P25 P50 P75
6. Climate change impacts on Formosan Landlocked Salmon

Tables 7 and 8 show the impacts on Formosan Landlocked
Salmon under High Temperature/High Flow and High Temperature/
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Fig. 11. The validation of the response functions for the categories of HH and HL.
Low Flow for different climate conditions. Fig. 12 presents a plot of
the 25th, 50th, and 75th percentiles of the fish population for the
two categories under different climate conditions. As the response
function of Low Temperature/Low Flow did not successfully
provide predictability, it was not further applied in the climate
change impact evaluation.

There was a decrease for all the 25th, 50th, and 75th percentile
fish populations in HH (Fig. 12a and Table 7). According to
hypothesis test results (Table 8), all changes were significant at the
5% level. The results based on two transition experiments (CGCM2
and HADCM3) showed similar decreasing patterns, and the pro-
jected impacts on fish population based on two equilibrium
experiments (CCCM and GISS) were similar to those based on the
long-term predictions of the two transition experiments.
Comparing the results caused by the A2 and B2 climate change
scenarios, the fish population decrease under the A2 scenario was
higher than that under B2, suggesting that the strategy of reducing
emissions of greenhouse gases could mitigate climate change
impacts on Formosan Landlocked Salmon.

In the HL category, the 50th percentile of the population may
decrease until the mid-term period, and then begins to increase
(Fig. 12b). This finding results from streamflow continually
increasing under HL, mitigating the negative effect of high
temperature in long-term climate conditions. The mean salmon
population may be reduced in all future climate conditions (Table 8).
However, changes in some long-term scenarios, such as in the GISS
equilibrium experiment and both CGCM2 and HADCM3 A2 exper-
iments, were not significant.

Climate change impact had differing effects on population
variations under HH and HL. The coefficients of variation in HH may
become smaller, whereas those in HL may change little or even
Short-term A2 CGCM2 �16.7% �19.7% �23.3% �10.9% �1.4% �10.0%
HADCM3 �12.6% �15.9% �21.1% �4.8% �4.0% �9.7%

B2 CGCM2 �30.0% �34.9% �33.8% �21.9% �17.6% �18.2%
HADCM3 �9.9% �11.9% �19.8% �3.8% 1.3% �5.3%

Mid-term A2 CGCM2 �50.4% �53.1% �53.7% �41.8% �28.9% �26.4%
HADCM3 �33.5% �35.9% �42.8% �15.0% �4.9% �9.0%

B2 CGCM2 �34.9% �39.5% �41.5% �23.7% �19.9% �20.1%
HADCM3 �31.3% �33.5% �36.4% �11.8% �10.4% �12.8%

Long-term A2 CGCM2 �61.5% �61.8% �64.6% �33.7% �12.0% �10.1%
HADCM3 �52.9% �50.3% �53.4% 1.5% 0.5% �10.2%

B2 CGCM2 �42.4% �45.8% �47.1% �16.0% �12.4% �7.9%
HADCM3 �39.4% �42.5% �46.9% �29.0% 1.4% �10.4%

Equilibrium CCCM �48.2% �47.2% �52.0% �15.6% �12.6% �17.8%
GISS �63.1% �62.8% �66.9% �2.5% 1.6% �5.6%

P25, P50, and P75 represent the 25th, 50th, and 75th percentiles of fish population,
respectively.



Table 8
The statistics of simulated fish population under different climate scenarios – the
‘‘HH’’ and ‘‘HL’’ categories.

HH HL

m s s/m m s s/m

Current 284 223 0.78 865 283 0.33
Short-term A2 CGCM2 203a 57 0.28 768a 227 0.30

HADCM3 210a 58 0.28 791b 188 0.24
B2 CGCM2 169a 42 0.25 674a 214 0.32

HADCM3 216a 56 0.26 801 205 0.26

Mid-term A2 CGCM2 118a 28 0.24 595a 259 0.44
HADCM3 155a 36 0.23 736a 235 0.32

B2 CGCM2 151a 36 0.24 667a 232 0.35
HADCM3 162a 39 0.24 734a 199 0.27

Long-term A2 CGCM2 101a 72 0.71 760 427 0.56
HADCM3 120a 32 0.26 810 248 0.31

B2 CGCM2 135a 31 0.23 716a 261 0.36
HADCM3 141a 32 0.23 733a 250 0.34

Equilibrium CCCM 136a 91 0.67 712a 234 0.33
GISS 89a 22 0.25 793 306 0.37

a Significant change with 95% reliable interval.
b Significant change with 90% reliable interval.
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increase under future climate conditions. The reason for these
projections may be that streamflow has a less mitigating influence
on the negative effect of temperature under HH than HL. Higher
temperature tends to reduce the variations in salmon populations.
The category HH has high flows currently and, thus, an increase in
streamflow due to future climate change will have less influence,
making temperature a dominant factor affecting variation in
salmon populations. The category HL had low flows and, thus,
increased streamflow can mitigate the negative effect of tempera-
ture. Thus, higher variation of streamflow under HL may result in
high variation of fish populations.
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Fig. 12. The fish populations under different climate scenarios (a) ‘‘High temperature
and High streamflow’’ category; (b) ‘‘High temperature and Low streamflow’’. P25, P50,
and P75 represent the fish population of 25th, 50th, and 75th percentile, respectively.
7. Conclusions

This study proposes a procedure for identifying environmental
response functions for Formosan Landlocked Salmon under
different environmental conditions, to which GP is applied to
optimize both the type and coefficients of response functions.
Identified response functions were further applied to assess the
impacts of climate change on Formosan Landlocked Salmon. Two
principal environmental factors, average daily temperature and
maximal flow, were used in categorizing data for the study area.

The results indicated that GP successfully identifies environ-
mental response functions for categories of High Temperature and
High Flow (HH) and High Temperature and Low Flow (HL), and
provides a mean population for Low Temperature and Low Flow
(LL). It is likely that other factors influence fish populations for Low
Temperature and Low Flow and these require further study. Due to
limited observational data, only three records were used for vali-
dation. More frequent observations are suggested. If more data are
available, response functions can be more robustly identified.
Furthermore, the proposed analysis procedure and methodology
should work well for other aquatic species whose survival is closely
related to environmental conditions.

Taiwan’s conservation agencies have made considerable effort
to improve Formosan Landlocked Salmon habitat, including
dismantling weirs and stopping both farming and land use
conversion in sensitive habitat; however, such measures may prove
inadequate in the face of climate change. Impact assessment results
demonstrated that the Formosan Landlocked Salmon population,
under conditions of High Temperature and High Flow and High
Temperature and Low Flow, may be significantly reduced by
climate change. Tung and Lee (2001) concluded that the frequency
of environmental conditions of HH and HL categories will likely
increase. Thus, global climate change may seriously endanger For-
mosan Landlocked Salmon. Current conservation measures can halt
local human-induced threats, but not the impact from global
climate change. Identifying successful adaptive strategies to miti-
gate the future climate change impact is urgent. Climate change
impact assessments should be integrated into the process of
developing or modifying conservation strategies.

GP is useful, particularly for dealing with unknown relationships
between dependent variables and predictors, because GP is able to
emulate almost any functional form. Even if a data set has unknown
linear or nonlinear relationships, GP is able to identify an ‘‘optimal’’
function. However, if the relationship between dependent variables
and predictors is well known, such as linear/polynomial relation-
ship, regression analysis is suggested because it may not be worth
using GP. Therefore, we would suggest using GP when the rela-
tionship among variables is not clear. A very large data set increases
computational time, but it actually comprises more-complete
response relationships among variables, which help GP to identify
functions that better emulate the true data-generating process.
Collecting more data is encouraged and it is suggested that data are
classified into several categories according to the level of predictors,
which would increase the computational efficiency of GP.
Acknowledgements

We sincerely thank the SHEI-PA National Park Management
Office and Professor Tzeng from National Tsing Hua University for
providing data on Formosan Landlocked Salmon. The authors
would also like to thank the National Science Council Republic of
China, Taiwan (Contract No. NSC 90-2313-B-002-328) and the
Environmental Protection Agency of Taiwan for financially sup-
porting this research.



C.-P. Tung et al. / Environmental Modelling & Software 24 (2009) 1062–10721072
References

Bradford, M.J., Irvine, J.R., 2000. Land use, fishing, climate change, and the decline of
Thompson River, British Columbia, Coho salmon. Canadian Journal of Fisheries
and Aquatic Sciences 57, 13–16.

Cattaneo, F., Lamouroux, N., Breil, P., Capra, H., 2002. The influence of hydrological
and biotic process on brown trout (Salmo trutta) population dynamics. Cana-
dian Journal of Fisheries and Aquatic Sciences 59, 12–22.

Chen, D.G., Hargreaves, N.B., Ware, D.M., Liu, Y., 2000. A fuzzy logic model with
genetic algorithm for analyzing fish stock�recruitment relationships. Canadian
Journal of Fisheries and Aquatic Sciences 57, 1878–1887.

Haith, D.A., Shoemaker, L.L., 1987. Generalized watershed loading functions for
streamflow nutrients. Water Resource Bulletin 23 (3), 471–478.

IPCC Working Group I, 2007. In: Solomon, S. (Ed.), Climate Change 2007 � The
Physical Science Basis. Cambridge University Press, UK.

Koza, J.R., 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press., Mass.

Mohseni, O., Stefan, H.G., 1999. Stream temperature/air temperature relationship:
a physical interpretation. Journal of Hydrology 218, 128–141.

Shaw, E.A., Richardson, J.S., 2001. Direct and indirect effects of sediment pulse
duration on stream invertebrate assemblages and rainbow trout growth
and survival. Canadian Journal of Fisheries and Aquatic Sciences 58,
2213–2221.

Tung, C.P., Haith, D.A., 1995. Global warming effects on New York streamflows. ASCE
Journal of Water Resources Planning and Management 121 (2), 216–225.

Tung, C.P., Haith, D.A., 1998. Climate change, irrigation and crop response. Journal of
the American Water Resources Association 34 (5), 1071–1085.

Tung, C.P., Lee, T.Y., 2001. Climate change impact assessment of the Chichiawan Creek
streamflow. Chinese Journal of Agricultural Engineering 47 (1), 65–74 (in Chinese).

Tung, C.P., Lee, T.Y., Yang, Y.C., 2006. Modelling climate-change impacts on stream
temperature of Formosan landlocked salmon habitat. Hydrological Processes
20, 1629–1649.

Tzeng, C.S., 1999. Studies on Population Ecology of the Formosan Landlocked
salmon Oncorhynchus masou formosanus (II). Construction and Planning Agency,
Ministry of Interior, SHEI�PA National Park Management Office, Taiwan (in
Chinese).

Yang, C.H., 1997. The effect of the water temperature on Taiwan landlocked salmon
(Oncorhynchus masou formosanus) in Chichiawan stream Basin. M.S. thesis,
Department of Life Science, National Tsing Hua University, Taiwan (in Chinese).

Nakicenovic, N., et al., 2000. Special Report on Emissions Scenarios: a Special Report
of Working Group III of the Intergovernmental Panel on Climate Change.
Cambridge University Press, Cambridge, U.K., 599 pp.


	Application of genetic programming to project climate change impacts on the population of Formosan Landlocked Salmon
	Introduction
	Development of response functions
	Selection of environmental factors
	Data classification
	Genetic programming
	Encode and generate initial parent population
	Selection
	Crossover
	Mutation


	Analysis of environmental factors
	Water temperature
	Streamflow
	Suspended sediment

	Climate change impact assessment
	Climate change scenarios
	Future climate scenarios
	Weather generation

	Impact assessment
	Data and model setup

	Results and discussions
	Calibration of response functions
	High temperature and high streamflow (HH)
	High temperature and low flow (HL)
	Low temperature and low flow (LL)

	Validation of response functions

	Climate change impacts on Formosan Landlocked Salmon
	Conclusions
	Acknowledgements
	References


