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An effect size index for comparing two
independent alpha coefficients

Hsin-Yun Liu and Li-Jen Weng*
Department of Psychology, National Taiwan University, Taipei, Taiwan

Since Cronbach proposed the a coefficient in 1951, researchers have contributed to
the derivation of its sampling distribution and the testing of related statistical
hypotheses. Yet, there has been no research on effect size index relevant to coefficient
a to our knowledge. Considering the importance of effect size in understanding
quantitative research findings, we therefore developed an effect size index D for the
comparison of two independent as with equal test length based on the asymptotic
distribution of ð1=2Þ ln ð12 âÞ under the assumptions of normality and compound
symmetry. Simulations indicated that the index was applicable when the sample size was
at least 100. The robustness of the derived index when the required assumptions were
violated was also explored. It is suggested that the index should be applicable in most
cases of unequal test lengths and could be extended to non-normally distributed
component scores. Moreover, a small simulation was conducted to explore the
behaviour of D with correlated errors, a frequently studied situation violating the
assumption of compound symmetry. The proposed index was found to be robust unless
a large number of highly correlated errors were present in the data.

1. Introduction

Coefficient a has been the most popular measure for assessment of the reliability of

test scores. Hogan, Benjamin, and Brezinski (2000) reviewed the reliability

information provided for 696 tests in the Directory of Unpublished Experimental

Mental Measures, Volume 7. This sample was drawn from 2,078 tests published in 37

professional journals between 1991 and 1995. Out of the 801 reliabilities reported,

coefficient a enjoyed the highest frequency of use at 66.5%, followed by test–retest

reliability at 19%.

Since Cronbach introduced coefficient a in 1951, many of his successors have
contributed to the development of its sampling distribution and the related

hypothesis testing procedures (Alsawalmeh & Feldt, 1994a, 1994b, 1999; Feldt, 1965,
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1969, 1980; Feldt, Woodruff, & Salih, 1987; Hakstian & Whalen, 1976; Kristof, 1963;

van Zyl, Neudecker, & Nel, 2000; Woodruff & Feldt, 1986). Yet, there has been no

research on effect size indices relevant to coefficient a to our knowledge. Effect size

is an important measure for understanding practical significance of the results from

quantitative research (APA, 1994, 2001; Wilkinson & the APA Task Force on Statistical

Inference, 1999). In this study, we proposed an index to define the effect size for the
comparison of two independent as from tests of equal length. The proposed effect

size index would be useful in various research scenarios. One useful application of

the effect size index developed is to compare the a coefficients obtained from tests

of the same components but with different formats based on two independent

samples. The effect size index could be used to select a scale format that yields test

scores of higher internal consistency reliability for further research. Although a test

statistic has been developed to test the equality of two independent as (Charter &

Feldt, 1996; Feldt, 1969), the conclusions drawn from the testing are affected by
sample sizes.

Feldt (1969) derived the test statistic W for testing the equality of two independent

as. Let â1 and â2 be the sample estimates of a from two independent samples (â1 , â2)

with sample size of N1 and N2, respectively. The W statistic, defined as

W ¼ ð12 â1Þ=ð12 â2Þ, is approximately distributed as a central F distribution with

N2 2 1 and N1 2 1 degrees of freedom. Charter and Feldt (1996) presented an example

to illustrate this test procedure. In the example, â1 ¼ :71 and â2 ¼ :78 with N1 ¼ 151

and N2 ¼ 41. The resulting W statistic of 1.318 yielded a p value of .242. Accordingly,
the null hypothesis H0 : a1 ¼ a2 could not be rejected. However, if the sample size was

raised to 250 for both samples, the p value would become .029 and would alter the

conclusion of the test with the level of significance set at .05. The obtained p value

associated with the testing decreased as the sample size increased. The example

demonstrates the need for the development of an effect size index for comparing two

independent as.

Cohen (1988, 1992) defined the effect size to be the parameter discrepancy between

the null hypothesis and the alternative hypothesis. Effect size is a critical tool in
quantitative research for supplementing the limitations of null hypothesis significance

testing (Cohen, 1990, 1994; Hubbard & Ryan, 2000; Kirk, 1996). As shown in the

previous illustration, one of the frequently discussed limitations in null hypothesis

significance testing is its dichotomous decision based on a single p value. The p value,

however, decreases as the sample size increases as illustrated in the above example. In

contrast to p values, effect size is independent of sample sizes and it enables researchers

to evaluate the stability of results across studies. Accordingly, effect size has gained

increasing attention from researchers in recent years (APA, 1994, 2001; Wilkinson & the
APA Task Force on Statistical Inference, 1999).

The definition of the effect size index plays an important role in applications of effect

size. Cohen is the major contributor to the development of effect size indices (Huberty,

2002). Under various statistical hypotheses, Cohen (1988, 1992) defined the effect size

index and its corresponding values for large, medium, and small effect sizes. Take the

comparison of means from two normal distributions with means m1 and m2 and common

variance s2 as an example. The most frequently used effect size index under this

condition is Cohen’s d, d ¼ ðm1 2 m2Þ=s for m1 . m2. Cohen’s d reflects the difference
of the mean values between two independent populations in a standard unit.

Furthermore, Cohen proposed a d value of .8, .5, and .2 to represent large, medium, and

small sizes of effect, respectively.
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The present study applied the concept of Cohen’s d to define the effect size index for

the comparison of two independent as based on large sample theory. The

appropriateness of the derived effect size index under small samples was further

investigated by a simulation study. The applicability of the derived index when the

required assumptions were violated was also discussed.

2. An effect size index for two independent as with equal test length

The sample coefficient a, â, for a test of K components (Cronbach, 1951; Cronbach &

Shavelson, 2004) is given by

â ¼ K

K 2 1
12

trS

J0SJ

� �
; ð1Þ

where S is the sample covariance matrix of the K components, trS refers to the trace of

matrix S, and J is a K £ 1 vector of ones. Under the assumption of essential tau

equivalence, â is an estimate of the reliability of test scores ( Novick & Lewis, 1967).

After the introductionofa, researchers haveworkedon the samplingdistribution of â.
Assuming the K components to be normally distributed with the population covariance

matrix � being of compound symmetry, Feldt (1965) showed that the sampling

distribution of â from a sample of N individuals was as follows:

12 â

12 a
, F ðN21Þ£ ðK21Þ; ðN21Þ; ð2Þ

witha being the population value of the coefficient. Themean and the variance of âwere

EðâÞ ¼ 22

N 2 3
þ N 2 1

N 2 3
a; and ð3Þ

VarðâÞ ¼ 2ð12 aÞ2ðN 2 1Þ {½ðN 2 1ÞK�2 2}

ðK 2 1Þ ðN 2 3Þ2ðN 2 5Þ ; respectively: ð4Þ

Furthermore, van Zyl et al. (2000) obtained the asymptotic distribution of â as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 1

p
ðâ2 aÞ!L N 0;

2ð12 aÞ2K
K 2 1

� �
; ð5Þ

where ‘L’ represented converging in distribution (e.g. Rao, 1973).

From the sampling distribution and the asymptotic distribution of â, it is noted that

the variance of â depends on the population value of a. The difference between two âs
is thus not an optimal measure of effect size due to unequal scale unit.

van Zyl et al. (2000) further derived the asymptotic distribution of ð1=2Þ ln ð12 âÞ
under the assumptions of normality and compound symmetry to be as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 1

p
½ð1=2Þ ln ð12 âÞ2 ð1=2Þ ln ð12 aÞ�!L N 0;

K

2ðK 2 1Þ

� �
: ð6Þ

From equation (6), ð1=2Þ ln ð12 âÞ is asymptotically normally distributed with a mean of

ð1=2Þ ln ð12 aÞ and its variance is independent of the population a value. Therefore, for

independent a1 and a2 of equal test length of K components, the difference between

independent ð1=2Þ ln ð12 a1Þ and ð1=2Þ ln ð12 a2Þ can be a measure of the effect size
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for comparing two as. Therefore, we propose the effect size index D for comparing two

independent as (a1 , a2 for D to be positive) with equal test length as

D ¼ ð1=2Þ ln ð12 a1Þ2 ð1=2Þ ln ð12 a2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K=ð2ðK 2 1ÞÞ

p : ð 7 Þ

The derivation of this effect size index D is parallel to the formulation of Cohen’s d. For

normally distributed x,
ffiffiffiffi
N

p
ð �x2 mÞ , Nð0;s2Þ. With common variance for independent

m1 and m2 (m1 . m2), Cohen’s d of ðm1 2 m2Þ=s represents the distance between two

mean values divided by the common population standard deviation. Cohen’s d is still
applicable for non-normally distributed x as long as the samples are sufficiently large

because sample means are normally distributed asymptotically. Following the idea of d,

the effect size index D for comparing two independent as is therefore defined by the

asymptotic distribution of ð1=2Þ ln ð12 âÞ. Accordingly, Cohen’s suggestion for large–

medium–small effect size values of d can also be applied to D. A D greater than .8, .5,

and .2 would suggest a large, medium, and small effect size, respectively.

Equation (7) shows that D is a function of a1 and a2. Hence, for a given K, a2 can be

derived with known D and a1. Table 1 illustrates the relationship between D, a1, and a2

for a test of 30 components. The results indicate that the effect size, a given difference

between two as, depends on the magnitude of the as. The higher the a, the larger effect

size the difference suggests. Take the difference around .1 between two as as an

example. This difference indicates a small effect size for a1 ¼ :60, a medium effect size

for a1 ¼ :80, and a large effect size for a1 ¼ :85. Similar tables to Table 1 for tests of

10 components and tests with K going to infinity were also obtained, though not

Table 1. a2 as a function of a1 and D for a test of 30 components (a2 . a1)

D

a1 .1 .2 .3 .4 .5 .6 .7 .8 .9

.00 .13 .25 .35 .44 .51 .58 .63 .68 .73

.05 .18 .29 .38 .47 .54 .60 .65 .70 .74

.10 .22 .32 .42 .49 .56 .62 .67 .72 .75

.15 .26 .36 .45 .52 .59 .64 .69 .73 .77

.20 .31 .40 .48 .55 .61 .66 .71 .75 .78

.25 .35 .44 .51 .58 .63 .68 .73 .76 .79

.30 .39 .47 .55 .61 .66 .70 .74 .78 .81

.35 .44 .51 .58 .63 .68 .73 .76 .79 .82

.40 .48 .55 .61 .66 .71 .75 .78 .81 .84

.45 .52 .59 .64 .69 .73 .77 .80 .83 .85

.50 .57 .62 .68 .72 .76 .79 .82 .84 .86

.55 .61 .66 .71 .75 .78 .81 .84 .86 .88

.60 .65 .70 .74 .77 .81 .83 .85 .87 .89

.65 .70 .74 .77 .80 .83 .85 .87 .89 .90

.70 .74 .77 .81 .83 .85 .87 .89 .91 .92

.75 .78 .81 .84 .86 .88 .89 .91 .92 .93

.80 .83 .85 .87 .89 .90 .92 .93 .94 .95

.85 .87 .89 .90 .92 .93 .94 .95 .95 .96

.90 .91 .92 .94 .94 .95 .96 .96 .97 .97

.95 .96 .96 .97 .97 .98 .98 .98 .98 .99
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presented. The resulting a2 under the same a1 and D differs from the corresponding

entry in Table 1 by less than .01. Therefore, Table 1 can serve as a quick reference for the

estimation of the effect size between two as of equal test length.

3. Simulations on effect size index D against small samples

The proposed effect size index D was defined by the asymptotic distribution of

ð1=2Þ ln ð12 âÞ. However, the behaviour of D and ð1=2Þ ln ð12 âÞ under small samples

was unknown and warranted further investigations. Prior to the examination of D

against small samples, the behaviour of ð1=2Þ ln ð12 âÞ with small samples was first

studied by a simulation.

3.1. Small sample behaviour of ð1=2Þ ln ð12 âÞ
The sampling distribution of â for a test of parallel components was affected by test

length, component reliability, and sample size (Feldt, 1965, 1969). Hence, these

three factors were manipulated in the simulation to examine the sampling

distribution of ð1=2Þ ln ð12 âÞ under small samples. The length of a test included the

conditions of 10, 15, 20, and 25 components. Component reliability (r) was defined

as the ratio of the true-score variance to the observed score variance for each

component. With component reliability so defined, coefficient a for a test of
K components equalled Kr=ð1þ ðK 2 1ÞrÞ. Component reliability in this simulation

was chosen to be .15, .25, and .35. Accordingly, the resulting a coefficients for the

entire test ranged from .64 to .98, with values widely applicable throughout much

research. In order to understand the behaviour of ð1=2Þ ln ð12 âÞ under small

samples, sample size varied across seven conditions ranging from 30 to 500 (30, 60,

100, 200, 300, 400, and 500). One thousand replication samples were generated for

each of the 84 conditions (4 test length £ 7 sample size £ 3 component reliability)

to examine whether the sampling distribution of ð1=2Þ ln ð12 âÞ was normal in
small samples.

The test scores were generated according to the classical test theory and were

simulated by a SAS program. Let xj be a K £ 1 vector consisting of the scores of the K

components for observation j, xj ¼ ½x1j; x2j; : : : ; xKj�0; j ¼ 1; : : : ;N , where

xij ¼ Tij þ Eij, with Tij and Eij being the true and the error scores on component i for

observation j. The components were assumed to be parallel such that they had the same

true score (Tj for observation j ) and equal error variance. In other words, every

component score xij was the sum of Tj and Eij and the covariance matrix of xj met the
requirement of compound symmetry for ð1=2Þ ln ð12 âÞ to have the asymptotic

distribution derived by van Zyl et al. (2000). In order to yield the desired test reliability,

Tj and Eij were decomposed as T j ¼
ffiffiffi
r

p
tj and Eij ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
12 r

p
eij, with r being

the component reliability and tj and eij being distributed as N(0,1), generated by the

RANNOR function in SAS.

The Wilk–Shapiro W test suggested by Thode (2002) was used to test whether the

distribution of ð1=2Þ ln ð12 âÞ over 1,000 replications followed a normal distribution

under small samples. The t test for single mean and the chi-squared test for variance
were further employed to test whether the mean of ð1=2Þ ln ð12 âÞ equalled

ð1=2Þ ln ð12 aÞ and the variance of ð1=2Þ ln ð12 âÞ equalled K=ð2ðN 2 1ÞðK 2 1ÞÞ.
Table 2 presents the p values associated with the test of normality (p1) and the test

of mean (p2) under each condition. As shown in Table 2, the hypothesis that

ð1=2Þ ln ð12 âÞ followed a normal distribution for samples size greater than 100 could
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not be rejected with all the p values being greater than .01. When the sample size was

less than 100, there might be significant discrepancies between ð1=2Þ ln ð12 âÞ and its

expected value ð1=2Þ ln ð12 aÞ.1 The results of the tests of the variance being equal to

K=ð2ðN 2 1ÞðK 2 1ÞÞ were all non-significant (p . :01) and therefore not presented.

Table 2. p values for tests of normality and expected value of ð1=2Þlnð12 âÞ

Component reliability

.15 .25 .35

K N p1 p2 p1 p2 p1 p2

10 30 .31 .00 .00 .08 .00 .00
60 .32 .05 .00 .04 .00 .01
100 .05 .26 .01 .02 .34 .39
200 .81 .76 .25 .96 .24 .03
300 .27 .03 .21 .04 .81 .27
400 .30 .26 .79 .86 .47 .14
500 .86 .06 .88 .99 .56 .53

15 30 .29 .00 .00 .00 .24 .00
60 .97 .00 .00 .00 .55 .00
100 .25 .44 .54 .00 .02 .51
200 .42 .31 .18 .27 .86 .63
300 .52 .88 .31 .02 .95 .19
400 .73 .31 .14 .49 .54 .60
500 .02 .03 .80 .13 .30 .27

20 30 .03 .00 .00 .01 .00 .00
60 .01 .01 .15 .05 .01 .02
100 .07 .14 .62 .99 .18 .07
200 .04 .20 .54 .35 .82 .28
300 .52 .97 .33 .29 .26 .44
400 .64 .12 .53 .04 .48 .31
500 .21 .42 .79 .13 .83 .80

25 30 .03 .00 .00 .00 .00 .06
60 .09 .01 .06 .00 .01 .00
100 .15 .13 .01 .05 .57 .03
200 .24 .69 .12 .24 .21 .74
300 .12 .65 .86 .03 .54 .03
400 .50 .36 .05 .13 .32 .08
500 .71 .16 .56 .49 .17 .74

Note. p1 ¼ p values for tests of normality of ð1=2Þlnð12 âÞ; p2 ¼ p values for the test of expected value
of ð1=2Þlnð12 âÞ; K¼ test length; N¼ sample size.

1We would like to thank one anonymous reviewer for pointing out the erratic pattern of the p values associated with N in
Table 2. It was suspected that the erratic pattern was because only one set of data, as representing one simulated sampling
distribution of ð1=2Þ ln ð12 â Þ, was generated for each test. If several sets of data were generated for each N, we would
expect the mean p values to increase with N. We took the case of 10 components and component reliability being .15 with
sample sizes ranging from 30 to 500 (30, 60, 100, 200, 300, 400, and 500) as an example to test our conjecture.
Ten sampling distributions of ð1=2Þ ln ð12 â Þ for eachN were simulated. The results indicated that for any given sample size
the p values across the 10 simulated sampling distributions varied substantially and hence yielded large standard deviations.
Yet, the mean p values as supporting our conjecture appeared to increase with N as expected.
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Feldt (1969) concluded that with the sample size of at least 100, the derived F

distribution with N2 2 1 and N1 2 1 degrees of freedom could be used to approximate

the sampling distribution of W statistic for testing the difference between two

independent as with no need for adjustment in degrees of freedom. Similar results

seemed to apply to the behaviour of ð1=2Þ ln ð12 âÞ in small samples. According to

Table 2, the behaviour of ð1=2Þ ln ð12 âÞ appears robust against small sample sizes.
More specifically, ð1=2Þ ln ð12 âÞ is approximately normally distributed with the desired

expected value and variance when the sample size is at least 100.

3.2 Small sample behaviour of D
Cohen (1988) provided the measures of non-overlap U1, U2, and U3 for interpreting

large, medium, and small effects for d. These measures of percent non-overlap were
used to evaluate the appropriateness of the effect size index D under small samples. The

measures were developed on the basis of two normally distributed populations with

equal variability. Let the mean of population B be greater than the mean of population A.

Measure U1 is the percentage of non-overlapping under both populations combined

(Cohen, 1988, p. 21). MeasureU2 is ‘the percentage in the B population that exceeds the

same percentage in the A population’ (Cohen, 1988, p. 21). Measure U3 is ‘the

percentage of the A population which the upper half of the cases of the B population

exceeds’ (Cohen, 1988, p. 21). The larger the effect, the greater the U measures.
The U measures associated with different values of Cohen’s d can be computed

by the cumulative standard normal distribution function Px : U3 ¼ Pd , U2 ¼ Pd=2, and

U1 ¼ ð2U2 2 1Þ=U2 (Cohen, 1988, p. 23). For example, for a small effect size of d ¼ :2,
two normally distributed populations with equal variability have only 14.7% (U1) of

their combined area non-overlapped. And the highest 54% in population B exceeds

the lowest 54% in population Awith measure U2 therefore being equal to 54%. Also, the

upper half of the B population exceeds 57.9% of the population A, implying that

U3 ¼ 57:9%. Similarly, when d ¼ :5 as the operational definition of a medium effect
size,U1 ¼ 33%,U2 ¼ 59:9%, andU3 ¼ 69:1%.When d ¼ :8 as representing a large effect
size, U1 ¼ 47:4%, U2 ¼ 65:5%, and U3 ¼ 78:8%.

Because D is defined by the asymptotic distribution of ð1=2Þ ln ð12 âÞ, values of U1,

U2, and U3 of D are expected to approach the values of U1, U2, and U3 associated with d

in large samples. More specifically, a D equal to .8, .5, or .2 is expected to yield the U

measures given above. Therefore, the discrepancies between the U measures of D and

the corresponding entities of d under large, medium, and small effects can be used to

assess the appropriateness of the effect size index D under small samples. In order to
evaluate the discrepancies, the data generated in the previous simulations were taken as

the sampling distribution of ð1=2Þ ln ð12 â1Þ, and an additional set of data were

simulated to represent the sampling distribution of ð1=2Þ ln ð12 â2Þ. The same data

generation procedures of 1,000 replications were employed except with the

component reliability r2 carefully chosen. The component reliability r2 was chosen

so that the associated D value satisfied the required magnitude of .8, .5, or .2 in the

population. For example, for r1 ¼ :15 and K ¼ 10, to simulate a medium effect size, r2
was set at .325 so that the resulting D yielded a value of .5.

A histogram with 50 classes based on the simulated values of ð1=2Þ ln ð12 â1Þ and
ð1=2Þ ln ð12 â2Þ was constructed to estimate U1. The histogram was created from

2,000 values simulated under a large effect size. The average class interval of the

histogram was around 0.11. U1 therefore equalled the percentage of non-overlapping
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area over the total area under the entire histogram. The estimation of U2 and U3 for

different values of D was straightforward and could be directly obtained from the

sampling distributions of ð1=2Þ ln ð12 â1Þ and ð1=2Þ ln ð12 â2Þ based on the 1,000

replications.

Tables 3–5 present the deviations of the U measures between D and d under large,

medium, and small size of effect, respectively. The deviations associated with U2 and U3

were all small unless the sample size was as little as 30. In other words, when D was set

at .8, .5, and .2, the estimated values of U2 and U3 approached those of d at .8, .5, and .2.

The deviations of the U1 for large and medium effect sizes seemed small as well.

However, the estimated U1 for a small effect size of D might differ from the expected

magnitude ofU1 of d at .2. A small effect size implied that the two sampling distributions

were close. Accordingly, the majority of the two sampling distributions overlapped. As a

result, the U1 measure, defined as the percent area non-overlapping over the entire area

covered by the two sampling distributions, might be easily affected by the distribution of

Table 3. Deviation between U measures of D and d for a large effect size (UD–Ud)

Component reliability

.15 .25 .35

K N U1 U2 U3 U1 U2 U3 U1 U2 U3

10 30 .06 .03 .03 2 .01 2 .01 2 .02 .02 .01 .03
60 .02 .01 .01 .01 .00 2 .02 2 .01 2 .01 2 .01
100 .02 .00 .01 .05 .02 .02 2 .02 2 .01 .00
200 2 .02 2 .01 2 .02 .01 .01 .03 .02 .01 .00
300 .03 .01 .02 .02 .00 .02 .04 .02 .00
400 .03 .02 .03 .01 2 .01 2 .02 .03 .01 .02
500 .01 .00 .00 .00 .00 2 .04 .02 .01 .00

15 30 .02 .00 .01 .01 2 .01 2 .01 .03 .01 2 .01
60 .04 .01 .00 2 .02 2 .01 2 .01 .03 .01 .00
100 2 .01 .00 2 .02 .05 .02 .03 2 .03 2 .01 2 .03
200 .02 .00 .02 .04 .02 .02 .01 .00 .00
300 .01 .01 2 .01 .02 .01 .00 .00 2 .01 2 .02
400 .06 .02 .02 2 .01 .00 .00 .01 .00 .01
500 .01 .00 2 .02 2 .01 .00 .00 .00 .00 2 .01

20 30 .02 .01 .02 2 .01 2 .01 2 .03 .01 .00 .01
60 .01 .00 2 .02 2 .01 .00 2 .02 .02 .01 .02
100 2 .02 2 .01 2 .02 2 .02 2 .02 2 .04 .01 .01 .02
200 .00 .00 2 .01 2 .01 .00 .00 .01 .00 .00
300 2 .02 2 .01 .00 .01 2 .01 .01 .00 2 .01 .02
400 .08 .03 .05 .00 .00 .00 .00 .00 2 .02
500 2 .01 2 .01 .00 2 .03 2 .01 2 .04 2 .01 2 .01 2 .01

25 30 .03 .01 2 .01 .00 2 .01 2 .01 2 .06 2 .02 2 .05
60 2 .01 2 .01 2 .01 2 .02 2 .01 .00 .03 .01 .02
100 2 .01 2 .01 2 .02 2 .01 2 .01 2 .01 .00 .00 2 .03
200 .00 2 .01 .01 .01 .00 2 .02 .00 .00 .00
300 2 .04 2 .02 2 .03 .04 .02 .01 .03 .01 .01
400 .01 2 .01 .01 .02 .01 .01 .00 .00 2 .01
500 .03 .02 .01 .00 .00 2 .04 2 .03 2 .02 2 .03

Note. U1 ¼ :474, U2 ¼ :655, and U3 ¼ :788 for a large effect size; K¼ test length; N¼ sample size.
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the simulated data and deviated from the expected magnitude. Yet, considering the

small sample behaviours of ð1=2Þ ln ð12 âÞ and D simultaneously, the proposed D

appeared robust as an effect size index for comparing two independent as of equal test

length in small samples, if the sample size was at least 100.

4. Discussion

Coefficient a is one of the most widely used measures for assessing the reliability of test

scores. The present research proposes an effect size index D for comparing two
independent as based on the asymptotic distribution of ð1=2Þ ln ð12 âÞ. The overall

findings from the simulations indicate that the proposed effect size index D is

applicable for samples of at least 100 observations. In this study, D was derived on the

basis of three assumptions: two tests of equal number of components, normally

Table 4. Deviation between U measures of D and d for a medium effect size (UD–Ud)

Component reliability

.15 .25 .35

K N U1 U2 U3 U1 U2 U3 U1 U2 U3

10 30 .07 .02 .05 2 .04 2 .01 2 .02 .04 .01 .03
60 .03 .00 .00 .02 .01 2 .02 2 .01 2 .01 2 .02
100 .02 .00 .00 .04 .00 .00 2 .02 2 .01 2 .02
200 .00 .00 2 .02 .04 .00 .02 .01 .00 .00
300 .04 .01 .02 .03 .01 .02 .07 .02 .02
400 .06 .02 .04 2 .03 2 .01 2 .02 .04 .01 .03
500 .01 .00 .00 .02 2 .01 2 .02 .03 .01 .00

15 30 .02 .01 .00 .00 2 .01 .00 .04 .01 .00
60 .03 .01 .01 .00 2 .01 2 .01 .04 .01 .02
100 2 .01 2 .01 2 .01 .07 .02 .04 2 .02 2 .02 2 .02
200 .04 .00 .02 .05 .01 .03 .01 .00 .01
300 .02 .01 .00 .02 .01 2 .01 2 .02 2 .01 2 .01
400 .07 .02 .04 .00 2 .01 .00 .04 .01 .02
500 .03 2 .01 2 .02 .01 .00 .00 .00 .00 .00

20 30 .05 .01 .02 .02 2 .01 2 .01 .02 .00 .01
60 .01 2 .04 2 .01 .01 .00 2 .01 .03 .01 .01
100 2 .01 2 .01 2 .03 2 .03 2 .02 2 .03 .01 .00 .01
200 .02 .00 2 .01 .00 .01 .00 .03 .00 .00
300 2 .01 2 .01 2 .01 .03 .00 .02 .02 2 .01 .00
400 .09 .03 .05 .04 2 .01 .00 .01 .00 2 .01
500 .02 2 .02 .00 2 .04 2 .02 2 .03 2 .03 2 .02 2 .02

25 30 .03 .01 .00 .02 .00 .00 2 .05 2 .02 2 .06
60 .03 .00 .00 2 .01 2 .01 2 .01 .04 .01 .02
100 .00 2 .01 .00 .00 2 .01 2 .02 .01 2 .01 2 .03
200 .02 .00 .00 .02 .01 2 .01 .01 .00 .00
300 2 .03 2 .02 2 .03 .05 .02 .03 .04 .01 .03
400 .02 .00 .02 .02 .00 .01 .00 .00 2 .01
500 .05 .02 .03 .00 .00 2 .02 2 .02 2 .02 2 .04

Note. U1 ¼ :330, U2 ¼ :599, and U3 ¼ :691 for a medium effect size; K¼ test length; N¼ sample size.

An effect size index 393



Copyright © The British Psychological Society
Reproduction in any form (including the internet) is prohibited without prior permission from the Society

distributed component scores, and compound symmetry of the covariance matrix of

the components. The applicability of D when violation of these assumptions is present

was discussed and explored.

When two tests consist of equal number of components,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 1

p
ð1=2Þ ln ð12 â1Þ

and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 1

p
ð1=2Þ ln ð12 â2Þ share the same population asymptotic variance of

K=ð2ðK 2 1ÞÞ. As a result, the effect size index D represents the degree of discrepancy

between two independent as on a common basis. When as from tests of different

lengths are to be compared,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 1

p
ð1=2Þ ln ð12 â1Þ and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 1

p
ð1=2Þ ln ð12 â2Þ no

longer have the same asymptotic variance. Can D still be applicable whenffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 1

p
ð1=2Þ ln ð12 â1Þ and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 1

p
ð1=2Þ ln ð12 â2Þ have unequal variances? Based

on the asymptotic variances of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 1

p
ð1=2Þ ln ð12 âÞ with varying test lengths as

illustrated below, we tend to suggest that D is highly likely to be applicable with unequal

test lengths as long as none of the tests contains fewer than 5 components.

Table 5. Deviation between U measures of D and d for a small effect size (UD–Ud)

Component reliability

.15 .25 .35

K N U1 U2 U3 U1 U2 U3 U1 U2 U3

10 30 .16 .02 .07 .06 2 .01 2 .02 .10 .01 .03
60 .08 2 .01 2 .01 .05 .00 2 .01 .06 .00 2 .01
100 .09 2 .01 2 .01 .07 .01 .01 .06 2 .01 2 .03
200 .07 2 .01 .00 .09 .01 .02 .02 .00 .00
300 .09 .02 .03 .08 .01 .03 .09 .02 .03
400 .09 .01 .03 .04 2 .01 2 .01 .09 .01 .04
500 .09 2 .01 2 .01 .06 2 .01 2 .02 .06 .00 .01

15 30 .08 .01 .01 .05 .00 .00 .09 .00 .00
60 .08 .01 .00 .06 2 .02 2 .03 .08 .01 .03
100 .05 2 .01 2 .02 .12 .02 .04 .03 2 .01 2 .03
200 .06 .01 .03 .06 .01 .03 .07 .00 2 .01
300 .07 .01 .01 .04 .00 .00 .04 2 .01 2 .02
400 .12 .02 .04 .02 2 .01 2 .01 .12 .01 .02
500 .12 .00 2 .01 .08 .01 .00 .10 .00 2 .01

20 30 .11 .02 .03 .04 .00 2 .01 .06 .00 .01
60 .04 .00 2 .01 .09 2 .01 2 .02 .10 .01 .02
100 .03 2 .01 2 .01 .05 2 .01 2 .03 .08 .01 .00
200 .06 .01 .00 .09 .00 .01 .05 .01 .01
300 .06 2 .01 2 .01 .07 .01 .01 .06 .00 .00
400 .15 .03 .05 .05 2 .01 2 .02 .07 .00 .02
500 .12 2 .02 2 .02 .03 2 .02 2 .03 .07 2 .01 2 .02

25 30 .06 2 .01 2 .01 .09 .03 .05 .05 2 .03 2 .06
60 .09 .00 .01 .06 .00 2 .01 .08 .01 .02
100 .06 .00 2 .01 .03 2 .01 2 .02 .10 2 .02 2 .03
200 .09 .01 .00 .06 .01 .01 .05 2 .01 2 .01
300 .06 2 .02 2 .05 .10 .01 .03 .10 .01 .01
400 .08 .01 .01 .07 .00 .00 .04 2 .01 .00
500 .10 .01 .03 .05 .00 2 .02 .05 2 .02 2 .05

Note. U1 ¼ :147, U2 ¼ :54, and U3 ¼ :579 for a small effect size; K¼ test length; N¼ sample size.
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Figure 1 showed the asymptotic variance of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 1

p
ð1=2Þ ln ð12 âÞ with test length

ranging from 1 to 65. The asymptotic variance varied substantially when the test

contained fewer than 5 components and approached .5 when test length was greater

than 10. Specifically, the asymptotic variance of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 1

p
ð1=2Þ ln ð12 âÞwith test length

of 5, 10, 15, 20, and 25 was .63, .56, .54, .53, and .52, respectively. As a result, the

difference between the asymptotic variances of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 1

p
ð1=2Þ ln ð12 â1Þ andffiffiffiffiffiffiffiffiffiffiffiffiffi

N 2 1
p

ð1=2Þ ln ð12 â2Þ from tests of different lengths approached zero unless one of

the tests contained fewer than 5 components. Therefore, the effect size index D should

be applicable to most cases of unequal test lengths. In such cases, the average of the two

variances could be used as an estimate of the common variance in calculating D. If,

instead, the researcher prefers a conservative estimate of the effect size between two

independent as with unequal test lengths, the variance of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 1

p
ð1=2Þ ln ð12 âÞ

obtained from the shorter test could be used as the denominator in calculation of D.

Non-normally distributed data are frequently encountered in educational and
psychological research (Micceri, 1989). The sampling distribution of â with non-

normally distributed components has been examined in the past. Zimmerman, Zumbo,

and Lalonde (1993) compared the distribution of â when test components followed

normal, uniform, exponential, and mixed-normal distributions, and found the central

tendency and the variability of â to be similar regardless of the distributions of

the component scores. Moreover, Yuan and Bentler (2002) noted that the results of

van Zyl et al. (2000) held for component scores with heterogeneous skewnesses and

kurtoses. These studies seem to suggest that the distribution of component scores
exerts very little influence on the sampling distributions of â and the asymptotic

distribution of ð1=2Þ ln ð12 âÞ. Therefore, in view of the previous results on the

robustness of â and ð1=2Þ ln ð12 âÞ against non-normality, D should also be robust to the

violation of normality assumption and could be extended to non-normally distributed

component scores.

The covariance matrix among the component scores was assumed to have

compound symmetry in the derivation of the asymptotic distribution of ð1=2Þ ln ð12 âÞ.
When component scores are parallel, the assumption of compound symmetry is met.
However, compound symmetry could be violated in many situations. Among the

circumstances that compound symmetry could be violated, the condition of corre-

lated errors of measurement was most frequently studied. Novick and Lewis (1967 )

Figure 1. The asymptotic variances of
ffiffiffiffiffiffiffiffiffiffiffiffi
N2 1

p
ð1=2Þlnð12 âÞ with varying numbers of components in

a test.
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termed the assumption of uncorrelated measurement errors the ‘assumption of linear

experimental independence’, and made it one of the fundamental assumptions in their

derivation of coefficient a. However, Allen and Yen (1979) pointed out that this

assumption was not reasonable if the test scores had been affected by fatigue, practice

effects, or environmental conditions. Zimmerman and Williams (1980) illustrated the

deviation of test reliability from its actual value when the assumption of uncorrelated
errors was violated. The discrepancy enlarged as the correlation between errors

increased except when the test scores had fairly high reliabilities. The bias of âwas also

being reported to increase systematically with larger number of correlated errors or

higher degree of correlation between errors (e.g. Komaroff, 1997; Zimmerman et al.,

1993). Thus, with the demonstrated influence of correlated errors on the value of

coefficient a, to what extent would correlated errors affect D? If both as were affected

by correlated errors, would the effects of correlated errors be cancelled out in the

calculation of D? A small simulation was conducted to explore the issue.
Two sets of components under classical test theory with uncorrelated errors were

first generated to yield a desired level of D. Then, correlations among errors were

incorporated into the data and the value of D from components with correlated errors

was estimated, symbolized as D̂. The differences between the resulting D̂ and D in

population signalled the effect of correlated errors on the estimation of D. The

component scores were simulated with varying test lengths (K), component reliabilities

(r), degrees of correlation between errors (r), proportions of test components having

correlated errors (P), and sample sizes (N) as detailed in the Appendix. It was found that
the discrepancies between D̂ under N ¼ 500 and N ¼ 100 were less than .01, lending

additional support to the earlier finding of the acceptable behaviour of D with sample

size of 100 and above. Moreover, most of the resulting D̂ under N of 500 were closer to

the expected magnitudes of .8, .5, and .2 than N of 100. Therefore, to save space, Table 6

represented the mean differences between D̂ and D with correlated errors only at the

sample size of 100. Take the medium effect size .5 with r1 ¼ :15, K ¼ 10, r ¼ :1, and
P ¼ :4 as an example. According to the formulation of D, r2 was set at .33 to yield the

desired D of .50. Next, the two sets of test components with r1 ¼ :15 and r2 ¼ :33
having 40% of the error scores correlated at .1 were generated. The resulting mean D̂ of

.48 over 1,000 replications gave the corresponding entry of 2 .02 in the table. Because

of the positive correlations simulated among errors, all the mean differences were either

negative or zero. The standard errors of D̂s, ranging within .13 and .15, were all close to

the expected asymptotic value of .142 (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðN 2 1Þ

p
¼ :142 with N ¼ 100) and thus are

not presented.

Parallel to previous findings on the effect of correlated errors on test score reliability

(Komaroff, 1997; Zimmerman & Williams, 1980; Zimmerman et al., 1993), when error
scores were correlated, the absolute mean differences between D̂ and D increased with

larger number of correlated errors (as reflected in higher proportion of errors correlated

or larger number of test components), higher correlation between errors, and lower

component reliability. In addition, the absolute mean difference between D̂ and D also

increased with rising effect size. Yet, considering the magnitudes of the discrepancies

between D̂ and D, the result seemed to suggest that D̂, though with correlated errors,

could still closely approximate the size of D unless in cases of a large number of highly

correlated errors.
This study has taken a step to define the effect size index D for comparing two

independent as. Following the discussion above, D is expected to be applicable to cases

of unequal test lengths, non-normally distributed test components, and even certain
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conditions under correlated errors. Therefore, although the deviation of Dwas based on

several assumptions, D could be extended to a wider range of research scenarios beyond

the scope restricted by the assumptions.

One line of research worthy of further pursuit is the development of effect size index

for dependent coefficient as. For example, respondents may be asked to fill out the

same test items under different instructions or response formats. Feldt and his colleague
(Alsawalmeh & Feldt, 1994a, 1994b, 1999; Feldt, 1980) have worked on the sampling

distribution of the difference between correlated a coefficients. Future research could

possibly apply the derived sampling distribution to develop the appropriate effect size

index for comparing dependent as.
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Appendix

The procedures for simulating D̂ with correlated errors
The simulation generated tests of 10 and 25 components with the component reliability

r1 being .15 or .35 for sample size (N) of 100 and 500. Based on the definition of D, r2
was carefully chosen to satisfy the magnitude of .8, .5, or .2 in the population. Similar to

previous studies (e.g. Komaroff, 1997; Zimmerman et al., 1993), the degree of

correlation between error scores was determined by the correlation between two errors
(r ¼ :1; :3; or :5) and the proportion of test components having correlated errors

(P ¼ :2; :4; :6; or :8). Correlated errors were generated by the procedures as in

Zimmerman et al. One thousand replications were generated for each of the 288

conditions (2 sample size £ 3 effect size level £ 2 component reliability £ 2 test

length £ 3 degrees of correlation between errors £ 4 proportions of test components

having correlated errors).

The component scores were again simulated based on the classical test theory. The

component score for observation j on component i (xij) was represented as
xij ¼ T j þ Eij, where Tj was the true score for observation j, and Eij was the error score

for observation j on component i. In order to yield the desired component reliability, Tj
was further decomposed as T j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ð12 rÞp

tj, with r being the component reliability

and tj being distributed as N(0,1). Next, let Eij and Ekj be the error scores for observation

j on components i and k. In order for the two error scores to have a correlation of r, let
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Eij ¼ ðWi þ bZÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
and Ekj ¼ ðWk þ bZÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
, where Wi, Wk, and Z were

independent standard normal variables, and b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ð12 rÞ

p
. As a result, Eij and Ekj had

means of 0 and variances of 1, and their correlation equalled r. Details of the procedures

could be found in Zimmerman et al. (1993). TheWi,Wk, Z, and tj were generated by the

RANNOR function in SAS.

The simulation results for N ¼ 100 were presented in Table 6. A similar table with
N ¼ 500 was also obtained, though not presented. The discrepancies between D̂ under

the two sample sizes were all less than .01, and most of the resulting D̂ under N ¼ 500

were closer to the expected magnitudes of .8, .5, and .2 than the corresponding entries

in Table 6.
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