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Abstract The importance of vibrational contributions to

the static linear and nonlinear optical coefficients is inves-

tigated. We apply the exact sum-over-state (SOS) formulas

for polarizabilities and hyperpolarizabilities expressed in

terms of vibronic states to a two-level system with a single

vibrational mode. The Herzberg–Teller expansion is

applied to the SOS formulas including vibrational energy

levels without employing the Placzek’s approximation

within both the Born–Oppenheimer approximation and

electrical and mechanical harmonicities. The results include

not only the vibrational contribution from the lattice

relaxation expression but also the contribution arising from

the higher-order correction terms. Model calculations on a

diatomic system with two electronic states show that the

contribution of these correction terms is small. Moreover,

most of these higher-order terms are negligible in the solid-

state limit. In polyacetylene, the contribution of the lattice

relaxation expression is much larger than that in the

diatomic case. Within the tight-binding approximation,

the contribution of the lattice relaxation expression is 44%

of the pure electronic contribution for the second

hyperpolarizability.
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1 Introduction

There has been increasing interest in the study of non-

linear polarizabilities motivated greatly by the potential

for using this property to design optical communication

devices. The design of materials with large optical non-

linearities is an active and well-reviewed area of research

[1]. Nonlinear optical processes are governed by molec-

ular hyperpolarizabilities. These properties can be divided

into contributions originating from the effects of electric

fields on electronic motion and on nuclear motion. There

has been a growing number of calculations of vibrational

polarizabilities and hyperpolarizabilities in the past dec-

ades [2–10]. Polarizabilities and hyperpolarizabilities can

be defined by a perturbation theory treatment of the

electric fields, and this produces the sum-over-state (SOS)

formulas in terms of vibronic energies and dipole

moment matrix elements. The effect of including vibra-

tional levels into the SOS expressions for polarizabilities

and hyperpolarizabilities has been examined under the

electrical and mechanical harmonicity approximation, and

the perturbation formulas including corrections for

mechanical and electrical anharmonicities have been

derived [3–5].

Several approaches have been introduced to calculate

vibrational hyperpolarizabilities resulting from the effects

of anharmonicity. Restricted Hartree–Fock 6–31G calcu-

lations have been performed to determine electrical and

mechanical anharmonicity contributions to the longitudi-

nal vibrational second hyperpolarizability for several
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conjugated oligomers [11]. Field-induced coordinates

have been used to describe the vibrational polarizability

and hyperpolarizabilities due to nuclear relaxation [12].

The effect of basis set and electron correlation beyond the

MP2 method on the electronic and vibrational hyper-

polarizabilities has been investigated [13]. Moreover, a

variational approach has been developed to calculate

vibrational linear and nonlinear optical properties of

molecules with large electrical and mechanical anharmo-

nicities [14, 15].

On the other hand, a semiclassical treatment has been

used to derive an explicit analytical expression for vibra-

tional contribution in terms of spectroscopic observables

[2]. The lattice relaxation expression has been obtained

from the exact SOS formulas within the Placzek’s

approximation [4]. In addition, the lattice relaxation

expression has been utilized to discuss nonlinear optical

properties of charge-transfer organic materials in the

framework of the valence-bond charge-transfer model

[16–23].

The purpose of this paper is to derive the lattice

relaxation expression from the SOS formulas by including

the vibrational energies in the denominators of the SOS

formulas without employing the Placzek’s approximation.

We apply the exact SOS formulas for the (hyper)polar-

izabilities expressed by vibronic states to a two-level

system with a single vibrational mode. The vibrational

mode is described by the displaced harmonic oscillator

model. Within the double harmonic approximation (elec-

trical and mechanical harmonicities), we obtain the lattice

relaxation expression for the vibrational contribution.

Furthermore, analytical expressions for the contributions

arising from the next higher-order correction terms are

also derived through the Herzberg–Teller expansion. The

importance of the various terms is examined for ethylene

and polyacetylene. Model calculations show that the

contribution from these higher-order terms is relatively

small for ethylene. In addition, most of the contributions

from the higher-order terms are negligible in the solid-

state limit. The contribution from the lattice relaxation

expression in polyacetylene is much larger than that in the

diatomic case. Within the tight-binding approximation,

the contribution of the lattice relaxation expression is

44% of the pure electronic contribution for the second

hyperpolarizability.

The paper is organized as follows: we begin by con-

sidering a two-level system with a single vibrational mode,

and use the exact SOS formulas to derive analytical

expressions for the static (hyper)polarizabilities in Sect. 2.

In Sect. 3, contributions from the various terms in the

polarizability and the second hyperpolarizability are cal-

culated for ethylene and infinite polyene. Finally, we make

some comments and conclude with a discussion about

future research in Sect. 4.

2 Two-level system with a single vibrational mode

A two-level system with a single vibrational mode is

considered. The vibrational levels of the ground and

excited electronic states are modeled by harmonic oscil-

lators (the mechanical harmonicity approximation). For

simplicity, these oscillators are assumed to have identical

frequencies x, but minima for the ground electronic state

and for the excited electronic state are displaced. The

energy difference between the minima of the two electronic

states is denoted by D.

2.1 Static polarizability

In the presence of an external electromagnetic field e, the

interaction energy between the molecules and the field is

given by

Eint ¼ �le� a
2!

e2 � b
3!

e3 � c
4!

e4 � � � � : ð1Þ

Therefore, the total energy becomes

E ¼ E0 þ Eint ¼ E0 � le� a
2!

e2 � b
3!

e3 � c
4!

e4 � � � � ;

where E0 is the energy at zero field, l is the dipole

moment, a is the polarizability, and b and c are

hyperpolarizabilities.

From the perturbation theory, the polarizability a is

expressed by

1

2!
a ¼ a0 ¼

X

m 6¼0

h0jljmihmjlj0i
Em � E0

: ð2Þ

From this equation, we obtain the polarizability for a two-

level system with a single vibrational mode

a0 ¼
X

m 6¼0

jhg0jljgmij2

Egm � Eg0

þ
X

�m¼0

jhg0jlje �mij2

Ee �m � Eg0

: ð3Þ

The bar over the m in the j �mi indicates that this is a

vibrational level of the excited electronic state, and |mi
denotes the vibrational levels of the ground state. Within

the Born–Oppenheimer approximation, we can write the

dipole moment of the ground electronic state as a function

of vibrational coordinate, and the matrix elements in the

first term in Eq. 3 becomes

hg0jljgmi ¼ h0jlggðQÞjmi: ð4Þ

We choose the minimum for the ground electronic state to

be zero and expand the electronic dipole moment in a
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Taylor series around the minimum. Within the electrical

harmonicity approximation, the dipole moment is

expanded to the first derivative term

lggðQÞ ¼ lggð0Þ þ
olgg

oQ

� �

0

Q: ð5Þ

Substituting Eqs. 4 and 5 into Eq. 3, we obtain

a0 ¼ 1

2k

olgg

oQ

� �

0

olgg

oQ

� �

0

þ
X

�m¼0

jhg0jlje �mij2

Dþ �m�hx
; ð6Þ

where k is the force constant of the ground electronic state

and jh0jQj1ij2 ¼ �h=2mx has been used.

The first term in Eq. 6 is the lattice relaxation expression

for vibrational contribution to the polarizability. If the

vibrational frequencies are much smaller than the elec-

tronic frequencies (�hx� D), the first term will dominate.

Moreover, this term arises completely from the pure

vibrational contribution to the polarizability because no

electronic excitation is involved. However, the contribution

expressed by the second term in Eq. 6 results from coupled

motion of the electronic excitation and nuclear vibration

within the adiabatic approximation.

Instead of using the Placzek’s approximation, we

expand the second term in Eq. 6 in powers of �hx=D

X

�m¼0

jhg0jlje �mij2

Dþ �m�hx
¼ 1

D

X

�m¼0

h0jlgej �mih �mjlegj0i

� 1� �m
�hx
D
þ �m2 �hx

D

� �2

� � � �
" #

:

ð7Þ

Here, we assume that the electronic transition moment

lgeðQÞ is real valued. Since the vibrational levels of the

excited state j �mi form a complete set, the first term in Eq. 7

can be reduced to
X

�m¼0

h0jlgej �mih �mjlgej0i ¼ h0jl2
gej0i: ð8Þ

We also write the electronic transition moment as a

function of the vibrational coordinate and expand it in a

Taylor series around the minimum of the ground electronic

state to the first derivative term

lgeðQÞ ¼ lgeð0Þ þ
olge

oQ

� �

0

Q: ð9Þ

Substituting Eq. 9 into Eq. 8, we obtain

h0jl2
gej0i ¼ l2

geð0Þ þ
olge

oQ

� �2

0

�h

2mx
: ð10Þ

Similarly, substituting Eq. 9 into the second term on the

right side of Eq. 7 yields

X

�m¼0

�mh0jlgej �mih �mjlegj0i ¼
X

�m¼0

�m l2
geð0Þh0j �mih �mj0i

"

þlgeð0Þ
olge

oQ

� �

0

h0j �mih �mjQj0i þ h0jQj �mih �mj0ið Þ

þ
olge

oQ

� �2

0

h0jQj �mih �mjQj0i
#
: ð11Þ

It is noted that the first term is related to the Franck–

Condon factor for the displaced harmonic oscillator model

I ¼ jh0j �mij2 ¼ S �me�S

�m!
: ð12Þ

Hence, this term can be simplified by

X1

�m¼0

�mh0j �mih �mj0i ¼ S; ð13Þ

where S is the Huang–Rhys factor. Through the raising and

lowering operator formalism of the harmonic oscillator, the

second term in Eq. 11 becomes

X1

�m¼0

�m h0j �mih �mjQj0i þ h0jQj �mih �mj0ið Þ

¼ 2

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r X1

�m¼0

�mh0j �mih �mj1i: ð14Þ

The closed form of the summation in Eq. 14 has been

obtained [24, 25]; hence, the second term in Eq. 11

becomes

X1

�m¼0

�m h0j �mih �mjQj0i þ h0jQj �mih �mj0ið Þ

¼ 2

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
�d

2

� �
; ð15Þ

where d serves as a dimensionless measure of the

displacement d of the oscillators d ¼ d=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0jQ2j0i

p
: In

the same way, we obtain the third term in Eq. 11

X1

�m¼0

�mh0jQj �mih �mjQj0i ¼ �h

2mx

X1

�m¼0

�mjh1j �mij2 ¼ �h

2mx
ðSþ 1Þ:

ð16Þ

Therefore, substituting Eqs. 13, 15, and 16 into Eq. 11

gives

X

�m¼0

�mh0jlgej �mih �mjlegj0i ¼ l2
geð0ÞSþ lgeð0Þ

olge

oQ

� �

0

�
ffiffiffiffiffiffiffiffiffiffi

�h

2mx

r
ð�dÞ þ

olge

oQ

� �2

0

�h

2mx
ðSþ 1Þ: ð17Þ

After similar manipulation, we obtain the polarizability to

the order of �hx=Dð Þ2
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a0 ¼ 1

2k

olgg

oQ

� �

0

olgg

oQ

� �

0

þ
l2

geð0Þ
D
þ 1

D

olge

oQ

� �2

0

�h

2mx

þ 1

D
��hx

D
l2

geð0ÞS� lgeð0Þ
olge

oQ

� �

0

d

"(

þ
olge

oQ

� �2

0

�h

2mx
ðSþ 1Þ

#
þ �hx

D

� �2

l2
geð0ÞSðSþ 1Þ

"

�lgeð0Þ
olge

oQ

� �

0

dð2Sþ 1Þ

þ
olge

oQ

� �2

0

�h

2mx
ðS2 þ 5Sþ 1Þ

#
þ � � �

)
: ð18Þ

It is recognized in Eq. 18 that the first term is the lattice

relaxation expression for the vibrational contribution to

the polarizability and the second term is the electronic

contribution to the polarizability. If the vibrational

frequencies are much smaller than the electronic

frequencies ð�hx� DÞ; the dominant vibrational

contribution to the polarizability originates mainly from

the pure vibrational motion. Furthermore, in addition to the

lattice relaxation term and the electronic contribution term,

the higher-order correction terms to the polarizability are

derived, and they are expressed in terms of the Huang–Rhys

factor or the displacement of the oscillators d. Therefore,

these higher-order correction terms describing the

vibrational contribution to the polarizability result from the

electron–phonon coupling.

2.2 Static first hyperpolarizability

The SOS expression for the first hyperpolarizability b is

given by

1

3!
b ¼ b0 ¼

X

m 6¼0

X

n 6¼0

h0jljmihmjljnihnjlj0i
ðEm � E0ÞðEn � E0Þ

� h0jlj0i
X

m 6¼0

h0jljmihmjlj0i
ðEm � E0Þ2

: ð19Þ

For the two-level system with a single vibrational mode,

the first hyperpolarizability is expressed by

b0 ¼
X

m 6¼0

X

n6¼0

hg0jljgmihgmjljgnihgnjljg0i
ðEgm � Eg0ÞðEgn � Eg0Þ

þ
X

m6¼0

X

�n¼0

hg0jljgmihgmjlje�nihe�njljg0i
ðEgm � Eg0ÞðEe�n � Eg0Þ

þ
X

�m¼0

X

n 6¼0

hg0jlje �mihe �mjljgnihgnjljg0i
ðEe �m � Eg0ÞðEgn � Eg0Þ

þ
X

�m¼0

X

�n¼0

hg0jlje �mihe �mjlje�nihe�njljg0i
ðEe �m � Eg0ÞðEe�n � Eg0Þ

� hg0jljg0i
X

m 6¼0

hg0jljgmihgmjljg0i
ðEgm � Eg0Þ2

� hg0jljg0i
X

�m¼0

hg0jlje �mihe �mjljg0i
ðEe �m � Eg0Þ2

: ð20Þ

Through use of Eqs. 4 and 5, we find that the first and fifth

terms in Eq. 20 (the pure vibrational terms) are equal to

zero. Therefore, there is no pure vibrational contribution to

the first hyperpolarizability.

Substituting Eqs. 4 and 5 into the second and third terms

in Eq. 20 with only one pure vibrational frequency in the

denominators, we obtain

h0jQj1i
�hx

olgg

oQ

� �

0

X

�n¼0

hg1jlje�nihe�njljg0i
Dþ �n�hx

þ h1jQj0i
�hx

olgg

oQ

� �

0

X

�m¼0

hg0jlje �mihe �mjljg1i
Dþ �m�hx

:

ð21Þ

Since the matrix elements in Eq. 21 are real valued and �n

and �m are dummy variables, Eq. 21 can be written as

2
h0jQj1i

�hx

olgg

oQ

� �

0

X

�n¼0

hg1jlje�nihe�njljg0i
Dþ �n�hx

: ð22Þ

Expanding the summation in powers of �hx=D; we have

X

�n¼0

hg1jlje�nihe�njljg0i
Dþ �n�hx

¼ 1

D

X

�n¼0

"
h1jlgej�nih�njlegj0i

� 1� �n
�hx
D
þ �n2 �hx

D

� �2

��� �
 !#

:

ð23Þ

Using Eq. 9 and the completeness relationship for the

vibrational levels of the excited state, we write the first

term in Eq. 23 as

X

�n¼0

h1jlgej�nih�njlegj0i ¼ 2lgeð0Þ
olge

oQ

� �

0

h1jQj0i: ð24Þ

Therefore, the first hyperpolarizability to the order of 1=D �
�hx=Dð Þ0 becomes

b0 ’ 1

D
4

�hx

olgg

oQ

� �

0

lgeð0Þ
olge

oQ

� �

0

jh0jQj1ij2: ð25Þ

On the other hand, the electronic contribution to the

polarizability is ae ¼ 2l2
ge=D: The first derivative of the

electronic contribution to the polarizability with respect to

the vibrational mode at the minimum of the ground

electronic state is given by

oae

oQ

� �

0

¼ 4
1

D
lgeð0Þ

olge

oQ

� �

0

: ð26Þ

Through Eq. 26, Eq. 25 can be expressed by

b0 ’ 1

2k

olgg

oQ

� �

0

oae

oQ

� �

0

; ð27Þ

where k is the force constant of the ground vibrational state

and jh0jQj1ij2 ¼ �h=2mx has been used. This equation is

the lattice relaxation expression for the vibrational

316 Theor Chem Account (2009) 122:313–324
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contribution to the first hyperpolarizability b. If the

vibrational frequencies are much smaller than the elec-

tronic frequencies ð�hx� DÞ; Eq. 27 leads to the dominant

contribution to the first hyperpolarizability.

We proceed to determine the contribution from the next

higher-order terms to the first hyperpolarizability. To

consider the terms involving two electronic excitations

ðD2Þ in the denominators, we have to include the second

term in Eq. 23 and the fourth and sixth terms in Eq. 20. The

fourth and sixth terms in Eq. 20 are given by

X

�m¼0

X

�n¼0

hg0jlje �mihe �mjlje�nihe�njljg0i
ðDþ �m�hxÞðDþ �n�hxÞ

� hg0jljg0i
X

�m¼0

jhg0jlje �mij2

ðDþ �m�hxÞ2
: ð28Þ

We expand the first term in powers of �hx=D

1

D2

X

�m¼0

X

�n¼0

h0jlgej �mih �mjleej�nih�njlegj0i
�

� 1� ð �mþ �nÞ�hx
D
þ � � �

� ��
: ð29Þ

Keeping Eq. 29 to the order of 1=D2; we obtain
X

�m¼0

X

�n¼0

h0jlgej �mih �mjleej�nih�njlegj0i¼ l2
geð0Þleeð0Þ

þ 2lgeð0Þ
olge

oQ

� �

0

olee

oQ

� �

0

�
þleeð0Þ

olge

oQ

� �2

0

#
h0jQ2j0i:

ð30Þ

Similarly, the second term in Eq. 28 is also expanded to the

order of 1=D2

X

�m¼0

jhg0jlje �mij2

ðDþ �m�hxÞ2
¼ 1

D2

X

�m¼0

h0jlgej �mih �mjlegj0i

� 1� 2 �m
�hx
D
þ � � �

� �
: ð31Þ

Keeping Eq. 31 to the order of 1=D2; we have

X

�m¼0

h0jlgej �mih �mjlegj0i ¼ l2
geð0Þ þ

olge

oQ

� �2

0

h0jQ2j0i:

ð32Þ

Hence, Eq. 28 to the order of 1=D2 becomes

leeð0Þ�lggð0Þ
D2

l2
geð0Þþ

h0jQ2j0i
D2

� 2lgeð0Þ
olge

oQ

� �

0

olee

oQ

� �

0

"
þðleeð0Þ�lggð0ÞÞ

olge

oQ

� �2

0

#
:

ð33Þ

Additionally, the second term in Eq. 23 is given by

��hx

D2

X

�n¼0

�nh1jlgej�nih�njlegj0i: ð34Þ

substituting Eq. 9 into Eq. 34, we obtain

X

�n¼0

�n l2
geð0Þh1j�nih�nj0i þ lgeð0Þ

olge

oQ

� �

0

ðh1j�nih�njQj0i
"

þh1jQj�nih�nj0iÞ
olge

oQ

� �2

0

h1jQj�nih�njQj0i
#
: ð35Þ

After similar manipulation, Eq. 34 can be simplified by

X

�n¼0

�nh1jlgej�nih�njlegj0i ¼ l2
geð0Þ �

d
2

� �
þ lgeð0Þ

olge

oQ

� �

0

�
ffiffiffiffiffiffiffiffiffiffi

�h

2mx

r
ð2Sþ 1Þ þ

olge

oQ

� �2

0

�h

2mx
�3

2
d

� �
: ð36Þ

Those terms with the order of 1=D2 in Eq. 22 are then given

by

2
h0jQj1i

�hx

olgg

oQ

� �

0

��hx

D2

� �

� l2
geð0Þ �

d
2

� �"
þ lgeð0Þ

olge

oQ

� �

0

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
ð2Sþ 1Þ

þ
olge

oQ

� �2

0

�h

2mx
�3

2
d

� �#
: ð37Þ

Combining Eqs. 27, 33, and 37, we write the first

hyperpolarizability as

b0 ¼ 1

2k

olgg

oQ

� �

0

oae

oQ

� �

0

þ
leeð0Þ � lggð0Þ

D2
l2

geð0Þ

þ 1

D2

�h

2mx
2lgeð0Þ

olge

oQ

� �

0

olee

oQ

� �

0

�

þðleeð0Þ � lggð0ÞÞ
olge

oQ

� �2

0

#
� 2

D2

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
olgg

oQ

� �

0

� l2
geð0Þ �

d
2

� �
þ lgeð0Þ

olge

oQ

� �

0

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
ð2Sþ 1Þ

"

þ
olge

oQ

� �2

0

�h

2mx
�3

2
d

� �#
þ � � �; ð38Þ

where h0jQ2j0i ¼ �h=2mx and h0jQj1i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=2mx

p
have

been used.

It is noted that the first term in Eq. 38 is the lattice

relaxation expression for vibrational contribution to the first

hyperpolarizability. If the vibrational frequencies are much

smaller than the electronic frequencies, the lattice relaxa-

tion term will dominate. It is also worth mentioning that

there is no pure vibrational contribution to the first hyper-

polarizability. Therefore, the lattice relaxation contribution

with the order of 1=D to the first hyperpolarizability results
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from the coupled motion of the electronic excitation and the

nuclear vibration within the adiabatic approximation.

Moreover, we also obtain the higher-order correction terms

to the first hyperpolarizability.

2.3 Static second hyperpolarizability

From the perturbation theory, the second hyperpolari-

zability c can be expressed by

1

4!
c ¼ c0 ¼

X

k 6¼0

X

m 6¼0

X

n 6¼0

h0jljkihkj�ljmihmj�ljnihnjlj0i
ðEk � E0ÞðEm � E0ÞðEn � E0Þ

�
X

k 6¼0

h0jljkihkjlj0i
ðEk � E0Þ

X

m 6¼0

h0jljmihmjlj0i
ðEm � E0Þ2

; ð39Þ

where �l ¼ l� h0jlj0i:
We first consider the pure vibrational terms in Eq. 39

given by

X

k 6¼0

X

m6¼0

X

n 6¼0

hg0jljgkihgkj�ljgmihgmj�ljgnihgnjljg0i
ðEgk � Eg0ÞðEgm � Eg0ÞðEgn � Eg0Þ

�
X

k 6¼0

hg0jljgkihgkjljg0i
ðEgk � Eg0Þ

X

m6¼0

hg0jljgmihgmjljg0i
ðEgm � Eg0Þ2

: ð40Þ

Under the same approximation, Eq. 40 then becomes

1

2ð�hxÞ3
olgg

oQ

� �4

0

jh0jQj1ij2jh1jQj2ij2

� 1

ð�hxÞ3
olgg

oQ

� �2

0

jh0jQj1ij2
" #2

: ð41Þ

Using jh0jQj1ij2 ¼ �h=2mx and jh1jQj2ij2 ¼ �h=mx; we

find that Eq. 41 is equal to zero. Analogous to the case for

the first hyperpolarizability b, there is also no pure vibra-

tional contribution to the second hyperpolarizability c. In

particular, as shown in Eq. 18, only the polarizability a
contains a pure vibrational contribution.

Next, we consider those terms with two pure vibrational

frequencies in the denominators

X

�k¼0

X

m 6¼0

X

n 6¼0

hg0jlje�kihe�kj�ljgmihgmj�ljgnihgnjljg0i
ðEe�k � Eg0ÞðEgm � Eg0ÞðEgn � Eg0Þ

þ
X

k 6¼0

X

�m¼0

X

n6¼0

hg0jljgkihgkj�lje �mihe �mj�ljgnihgnjljg0i
ðEgk � Eg0ÞðEe �m � Eg0ÞðEgn � Eg0Þ

þ
X

k 6¼0

X

m 6¼0

X

�n¼0

hg0jljgkihgkj�ljgmihgmj�lje�nihe�njljg0i
ðEgk � Eg0ÞðEgm � Eg0ÞðEe�n � Eg0Þ

�
X

�k¼0

hg0jlje�kihe�kjljg0i
ðEe�k � Eg0Þ

X

m6¼0

hg0jljgmihgmjljg0i
ðEgm � Eg0Þ2

:

ð42Þ

Under the same approximation, Eq. 42 can be reduced to

hg2j�ljg1ihg1jljg0i
ð�hxÞ2

X

�k¼0

hg0jlje�kihe�kj�ljg2i
ðDþ �k�hxÞ

þ hg0jljg1ihg1jljg0i
ð�hxÞ2

X

�m¼0

hg1j�lje �mihe �mj�ljg1i
ðDþ �m�hxÞ

� jhg0jljg1ij2

ð�hxÞ2
X

�k¼0

hg0jlje�kihe�kjljg0i
ðDþ �k�hxÞ : ð43Þ

We expand the summations in Eq. 43 in terms of �hx=D

X

�k¼0

hg0jlje�kihe�kj�ljg2i
ðDþ �k�hxÞ

¼ 1

D

X

�k¼0

h0jlgej�kih�kjlegj2i
�

� 1� �k
�hx
D
þ � � �

� ��
ð44Þ

X

�m¼0

hg1j�lje �mihe �mj�ljg1i
ðDþ �m�hxÞ ¼ 1

D

X

�m¼0

h1jlgej �mih �mjlegj1i
�

� 1� �m
�hx
D
þ � � �

� ��
ð45Þ

X

�k¼0

hg0jlje�kihe�kjljg0i
ðDþ �k�hxÞ ¼ 1

D

X

�k¼0

h0jlgej�kih�kjlegj0i
�

� 1� �k
�hx
D
þ � � �

� ��
: ð46Þ

The first terms on the right side of Eqs. 44, 45, and 46

become

X

�k¼0

h0jlgej�kih�kjlegj2i ¼
olge

oQ

� �2

0

h0jQ2j2i ð47Þ

X

�m¼0

h1jlgej �mih �mjlegj1i ¼ l2
geð0Þ þ

olge

oQ

� �2

0

h1jQ2j1i

ð48Þ
X

�k¼0

h0jlgej�kih�kjlegj0i¼ l2
geð0Þþ

olge

oQ

� �2

0

h0jQ2j0i: ð49Þ

Therefore, Eq. 43 expanded to the order of 1=D is given by

1

k2

olgg

oQ

� �2

0

olge

oQ

� �2

0

1

D
; ð50Þ

where k is the force constant of the ground vibrational

state. If the vibrational frequencies are much smaller than

the electronic frequencies, this term will dominate.

We then consider those terms involved in D2 in the

denominators, and include both the second terms in Eqs.

44, 45, and 46 and those terms with only one pure vibra-

tional frequency in the denominators in Eq. 39 given by

318 Theor Chem Account (2009) 122:313–324

123



X

k 6¼0

X

�m¼0

X

�n¼0

hg0jljgkihgkj�lje �mihe �mj�lje�nihe�njljg0i
ðEgk � Eg0ÞðEe �m � Eg0ÞðEe�n � Eg0Þ

þ
X

�k¼0

X

m 6¼0

X

�n¼0

hg0jlje�kihe�kj�ljgmihgmj�lje�nihe�njljg0i
ðEe�k � Eg0ÞðEgm � Eg0ÞðEe�n � Eg0Þ

þ
X

�k¼0

X

�m¼0

X

n 6¼0

hg0jlje�kihe�kj�lje �mihe �mj�ljgnihgnjljg0i
ðEe�k � Eg0ÞðEe �m � Eg0ÞðEgn � Eg0Þ

�
X

k 6¼0

hg0jljgkihgkjljg0i
ðEgk � Eg0Þ

X

�m¼0

hg0jlje �mihe �mjljg0i
ðEe �m � Eg0Þ2

: ð51Þ

It is noted that k and n are dummy variables and k is only

equal to 1 through Eq. 5. Hence, Eq. 51 can be simplified

by

2
hg0jljg1i

�hx

X

�m¼0

X

�n¼0

hg1j�lje �mihe �mj�lje�nihe�njljg0i
ðDþ �m�hxÞðDþ �n�hxÞ

þ
X

�k¼0

X

m 6¼0

X

�n¼0

hg0jlje�kihe�kj�ljgmihgmj�lje�nihe�njljg0i
ðDþ �k�hxÞðm�hxÞðDþ �n�hxÞ

� jhg0jljg1ij2

�hx

X

�m¼0

hg0jlje �mihe �mjljg0i
ðDþ �m�hxÞ2

: ð52Þ

We expand the summations in terms of �hx=D to the order

of 1=D2: Through similar manipulation, Eq. 52 can be

expressed by

1

D2

1

k
2ðleeð0Þ � lggð0ÞÞlgeð0Þ

olge

oQ

� �

0

olgg

oQ

� �

0

�

þ 1

k
l2

geð0Þ
olee

oQ

� �

0

olgg

oQ

� �

0

þ 1

k2

3�hx
2

olge

oQ

� �2

0

olee

oQ

� �

0

olgg

oQ

� �

0

þ 1

k
2l2

geð0Þ
olge

oQ

� �2

0

þ 1

2k2

�hx
2

olge

oQ

� �4

0

� 1

2k
l2

geð0Þ
olgg

oQ

� �2

0

þ 1

2k2

�hx
2

olge

oQ

� �2

0

olgg

oQ

� �2

0

)
; ð53Þ

where k is the force constant of the ground vibrational

state.

Furthermore, we also have to include the second terms

in Eqs. 44, 45, and 46. After similar manipulation to sim-

plify these terms, those terms with the order of 1=D2 in Eq.

43 become

� 1

D2

1

2k

olgg

oQ

� �2

0

l2
geð0Þ � lgeð0Þ

olge

oQ

� �

0

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
4d

"

þ
olge

oQ

� �2

0

�h

2mx
ð4Sþ 5Þ

#
: ð54Þ

Collecting all the terms with the order of 1=D2 in Eqs. 53

and 54, we obtain

1

k

1

D2
2ðleeð0Þ�lggð0ÞÞlgeð0Þ

olge

oQ

� �

0

olgg

oQ

� �

0

þ 1

k

1

D2
l2

geð0Þ
olee

oQ

� �

0

olgg

oQ

� �

0

þ1

k

1

D2
2l2

geð0Þ
olge

oQ

� �2

0

� 1

k

1

D2
l2

geð0Þ
olgg

oQ

� �2

0

� 2

k2

1

D2

�hx
2

olge

oQ

� �2

0

olgg

oQ

� �2

0

ðSþ 1Þ

þ 1

2k2

1

D2

�hx
2

olge

oQ

� �4

0

þ 1

k2

1

D2

3�hx
2

olge

oQ

� �2

0

olee

oQ

� �

0

olgg

oQ

� �

0

þ 1

2k

1

D2

olgg

oQ

� �2

0

lgeð0Þ
olge

oQ

� �

0

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
4d: ð55Þ

It is worth noting that one half of the contribution from

the forth term,

�1

k

1

D2
l2

geð0Þ
olgg

oQ

� �2

0

; ð56Þ

results from those terms with only one pure vibrational

frequency in the denominators in Eq. 51 and the other half

of the contribution results from those terms with two pure

vibrational frequencies in the denominators in Eq. 42. On

the other hand, the electronic contribution to the first

hyperpolarizability is

be ¼ 6ðlee � lggÞ
l2

ge

D2
: ð57Þ

The first derivative of the electrical contribution to the first

hyperpolarizability with respect to the vibrational mode at

the minimum of the ground electronic state is given by

obe

oQ

� �

0

¼ 6
olee

oQ

� �

0

�
olgg

oQ

� �

0

� �
l2

geð0Þ
D2

þ 6ðleeð0Þ � lggð0ÞÞ
2lgeð0Þ

D2

olge

oQ

� �

0

: ð58Þ

Through Eqs. 58 and 26, the first four terms in Eq. 55 can

be expressed by

1

k

1

8

oae

oQ

� �

0

oae

oQ

� �

0

þ1

6

olgg

oQ

� �

0

obe

oQ

� �

0

� �
: ð59Þ

Hence, combining Eq. 50 with Eq. 55, we write the second

hyperpolarizability as

c0 ¼ 1

D
1

k2

olgg

oQ

� �2

0

olge

oQ

� �2

0

þ1

k

1

8

oae

oQ

� �

0

oae

oQ

� �

0

�

þ1

6

olgg

oQ

� �

0

obe

oQ

� �

0

�
� 1

D2

�hx
k2

olgg

oQ

� �2

0

olge

oQ

� �2

0

ðSþ 1Þ

þ 1

D2

�hx
4k2

olge

oQ

� �4

0

þ 1

D2

3�hx
2k2

olge

oQ

� �2

0

olee

oQ

� �

0

olgg

oQ

� �

0

þ 1

D2

1

2k

olgg

oQ

� �2

0

lgeð0Þ
olge

oQ

� �

0

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
4dþ � � � : ð60Þ

If the vibrational frequencies are much smaller than the

electronic frequencies, the first term will dominate. The
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second and third terms in Eq. 60 related to the derivatives

of the electrical contribution to the polarizability and

the first hyperpolarizability are the lattice relaxation

expression for the vibrational contribution to the second

hyperpolarizability. Moreover, there is no pure vibrational

contribution to the second hyperpolarizability. Therefore,

the contribution with the order of 1=D to the second

hyperpolarizability arises from the coupled motion of the

electronic excitation and the nuclear vibration within the

adiabatic approximation. In addition, the higher-order

correction terms are also obtained.

For the current study, we will focus on a centrosym-

metric system with only two electronic energy levels. For

this system, the dipole moments are equal to zero,

lggðQÞ ¼ leeðQÞ ¼ 0. It is straightforward but laborious to

derive the second hyperpolarizability to the order of D�4

expressed by

c0 ¼ 1

D2

2l2
geð0Þ
k

olge

oQ

� �2

0

þ�hx
4k2

olge

oQ

� �4

0

" #

� 1

D3
l4

geð0Þ þ l3
geð0Þ

olge

oQ

� �

0

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
ð�2dÞ

"

þ l2
geð0Þ

olge

oQ

� �2

0

�h

2mx
ð8Sþ 6Þ

þ lgeð0Þ
olge

oQ

� �3

0

�h

2mx

� �3=2

ð�8dÞ

þ
olge

oQ

� �4

0

�h

2mx

� �2

ð2Sþ 3Þ
#
þ �hx

D4
l4

geð0Þ4S

"

þl3
geð0Þ

olge

oQ

� �

0

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
� 6dþ 3

2
d3

� �� �

þ l2
geð0Þ

olge

oQ

� �2

0

�h

2mx
ð12S2 þ 56Sþ 8Þ

þ lgeð0Þ
olge

oQ

� �3

0

�h

2mx

� �3=2

� 30dþ 7d3
� �	 


þ
olge

oQ

� �4

0

�h

2mx

� �2

ð5S2 þ 49Sþ 8Þ
#
þ � � � ð61Þ

3 Model calculations

3.1 Two-level system: ethylene

It is important to compare the relative importance of the

various contributions to the polarizability and the hyper-

polarizabilities. To obtain an order-of-magnitude estimate

for those terms derived in the previous sections, we first

consider the simplest p-electron system: ethylene. We will

use Yaron and Silbey’s parameters for ethylene [3]. A

typical vibrational frequency x for a C=C double bond is

0.19 eV. The energy difference between the ground and

excited electronic states D is taken to be the band gap in

polyacetylene, approximately 1.4 eV. The average vibra-

tional amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=2mx

p
for a C=C double bond is

0.043 Å. The calculated change in bond length on excita-

tion of octatetraene is of the same order of magnitude

0.059 Å for the central bonds, so we expect d to be of order

unity.

Furthermore, in order to estimate the derivative of the

transition moment, we will also follow Yaron and Silbey’s

argument [3] that the transition moment is just proportional

to the bond length

olge

oQ

� �

0

¼
lgeð0Þ

Qe
; ð62Þ

where Qe is the bond length (Qe = 1.4 Å). Therefore,

substituting these parameters into Eqs. 18 and 61, we can

estimate the relative magnitude of various terms in the

polarizability and in the second hyperpolarizability. These

results are shown in Tables 1 and 2, respectively.

Table 1 presents the magnitude of various contributions

from those terms in Eq. 18 relative to the electronic con-

tribution l2
geð0Þ=D: As shown in Table 1, the relative

magnitude of these contributions decreases with the

increasing of the order of �hx=D; and it also decreases with

the increasing of the order of olge=oQ
� �

0
: In addition, the

sum of the relative magnitude from the vibrational con-

tribution terms is -0.023311. Therefore, the contributions

of these higher-order terms to the polarizability for ethyl-

ene are extremely small.

Table 2 presents the relative magnitude of various

contributions from those terms in Eq. 61. The value of the

contribution from the a2 term ðl2
geð0Þ=D2Þðolge=oQÞ20 rela-

tive to the electronic contribution l4
geð0Þ=D3 is the same as

that obtained by Yaron and Silbey [3]. However, the value

of the contribution from the term l4
geð0Þ=D4 relative to the

electronic contribution is approximately four times as large

as that obtained by Yaron and Silbey. This difference

results from the fact that Yaron and Silbey only considered

those terms with a pure vibrational frequency in the

denominator in Eq. 39. Additionally, the sum of the rela-

tive magnitude from the vibrational contribution terms is

0.184496. Analogous to the case for the polarizability,

Table 2 also shows that the contributions from the higher-

Table 1 Relative magnitude of various contributions to the polariz-

ability a for ethylene

1
D

�hx
D

� �n
l2

geð0Þ lgeð0Þ
olge

oQ

� �

0

olge

oQ

� �2

0

0 1 0 0.00094

1 -0.033 0.0041 -0.00016

2 0.0056 -0.00083 0.000039
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order terms to the second hyperpolarizability for ethylene

are relatively small.

As shown in Tables 1 and 2, the vibrational contribution

to the polarizability and to the second hyperpolarizability

for ethylene is much smaller than the electronic contribu-

tion. Most of the correction terms are related to the

derivative of the electronic transition moment; hence, the

vibrational contribution from these terms originates from

the dependence of the electronic transition moment on the

vibrational displacements. Equation 62 has been used to

estimate the derivative of the electronic transition moment

[3], and it was pointed out that the dependence of the

electronic transition moment on the vibrational displace-

ments for ethylene is very weak. Therefore, the vibrational

contribution from these correction terms is small. Fur-

thermore, it is noted in the present model that the sum of

the relative magnitude from the vibrational contribution

terms for the polarizability for ethylene is -0.023311. In

contrast with the case for the second hyperpolarizability,

the sum of the relative magnitude from the vibrational

contribution terms is 0.184496. Thus, the vibrational con-

tribution for the second hyperpolarizability for ethylene is

more significant than that for the polarizability.

3.2 Two-band system: polyacetylene

It is significant to consider whether any qualitatively new

effects will arise in polymeric systems. The simplest two-

band system, polyacetylene, will be examined using the

tight-binding approximation with harmonic vibrations. The

Longuet–Higgins and Salem’s model is used to describe

the polyenes [26–29]

H ¼
X

n

bðrnÞ cþn cnþ1 þ cþnþ1cn

� �
þ
X

n

f ðrnÞ; ð63Þ

where b(r) is the transfer (resonance) integral and f(r) is r-

bond compressional energy. Following Kürti and Kuzmany

[26], we assume that b(r) is given by the exponential

function

bðrÞ ¼ �Abe�r=Bb ; ð64Þ

where r is the distance between the two carbon atoms,

Ab ¼ 243:5 eV, and Bb ¼ 0:3075 Å. At equilibrium, the

lengths of single and double bonds are R1 ¼ 1:45 Å and

R2 ¼ 1:36 Å, respectively. For a perfect dimerized chain

with periodic boundary condition, the eigenvalue xk for the

one electron state |ki is given by

xk ¼ ½b2
1 þ b2

2 þ 2b1b2 cosðkaÞ�1=2

¼
ffiffiffi
2
p

t0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2x0 þ cos ka

p
;

ð65Þ

where a is the unit cell length, t0 ¼ Abe�a=2Bb ; x0 ¼ ðr1 �
r2Þ=2Bb; and b1 and b2 are the resonance integrals for the

single and double bonds, respectively.

According to Yaron and Silbey’s argument [3], we only

need to consider the optical K = 0 phonon mode. In order

to calculate the polarizability a and the second hyper-

polarizability c, we will use simple displaced harmonic

oscillators to approximate the excited state potential sur-

faces. Although the derivation is similar to the case for the

two-level system, a sum over all excited electronic states is

necessary. From Eq. 18, the polarizability with real tran-

sition moments is given by

a0 ¼ 1

2k

olgg

oQ

� �

0

olgg

oQ

� �

0

þ
X1

i¼1

l2
gei
ð0Þ

Di
þ 1

Di

olgei

oQ

� �2

0

�h

2mx

 !

þ
X1

i¼1

1

Di
��hx

Di
l2

gei
ð0ÞSi � lgei

ð0Þ
olgei

oQ

� �

0

di

��

þ
olgei

oQ

� �2

0

�h

2mx
ðSi þ 1Þ

#

þ �hx
Di

� �2

l2
gei
ð0ÞSiðSi þ 1Þ

"

�lgei
ð0Þ

olgei

oQ

� �

0

dið2Si þ 1Þ

þ
olgei

oQ

� �2

0

�h

2mx
ðS2

i þ 5Si þ 1Þ
#
þ � � �

)
; ð66Þ

where Q refers to the K = 0 phonon mode, lgei
is the tran-

sition moment between the ground and an excited electronic

state, and the sum is over all excited electronic states.

The band theory for polyacetylene within the tight

binding approximation has been developed by Cojan,

Agrawal, and Flytzanis [28, 29]. For polyacetylene, the

dipole moment for the ground electronic state vanishes

ðlggðQÞ ¼ 0Þ; so the first term in Eq. 66 becomes zero. The

second term in Eq. 66 is the electronic contribution to the

polarizability expressed by

Table 2 Relative magnitude of

various contributions to the

second hyperpolarizability c for

ethylene

1
D

� �n l4
geð0Þ l3

geð0Þ
olge

oQ

� �

0
l2

geð0Þ
olge

oQ

� �2

0
lgeð0Þ

olge

oQ

� �3

0

olge

oQ

� �4

0

2 0 0 0.028 0 6.6 9 10-6

3 -1 0.061 -0.0075 0.00023 -3.1 9 10-6

4 0.13 -0.03 0.0029 -0.00014 2.5 9 10-6
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X1

i¼1

l2
gei
ð0Þ

Di
: ð67Þ

In the large N limit, lgei
is replaced by X(k) and the sum

over states is replaced by an integral over the first Brillouin

zone [26, 28–30]

2N
a

2p

Zp
a

�p
a

jXðkÞj2

ek
dk; ð68Þ

where ek ¼ 2xk is the transition energy at k. A factor of 2

has been included to account for the double occupation of

the orbitals. When we derived Eq. 68 from Eq. 67, the

summation over many-electron wave functions has been

replaced by the summation over single-electron wave

functions and the transition matrix element lgei
has been

replaced by X(k) given by

XðkÞ ¼ ia
ðb2

1 � b2
2Þ

e2
k

¼ i
a

4

2brat

½ð1þ cos kaÞ þ b2
ratð1� cos kaÞ�

:

ð69Þ

Following Yaron and Silbey [3], we use periodic

boundary conditions for the phonon and treat the

electronic motion as a open chain. The K = 0 optical

phonon for a chain of 2N carbons is

QK¼0 ¼
1ffiffiffiffiffiffi
2N
p

X2N

j¼1

ð�1Þjdrj: ð70Þ

Since the electronic wave functions are invariant to the

transformation ðb1; b2Þ)ðcb1; cb2Þ where c is a constant

[3], lgei
depends only on the ratio

brat ¼
b1 � b2

b1 þ b2

¼ � tanh x0: ð71Þ

Therefore, we can replace the derivative with respect to Q

in Eq. 66 with a derivative with respect to brat

olgei

oQ

� �

0

¼
olgei

obrat

� �

0

obrat

oQ

� �

0

:

In the large N limit, we have

olgei

oQ

� �

0

! dXðkÞ
dQ

� �

0

¼ dXðkÞ
dbrat

� �

0

dbrat

dQ

� �

0

¼ i
a

2

ð1þ cos kaÞ � b2
ratð1� cos kaÞ

½ð1þ cos kaÞ þ b2
ratð1� cos kaÞ�2

ffiffiffiffiffiffi
1

2N

r
1

Bb

1

cosh2 x0

:

ð72Þ

Furthermore, the displacement di is replaced by the

electron–phonon coupling kk [31]

di ! kk ¼ �
1

k0

oekðQÞ
oQ

� �

0

ð73Þ

where 0 is the equilibrium geometry of the ground

electronic state, k0 is the force constant for the K = 0

phonon mode in the ground (and excited) state, and ek is

the energy of the excited state relative to the ground state.

Similarly, the Huang–Rhys factor Si is also expressed by

the electron-phonon coupling kk

Si ¼
1

2

kd2
i

�hx
! 1

2

k0

�hx
k2

k : ð74Þ

In addition, the size dependence of each term in Eq. 66

can be analyzed in the large N limit. It is noted that the

electronic contribution in Eq. 68 is proportional to N. From

Eqs. 72, 73, and 74, we find for polyacetylene that

olgei
=oQ

� �
0

is proportional to N�1=2; di to N�1=2; and Si to

N�1: For example, the size dependence for the third term in

Eq. 66 is given by

X1

i¼1

1

Di

olgei

oQ

� �2

0

�h

2mx
�N

1ffiffiffiffi
N
p
� �2

¼ 1; ð75Þ

and the size dependence for the fourth term becomes

X1

i¼1

1

Di
��hx

Di

� �
l2

gei
ð0ÞSi�N

1

N

� �
¼ 1: ð76Þ

Table 3 displays the size dependence of each term in

Eq. 66 for the polarizability of polyacetylene in the large N

limit.

As shown in Table 3, only the size dependence of the

electronic contribution term is proportional to N, while the

size dependence of the other terms is smaller than N.

Therefore, these higher-order terms for polyacetylene are

negligible and only the electronic contribution is important

in the large N limit.

We can obtain the expression for the second hyper-

polarizability similar to Eq. 60 to the order of D�2: It is

noted that lggðQÞ ¼ 0 for polyacetylene, so only two terms

survive. Following the derivation of the second hyper-

polarizability for the two-level system, we have

c0 ¼ 1

8k0

oae

oQ

� �

0

oae

oQ

� �

0

þ �hx

4k2
0

X1

i¼1

1

Di

olgei

oQ

� �2

0

X1

j¼1

1

Dj

olgej

oQ

� �2

0

: ð77Þ

In the large N limit, the derivative of the polarizability with

respect to the vibrational mode

oae

oQ

� �

0

¼
X1

i¼1

4

Di
lgei
ð0Þ

olgei

oQ

� �

0

ð78Þ
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becomes

2N
a

2p

Zp
a

�p
a

4

ek
X�ðkÞ dXðkÞ

dQ

� �

0

dk: ð79Þ

We use Kürti and Kuzmany’s parameters for polyacetylene

[26]. The force constant of the K = 0 phonon mode is

5.390 mdyne/Å. Therefore, we can calculate the a2 term

c0v ¼ 1

8k0

oae

oQ

� �

0

oae

oQ

� �

0

: ð80Þ

It is noticed that the size dependence of the a2 term is

proportional to N. On the other hand, through Eq. 72, the

size dependence of the second term in Eq. 77 is given by

�hx

4k2
0

X1

i¼1

1

Di

olgei

oQ

� �2

0

�
X1

j¼1

1

Dj

olgej

oQ

� �2

0

� 1: ð81Þ

Hence, only the a2 term contributes to the second hyper-

polarizability to the order of D�2 in the large N limit.

Furthermore, we compare the contribution of the a2 term

with the value of the pure electronic second hyperpolariz-

ability. The band theory result for the electronic second

hyperpolarizability is given by [29]

c0e ¼ 2N
a

2p

Zp
a

�p
a

1

ek

o

ok

X�ðkÞ
ek

� �
o

ok

XðkÞ
ek

� �
� jXðkÞj

4

e3
k

" #
dk:

ð82Þ

Through Eqs. 80 and 82, we determine the ratio of vibra-

tional contribution from the a2 term to electronic

contribution, c0v=c0e ¼ 44%: If we express the total second

hyperpolarizability as a sum of the contributions from the

a2 term and the pure electronic term, c0 ¼ c
0e þ c

0v: Thus,

the a2 term contributes 31%ðc0v=c0Þ to the whole second

hyperpolarizability. The result is different from Yaron and

Silbey’s result [3]. This inconsistency arises from the fact

that we use the different parameters for the transfer inte-

grals and Yaron and Silbey use the parameters for a C=C

double bond to approximate the force constant k0 for

polyacetylene.

4 Discussion and conclusions

We applied the exact SOS formulas for static polariza-

bilities and hyperpolarizabilities expressed in terms of

vibronic states to the two-level system with a single

vibrational mode. For this system, we derived vibrational

contributions to (hyper)polarizabilities in a systematic

expansion in the powers of �hx=D; and obtained the lattice

relaxation expressions for the vibrational contributions and

the contributions from the next higher-order correction

terms. Additionally, we also obtained additional terms not

contained in the formulas obtained using the Placzek’s

approximation. Those higher-order terms for the vibra-

tional contribution expressed in terms of the Huang–Rhys

factor or the displacement of the oscillators depend on the

strength of the electron–phonon coupling. Similarly, this

method was also generalized to the multi-level system with

multiple vibrational modes. By performing calculations on

model systems, we found that the contributions from the

higher-order terms to the polarizability and to the second

hyperpolarizability for ethylene are relatively small. On the

other hand, it was shown that only electronic contribution

to the polarizability for polyacetylene is significant.

Moreover, the contribution from the a2 term and the

electronic contribution for polyacetylene are comparable.

The contribution of the a2 term is 44% of the electronic

contribution. Therefore, inclusion of vibrations for poly-

acetylene has a non-negligible effect on the second

hyperpolarizability.

We have examined the validity of the lattice relaxation

expression of vibrational contributions to static linear and

nonlinear optical coefficients from the exact quantum

mechanical expression. If the vibrational frequencies are

much smaller than the electronic frequencies, the lattice

relaxation expression for vibrational contributions to the

polarizability will dominate, and this term is a pure

vibrational contribution. In addition, the contributions from

the higher-order terms to the polarizability are negligible in

the solid-state limit. In particular, there are no pure

vibrational contributions to first and the second hyper-

polarizabilities. Similarly, the lattice relaxation expression

Table 3 The size dependence of each term in Eq. 66 for the polarizability of polyacetylene in the large N limit

ð1=2kÞðolgg=oQÞ0ðolgg=oQÞ0 = 0 =0
P1

i¼1 l2
gei
ð0Þ=Di *N =N

P1
i¼1ð1=DiÞðolgei

=oQÞ20ð�h=2mxÞ �Nð1=
ffiffiffiffi
N
p
Þ2 =1

P1
i¼1ð1=DiÞð��hx=DiÞl2

gei
ð0ÞSi *N(1/N) =1

P1
i¼1ð1=DiÞð��hx=DiÞlgei

ð0Þðolgei
=oQÞ0ð�diÞ �Nð1=

ffiffiffiffi
N
p
Þ2 =1

P1
i¼1ð1=DiÞð��hx=DiÞðolgei

=oQÞ20ð�h=2mxÞðSi þ 1Þ �Nð1=
ffiffiffiffi
N
p
Þ2ð1=N þ 1Þ =1/N ? 1

P1
i¼1ð1=DiÞð�hx=DiÞ2l2

gei
ð0ÞSiðSi þ 1Þ *N(1/N)(1/N ? 1) =1/N ? 1

P1
i¼1ð1=DiÞð�hx=DiÞ2lgei

ð0Þðolgei
=oQÞ0ð�diÞð2Si þ 1Þ �Nð1=

ffiffiffiffi
N
p
Þð1=

ffiffiffiffi
N
p
Þð1=N þ 1Þ =1/N ? 1

P1
i¼1ð1=DiÞð�hx=DiÞ2ðolgei

=oQÞ20ð�h=2mxÞðS2
i þ 5Si þ 1Þ �Nð1=

ffiffiffiffi
N
p
Þ2ð1=N2 þ 1=N þ 1Þ =1=N2 þ 1=N þ 1
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for vibrational contributions to the first hyperpolarizability

is dominant. However, there exist other terms at the same

order as the lattice relaxation expression for vibrational

contributions to the second hyperpolarizability. When the

dipole moment of the ground electronic state for symmetric

modes vanishes, only two terms at this order survive. One

is the lattice relaxation expression (a2 term) and the other

involves the derivative of the electronic transition moment

with respect to the vibrational mode. In the solid-state

limit, only the a2 term is important.

The current study concentrates on static vibrational

polarizabilities and hyperpolarizabilities determined from

the general perturbation approach under the electrical and

mechanical harmonicities. Additionally, two special cases,

ethylene and polyacetylene, are considered to compare the

contributions from various terms to the polarizability and

to the second hyperpolarizability. In the future, dynamic

polarizabilities and hyperpolarizabilities including the fre-

quency dependence of the electric field will be considered

under the present model, and the effects of the correction

terms from anharmonicity contributions and the chain-

length dependence of the contributions from various terms

in polarizabilities and hyperpolarizabilities deserve further

investigation.
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