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A B S T R A C T

Toroidal, cylindrical, and helical analogs of C60 buckyball are theoretically constructed and analyzed. In

these structures, pentagons and heptagons are separated compactly by hexagons in analogy to

pentagons in C60 and heptagons in C168 proposed by Vanderbilt and Tersoff (1992) [2]. Specifically, all

nonhexagons therein are surrounded by hexagons and hexagons are surrounded alternatively by

hexagons and nonhexagons, i.e. these structures are polyhedra of Clar type with all their Clar rings

nonhexagonal. Quantum chemical calculations have been carried out which show that they possess

stabilities comparative to that of C60. And their structural features are also investigated in detail. Buckled

carbon nanotubes deriving from buckytori with periodically varying radii are suggested to be

candidacies for the product of coalescing arrays of C60. The helicity of the buckyhelices as a function of

their characterizing shifting parameters is studied. In the limit of large shifting parameter, the

buckyhelices adopt an unusual geometric form that has not been reported in the literature yet.

� 2009 Elsevier Inc.. All rights reserved.
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1. Introduction

In the early nineties, right after the discovery of carbon
nanotubes (CNT) [1], Vanderbilt and Tersoff [2] proposed a
negative-curvature analog of C60, which is basically a triply
periodic C168 structure composed of only hexagons and heptagons.
While the pentagons in C60 are all surrounded by hexagons and the
hexagons are surrounded by alternating hexagons and pentagons,
the heptagons in C168 are surrounded by hexagons and the
hexagons are surrounded by alternating hexagons and heptagons.
The resulting structure for C168 is like replacing each carbon atom
in a diamond lattice with hollowed carbon nanotetrapod
(superatom), and the bonding between these superatoms with a
suitable nanotube (superbond). Topologically speaking, C60 is
isomorphic to a sphere and C168 is isomorphic to the D-type triply
periodic minimal surface (TPMS) [3–7]. According to the Gauss–
Bonnet theorem, each unit cell in C168 contains exactly 24
heptagons and every carbon atom in this structure belongs to a
particular heptagon. This amazing analogy between the two
molecular structures raises an immediate question: Is it possible to
construct a graphitic structure, which may possess both positive
and negative Gaussian curvatures at the same time, such that
nonhexagons are completely surrounded by hexagons and
hexagons are surrounded alternately by hexagons and nonhexa-
gons? In the discussion made by Fowler and Pisanski [8], this is
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equivalent to asking for Clar type fullerenes with all their Clar rings
nonhexagonal, where C60 and C168 are both solutions possessing
positive and negative curvatures throughout, respectively.

In this paper, we provide a positive answer to the question.
Three different solutions are suggested where they have the same
shapes and topologies of a torus, a cylinder, and a helical tube,
respectively. The latter two are singly periodic infinite structures
and are derived from the torus case. All three graphitic structures
proposed have pentagons and heptagons in equal numbers, and
each pair of pentagon and heptagon comes together with four
hexagons. In other words, the ratio between the numbers of
polygons in these structures are N5 : N6 : N7 ¼ 1 : 4 : 1, where Ni is
the number of i-gons. Quantum chemical calculations showed that
the heat of formation of the toroidal and cylindrical structures are
comparable to that of C60. The structural properties and general
geometric features of the three molecular structures are discussed.

2. Buckytori

It is well known that any toroidal carbon nanotube (TCNT) with
all faces hexagonal can be formed by bending, and connecting the
ends, of a finite straight carbon nanotube. The polyhex TCNT has
been of theoretical interest especially on its magnetic response
because of its curious topology and geometry [9–23]. It was found
that for certain magic numbers of chiral vectors and the number of
unit cells the polyhex TCNT may carry extremely large para-
magnetic persistent current under an external magnetic field [9].
However, for the polyhex TCNTs to be stable without seriously
distorting chemical bondings therein, the number of carbon atoms
roidal, cylindrical, and helical analogs of C60, J. Mol. Graph. Model.
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Fig. 1. The three proposed buckytori, where pentagons and heptagons are surrounded by one layer of hexagons. Each rotational unit cell contains 24 carbon atoms. (a) D5d

C120. (b) D6d C144. (c) D7d C168. (d) The face representation of unfolded D5d C120, where the top and the bottom rows of atoms are repeated.
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must be as large as thousands or more so each s bond bears
relatively small distortion. Experiments reporting the existence of
giant ring-like TCNTs have been carried out [24,25], which are
possible candidates of polyhex TCNTs.

Though not yet experimentally confirmed, quantum chemical
calculation shows that TCNTs with nonhexagonal defects can be
stable molecules, even if they contain only about a hundred of
carbon atoms [26–31]. This is because by properly inserting
pentagons (heptagons) at the outer-rim (inner-rim) of the torus,
the deviations of bond lengths and bond angles from planar
graphite are greatly reduced. A very general systematic construc-
tion and classification method for TCNTs with nonhexagonal rings
that includes most of the existing construction methods for defect-
containing TCNTs as a subset [29–34] was proposed by the present
authors [35].

By carefully examining the topology and connectivity of these
TCNTs, we found that one particular family of TCNTs precisely
satisfies all requirements raised in the previously proposed
question. These TCNTs belong to the Dnd point group, where n is
the rotational symmetry number. In Fig. 1(a)–(c), we show three
particular TCNTs with n ¼ 5;6;7 cases, and the planar graph shown
in part (d) corresponds to the unfolded TCNT with n ¼ 5 based on
its face representation. Each of the rotational unit cells contains 24
carbon atoms, so the resulting D5d, D6d, and D7d TCNTs contain 120,
144, and 168 atoms, respectively. It is interesting to note that the
number of carbon atoms in a D7d-TCNT is the same as that in a
single unit cell of C168. As stated in the question and shown clearly
by the three TCNTs in Fig. 1, the pentagons and heptagons are
surrounded by hexagons while the hexagons, depending on their
loci, are surrounded alternately by three hexagons plus three
heptagons, or two heptagons and one pentagons, or one heptagons
and two pentagons. In analogy to C168, we deliberately call these
TCNTs ‘‘buckytori’’, since they are the realization of buckyball on a
Table 1
AM1-optimized coordinates of inequivalent atoms of TCNT C120, C144, and C168. See tex

Atom C120 C144

x y z x

1 0.651 �2.917 0.685 0.656

2 1.429 �3.125 1.915 1.514

3 1.353 �4.575 2.097 1.343

4 0 �5.168 1.792 0

5 0.769 �5.543 �1.548 0.747

6 1.227 �5.943 �0.214 1.197

7 0 �5.949 0.624 0

Please cite this article in press as: C. Chuang, B.-Y. Jin, Hypothetical to
(2009), doi:10.1016/j.jmgm.2009.07.004
torus. As discussed by Vanderbilt and Tersoff, C60 and C168 are
derived from the inflation transformation of C20 (dodecahedron)
and C56 parent molecules. The three TCNTs shown in Fig. 1, C120,
C144, and C168, can also be deflated to one third smaller molecules
containing only 2n pairs of pentagons and heptagons. The deflation
process in these cases can be seen as removing all the hexagons out
of the parent structures or, as commented by Vanderbilt and
Tersoff, as replacing each hexagon by a single carbon atom at the
center of it.

The optimized positions of inequivalent atoms of the total five
buckytori, with rotational symmetry number ranging from four to
eight, based on the semi-empirical AM1 quantum chemical
calculation [36] are given in Table 1. Since these TCNTs are Dnd-
symmetric, we only report the coordinates of seven inequivalent
atoms in the table. By applying the reflection with respect to yz-
plane, one can obtain the other five coordinates for atoms with
negative x values. The C2 rotation about ðcos ð2p=nÞ; sin ð2p=nÞ;0Þ
can generate all 24 coordinates in a single unit cell. Finally the Cn

rotation about z-axis will generate the total 24n atoms of the
molecules.

In Table 2, we present some of the structural and physical
information of these TCNTs using the AM1 method. It can be seen
that the heat of formation per atom of the buckytori, depend on the
rotational symmetry number, are comparable to that of C60,
although the deviations of bond lengths and bond angles from
graphite are a little bit higher. The stabilities of general fullerenes
can be explained by a continuum elastic theory [37–43], where the
formation energies of curved graphitic structures are the summa-
tion of strain energy of bending planar graphene and the local
energies of defects. The strain energy term is proportional to
integration of the square of mean curvature over the surface of the
structure. Since the buckytori possess curvature comparable to
that of C60 meanwhile contain more nonhexagonal defects than
t for the generating method of the whole molecule.

C168

y z x y z

�3.605 0.688 0.664 �4.344 0.666

�3.998 1.808 1.569 �4.860 1.703

�5.435 1.990 1.334 �6.284 1.890

�6.024 1.709 0 �6.875 1.625

�6.469 �1.528 0.733 �7.364 �1.537

�6.983 �0.223 1.167 �7.960 �0.255

�6.929 0.631 0 �7.859 0.617
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Table 2
Calculated structural properties of the AM1 optimized buckytori C96, C120, C144, C168, and C192. d, u, and E are the bond length, bond angle, and heat of formation per atom of the

specified molecule. The overbar and subscript std stand for mean and standard deviation values, respectively. The last row lists the values for C60 buckyball. The average

unsigned errors of bond lengths and angles of AM1 calculations are 0.13 Å and 8:77� , respectively.

d̄ (Å) dstd (Å) ū (8) ustd (8) E (eV)

C96 1.473 0.072 115.2 14.3 1.60

C120 1.453 0.054 115.9 9.0 1.17

C144 1.446 0.048 116.2 7.5 1.00

C168 1.444 0.045 116.2 6.9 0.94

C192 1.435 0.045 116.2 6.9 0.94

C60 1.438 0.037 116.0 5.7 0.70
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C60, it is reasonable to expect that the buckytori have greater heat
of formation per atom than C60.

3. One-dimensional analogs of C60

The buckytori discussed above are zero-dimensional finite
molecular cages. One may further construct one-dimensional (1D)
periodic graphitic structure with the same local geometry by
flipping a TCNT inside out and using it as a building block of the
periodic 1D structure as shown in Fig. 2. The structure as a whole
possesses cylindrical tubular shape with rings of pentagons and
heptagons occurring alternately along the direction of periodicity.
The radius of this tube varies periodically as one moves along its
central axis with the same periodicity as the appearance of the
rings of nonhexagons, where its maxima and minima correspond
Fig. 2. Buckled carbon nanotube. Three unit cells are shown. The tube shown

possesses sixfold rotational symmetry, as its unit cells are obtained by flipping the

D6d C144 buckytorus inside out. Similar to its parent molecule, the buckytorus, the

buckled tube shares the same local geometry, the tube radius reaches maxima at the

altitudes of pentagons and is minimized at the altitudes of heptagons.
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to the altitudes of pentagons and heptagons, respectively. The
second derivative of tube radius with respect to altitude (@2

r=@z2)
and the inverse of radius (1=r) are the two principal curvatures of
the tube. It can be clearly seen that the tube is positively
(negatively) curved around the loci of pentagons (heptagons), as
the parent TCNT is. Interestingly, when the rotational symmetry
number is three, the structure f this ‘‘buckled tube’’ can also be
viewed as an array of C60 fused along their C3 rotation axes with
twelve extra carbon atoms per unit cell, which is the so-called
‘‘coalesced’’ or ‘‘corrugated’’ buckyballs. In particular, we note that
Rodriguez-Manzo et al. [44,45] had studied the magnetic proper-
ties of similar structures which are the toroidal version of these
buckled tubes, formed by bending this ‘‘buckled tube’’ and
connecting its two ends.

Here we report the optimized structures and the heat of
formation for the buckled CNT with rotational symmetry number
ranging from two to eleven, as shown in Tables 3 and 4. It is
interesting to note that, in general, the heat of formation per atom
for buckled CNT is much smaller than that of buckytorus with the
same rotational symmetry. And the dependence of stability on
rotational symmetry number is smoother than in the case of the
toroidal isomers. In the hindsight, this result can be rationalized
since the condition of asking the atoms in the outer part of a
buckytorus to distribute as even as ones in the inner part, and vice
versa, is much harder than that of asking homogeneousness of one-
layer structures like the buckled CNT. In Fig. 3, the mean radii and
the translational vectors of the calculated buckled CNTs are shown.
The mean radius is linearly proportional to rotational symmetry
number. Whereas the translational vectors decrease monotoni-
cally and slowly with increasing rotational symmetry number.

As discussed in our previous report [35], stable helical carbon
nanotubes (HCNT) can be formed by distorting and dissecting a
Fig. 3. The dependencies of translational vector (circle) and mean radius (square) of

buckled CNT on the rotational symmetry.
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Table 4
Calculated structural properties of the AM1 optimized buckled carbon nanotubes C48 through C264, in which the rotational symmetry numbers range from two to eleven. d, u,

E, and R are the bond length, bond angle, heat of formation per atom, and radius of that particular tube. The overbar and subscript std stand for mean and standard deviation

values, respectively. The translational vector (Tv) is parallel to z-axis.

d̄ (Å) dstd (Å) ū (8) ustd (8) E (eV) Tv (Å) (Å)

C48 1.444 0.033 115.8 5.2 0.97 1.91 11.46

C72 1.434 0.027 117.7 4.9 0.61 2.79 11.10

C96 1.433 0.034 118.3 5.6 0.53 3.69 10.81

C120 1.432 0.029 118.4 5.9 0.53 4.59 10.45

C144 1.433 0.031 118.4 6.5 0.56 5.48 10.11

C168 1.435 0.034 118.3 7.1 0.62 6.36 9.81

C192 1.436 0.037 118.2 7.7 0.68 7.24 9.57

C216 1.439 0.041 118.1 8.3 0.75 8.12 9.41

C240 1.441 0.045 118.0 8.9 0.82 9.00 9.31

C264 1.443 0.050 118.0 9.5 0.88 9.89 9.26

Table 3
AM1-optimized coordinates of inequivalent atoms of buckled CNTs C96, C120, and C144. Since the point group symmetry is still Dnd , the generating method of the whole

molecule is the same as the one for torus case described in text. The translational vectors (Tv) are listed in Table 4.

Atom C96 C120 C144

x y z x y z x y z

1 0.680 �2.583 0 0.717 �3.326 0.721 �4.041 0

2 1.517 �2.512 1.189 1.563 �3.358 1.168 1.609 �4.213 1.131

3 1.290 �3.362 2.328 1.297 �4.296 2.241 1.306 �5.229 2.122

4 0 �3.860 2.809 0 �4.790 2.700 0 �5.718 2.562

5 �4.112 �0.722 6.336 �4.632 �2.266 6.179 �4.907 �3.665 6.006

6 1.141 �4.432 4.981 1.125 �5.508 4.838 1.108 �6.542 4.675

7 0 �4.460 4.083 0 �5.481 3.930 0 �6.472 3.756

Tv 0 10.81 0 0 10.45 0 0 10.11
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parent TCNT. Here we also give a brief examination of this process
on the particular TCNTs discussed in the previous section. As
shown in Fig. 4, starting with the D6d TCNT C144 shown in Fig. 4(a),
we shift the atoms in the outer-rim horizontally so that one of the
neighbors of these atoms are switched from the originally bonded
atom to the second-nearest neighbors (Fig. 4(b)). And the
pentagons at the outer-rim pair up and come in contact with
Fig. 4. Formation of HCNTs from the distortion of parent TCNT. (a) D6d C144 parent

buckytorus. (b) The outer-rim atoms of the buckytorus are shifted so that pentagons

pair up and the reflection symmetry is destroyed. This molecule is considered to be

highly strained and is denoted as Sh ¼ 1. (c) Successive shifting operation is carried

on to the TCNT shown in (b). This molecule is even more strained and is denoted as

Sh ¼ 2. (d) Dissecting the TCNT shown in (b), so the strain energy is released and

resulting in an HCNT. (e) The HCNT corresponds to dissecting the TCNT shown in (c).

The pitch angle, or the helicity, of the HCNT is larger than the one shown in (d).

Please cite this article in press as: C. Chuang, B.-Y. Jin, Hypothetical to
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one another, so the analogy with C60 and C168 is destroyed. The
resulting molecule is highly strained since all chemical bonds in
this molecule (Fig. 4(b)) suffer considerable distortion. However,
this strain can be greatly reduced by dissecting the TCNT at any
longitude, which will allow the molecule to coil up to form an
HCNT as shown in Fig. 4(d). We define the shifting parameter of
this HCNT to be unity (Sh ¼ 1). Continuing the shifting operation
with one more unit will lead to an even more strained molecule as
shown in Fig. 4(c). Intuitively the pitch angle of the resulting HCNT
generated by dissecting this transformed TCNT (Sh ¼ 2, shown in
Fig. 4(e)) is larger than the previous case with Sh ¼ 1.

In general, once the molecular graph for a TCNT is drawn on a
rectangular parametric plane [46], the 3D coordinates of the atoms
in the corresponding HCNT are given simply by

xðs; tÞ ¼ ðRþ r cos sÞcos t þ r sin u sin s sin tyðs; tÞ

¼ ðRþ r cos sÞsin t � r sin u sin s cos tzðs; tÞ

¼ R tan ut þ r cos u sin s; (1)

where s and t are the coordinates of the atoms on the parametric
plane, R the radius of the central helical curve, r the radius of the
tube around the central curve, and u the pitch angle. Here the curve
of constant t corresponds to the circumference of the tube. Hence
the curve with s ¼ 0 and varying t corresponds to the middle line
between the heptagons, and similarly, the curve with s ¼ p and
varying t corresponds to the middle line between the pentagons.
When the shifting parameter Sh and the circumference of the tube
g are given, we found that the pitch angle u is roughly given by
tan u/ Sh=g.

When the shifting parameter coincides with the length of a
rotational unit cell (Sh ¼ 3), the resulting structure satisfies again
the requirement of analogy to C60, i.e. all nonhexagons are
separated purely by hexagons and every carbon atom belongs to a
particular nonhexagon, as shown in Fig. 5(a). Similar to the triply
periodic C168, this one-dimensional helical structure also contains
24 carbon atoms per unit cell.
roidal, cylindrical, and helical analogs of C60, J. Mol. Graph. Model.
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Fig. 7. Buckyhelix with Sh ¼ 30.

Fig. 5. Buckyhelices of higher shifting parameter Sh. (a) Sh ¼ 3, (b) Sh ¼ 6, (c) Sh ¼ 9,

and (d) Sh ¼ 12.
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Naively, one might expect that the pitch angle for the HCNT
derived from a particular TCNT should be a monotonic function of
the shifting parameter Sh. That is to say, the larger Sh is, the greater
the pitch angle will be. One might predict that when Sh increases to
a certain value, the pitch angle of the corresponding HCNT should
become very close to p=2, the pitch angle of a vertical straight line.
However, it is known that the HCNTs with pitch angles larger than
a critical value will be extremely unstable because the strong steric
repulsion arising from the impenetrability among different parts of
the HCNT when local curvature of the central axis is greater than
the radius of tube [47,48]. But, a detailed calculation indicates that
this situation does not occur even in the limit that the shifting
parameter Sh becomes very large. Instead, the optimized geometry
for the corresponding HCNT in the large Sh limit gradually adopts a
unique conformation that is quite counter-intuitive, and the
parameterization given by Eq. (1) does not hold in this limit.

For instance, as shown in Fig. 5(b)–(d), we have the optimized
geometries for HCNTs with Sh twice, thrice, and four times of the
length of a unit cell, respectively. One can see that the diameter of
the corresponding HCNT increases as the shifting continues, while
the pitch angle decreases as Sh increases. The dependence of pitch
angle and tube radius on Sh is shown in Fig. 6. In this particular
case, the pitch angle quickly reaches its maximum at Sh ¼ 3 and
Fig. 6. Pitch angle (circle) and mean radius (square) as functions of shifting

parameter Sh.
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decays slowly as Sh increases. On the contrary, the radii of the
HCNT family show a minimum at Sh ¼ 3 and gradually increases as
Sh increases. If Sh is very large, the radius of the corresponding
HCNT becomes linearly proportional to Sh and the pitch angle
becomes inversely proportional to Sh.

In the very large limit of Sh, the corresponding HCNT is still a
buckyhelix as shown in Fig. 7. Here we are not intended to discuss
this trend in detail and leave it for the future investigation. We
emphasize that by introducing the shifting operation to the
buckytorus, a whole family of buckyhelices, infinite in number, can
be constructed. Note that the buckled tube mentioned above with
rotational symmetry number n!1 is in fact corresponding to the
transformed HCNT in the limit of Sh!1. But this implies that the
surface of the tube is planar and atoms around the pentagons will
be more crowded than ones around the heptagons, since they all
possess zero Gaussian curvature.

4. Conclusions

In summary, toroidal, cylindrical, and helical analogs of C60

have been theoretically constructed. These structures possess
positive and negative Gaussian curvature at the same time and
contain equal numbers of pentagons and heptagons, which are
compactly separated by hexagons. The cylindrical and helical
buckyballs are singly periodic 1D graphitic structures. In parti-
cular, the cylindrical buckled tubes can be possible candidates for
the product of coalescing arrays of C60 molecules. Physical
properties such as electron transport and mechanical responses
of these exotic graphitic structures are of theoretical interest and
further investigation is needed.
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