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Quantum coherent transport through a multiply-connected network is investigated by the free-electron
network model (FENM). Within this model, we study p-conjugated molecules such as benzenedithiol
(BDT) in order to understand the influence of nontrivial topological structures on the transport behavior.
The analytical solutions for transmission functions and I–V characteristics of the simplest networked con-
jugated molecules are derived. Moreover, quantum effects such as resonance and interference are clearly
revealed in this approach. We have also compared our FENM approach with the non-equilibrium Green’s
function (NEGF) method within tight-binding calculation.
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1. Introduction

In 1974, Aviram and Ratner put forward the first theoretical
proposal of a single molecular rectifier [1], but it received little
attention owing to the limit of technology at that time. With the
advances of self-assembling techniques and scanning tunneling
microscopes in last two decades, their original ideas led to the
birth of molecular electronics which has given rise to extensive
experimental [2–10] and theoretical [11–17] investigation, thanks
to its potential applications to nanoelectronic devices [18,19].
Additionally, single molecular electronics is also the best material
to study the many-body effects in quantum transport such as
Coulomb blockade [20,21], Kondo effects [20–22] and current–
voltage hysteresis [23]. For chemists, it is significant to under-
stand the structure–conductivity relationship like chain length
dependence [24], dihedral angle [10] and functional group effects
[25].

Besides the effects mentioned above, the network structure also
plays an important role in quantum transport [26,27]. To clarify
the relation between the network structure and the electron trans-
port property of a single molecular junction, here, in this paper, we
developed a simple quantum transport theory for p-conjugated
systems based on the free-electron network model (FENM) instead
of using the formalisms like the Lippmann–Schwinger scattering
theory [13] and the non-equilibrium Green’s function (NEGF) for-
mulation [14,11,12]. It is feasible to adopt the FENM to describe
the most advanced nanoelectronic devices since the FENM has al-
ll rights reserved.
ready been successfully applied to elaborate absorption spectra of
conjugated systems [28,29]. Through the FENM, the subtle quan-
tum effects such as resonance and interference on quantum trans-
port can be easily revealed.

2. Model

In coherent quantum transport, the currents can be calculated
by the well-known Landauer’s formula

I ¼ 2e
h

Z þ1

�1
dETðEÞ½f ðE� l1Þ � f ðE� l2Þ�; ð1Þ

which is widely used in mesoscopic physics in the past few decades.
Here l1 and l2 are electrochemical potentials of two electrodes,
f ðEÞ and E stand for the Fermi function and the energy of an incident
electron. TðEÞ is the transmission function related to the molecular
wires, electrodes and their couplings.

To obtain the transmission function, first of all, we adopt a di-
rect viewpoint, a single electron scattered by effective potential,
and divide the total system into three parts: a single molecular
wire, junction potential, and electrodes as shown in Fig. 1. The
specification of the junction and electrodes will be given in Section
4. Secondly, the molecule is regarded as a one-dimensional net-
work, simply- or multiply-connected in two- or three-dimensional
space. For instance, 1,3-butadiene can be modeled as a line, while
benzene as a system with two lines connected at both ends as
shown in Fig. 2. The value of effective potential is assumed to be
the ionization energy of carbon atom.

The critical issue is how to calculate the transmission function
of non-linear conjugated molecules like benzene. The original
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Fig. 1. Physical picture in the free-electron network model: a single electron
scattered by effective potentials. For simplicity, these effective potentials are
treated as stepwise potentials to capture the essential physical picture more easily.
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Fig. 2. The representation of the network model.
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FENM model [30,31] provides several rules to discuss the bound
states of free electrons and these rules can be generalized to treat
the scattering states, summarized as following:

(1) The Schrödinger equation on the branches,

H/ðxÞ ¼ � �h
2m

d2

dx2 þ VðxÞ
( )

/ðxÞ ¼ E/ðxÞ: ð2Þ

(2) The joint conditions,

(a) continuity condition
½/1ðx1Þ ¼ /2ðx2Þ ¼ /3ðx3Þ�at joint;
(b) conservation condition
X
B

@/BðxBÞ
@xB

� �
at joint

¼ 0:

(3) The boundary condition,
3d 3d 2d 4d d 5d

(a) incoming wave
/ðxÞin ¼ Aeikx þ Be�ikx;
(b) outgoing wave
a b c
Fig. 3. The para-, meta-, and ortho-connection of the benzene.
/ðxÞout ¼ Ceikx;

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE� VÞ

p
=�h and A;B and C are the amplitudes of

incident, reflection and transmitted waves, respectively.
The relationship between current density and wavefunction is

J ¼ �hq
2mi
ð/�r/� /r/�Þ; ð3Þ

where q is the charge quantity of an electron. Combining the Eq. (3)
and the definition of transmission function, we can obtain the trans-
mission function,

T ¼
Joutgoing

Jincoming
¼ k2

k1

jCj2

jAj2
; ð4Þ

where Jincoming and Joutgoing stand for the current densities of incident
and transmitted waves, respectively. Eqs. (2)–(4) can then be em-
ployed to calculate transmission functions in this article.

3. Transmission functions of simplest networks

To examine the simplest network systems, we ignore junction
potentials and electrodes, and consider only the situation that a
single electron passes through the benzene (see Fig. 3). Fig. 3a–c
depicts three different pathways and stand for para-, meta- and
ortho-connections. The symbol d in Fig. 3 means the C–C bond
length of benzene, so the perimeter length of benzene is 6d. Firstly,
we discuss the case of para-connection. According to Eqs. (2)–(4),
the analytical solution of transmission function is

T ¼ 32
41� 9 cosðk � 6dÞ : ð5Þ

Obviously, when k ¼ np=3d, the transmission reaches its maximum,
1 (see Fig. 4, solid line). This implies that the wavelength, k, must
satisfy the following condition:

k ¼ 2p
k
¼ 6d

n
; n ¼ 1;2;3; . . . ; ð6Þ

i.e. the perimeter length is the integer multiples of the wavelength
of its electron. Physically speaking, when this condition is satisfied,
the wave is on resonance in the benzene molecule. On the other
hand, if k ¼ ð2nþ 1Þp=6d, the transmission coefficient reaches its
minimum value, 0.64, because the electron wave interferes itself
and forms the partial destructive interference.

The FENM can not only give the resonant wavelength, but also
directly provide the information about the shapes of wavefunc-
tions. Fig. 5A and B depicts the real and imaginary parts of wave-
function with k ¼ p=3d in the benzene, respectively. These
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Fig. 4. The k–T characteristics of benzene. The black line: the para-connection case;
the dotted line: the meta-connection case; the dashed line: the ortho-connection
case.

0 1 2 3 4 −1

0

1

−1

0

1

A
m

pl
itu

de

A

B

0 1 2 3 4 −1

0

1

−0.5

0

0.5

1

A
m

pl
itu

de

Fig. 5. The resonant states in the para-connection: (A) the real part of the
wavefunction; (B) the imaginary part of wavefunction. Solid line: the amplitude of
the wavefunction when k ¼ p=3d. Bold line: the networks of benzene. The unit of x
and y axes is arbitrary.
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Fig. 6. The real part of the wavefunction for the anti-resonance state with k ¼ p=3d
in the meta-connection case. This wave forms destructive interference.

Table 1
The wavenumber ðkÞ of resonant states and anti-resonant states of the benzene with
the para-, the meta-, and the ortho-connection.

Type of connections Para-connection Meta-connection Ortho-connection

Resonant states
ðT ¼ 1Þ

k ¼ np=3d k ¼ np=d k ¼ np=d

Anti-resonant
states ðT ¼ 0Þ

None k ¼ ð3nþ 1Þp=3d k ¼ ð3nþ 1Þp=3d
k ¼ ð3nþ 2Þp=3d k ¼ ð3nþ 2Þp=3d
k ¼ ð2nþ 1Þp=2d

Table 2
The wavelength ðkÞ of resonant states and anti-resonant states of the benzene with
the para-, the meta-, and the ortho-connection.

Type of connections Para-connection Meta-connection Ortho-connection

Resonant states
ðT ¼ 1Þ

k ¼ 6d=n k ¼ 2d=n k ¼ 2d=n

Anti-resonant
states ðT ¼ 0Þ

None k ¼ 6d=ð3nþ 1Þ k ¼ 6d=ð3nþ 1Þ
k ¼ 6d=ð3nþ 2Þ k ¼ 6d=ð3nþ 2Þ
k ¼ 4d=ð2nþ 1Þ
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figures show that the condition of the wavelengths and phases of
resonant waves for constructive and destructive interferences in
the single electron quantum transport. As shown in Fig. 5A, the
incoming wave on the left-hand side consists of the incident and
the reflection part, while the outgoing wave on the right-hand side
contains only the transmitted part. In the middle multiple-con-
nected region, these two waves along upper and lower pathways
have the same real part and form completely constructive interfer-
ence with T ¼ 1. The same conclusion can be drawn from Fig. 5B
since the two waves in the middle have the same imaginary part.

In the meta-connection case, the transmission function is given
by the following lengthy expression:

T ¼ 32 cos2ðkdÞ½1þ 2 cosð2kdÞ�2=X; ð7Þ

where the denominator, X, is given by

X ¼ 114þ 154 cosð2kdÞ þ 64 cosð4kdÞ � 17 cosð6kdÞ
� 18 cosð8kdÞ � 9 cosð10kdÞ:
The transmission function for this case is depicted as the dotted
line in Fig. 4. We find the transmission reaches its maximum value
1 when k ¼ np=d as required by the analytical expression of trans-
mission function given by Eq. (7). In this case the completely con-
structive interference occurs for resonant waves with the
wavelength, 2d=n. On the other hand, if wavevectors satisfy the
conditions, k ¼ ð3nþ 1Þp=3d, ð3nþ 2Þp=3d and k ¼ ð2nþ 1Þp=2d,
the transmission falls to zero. In this situation, the wave forms
an anti-resonance state, leading to the completely destructive
interference in the benzene. The phase of the anti-resonance state
is sketched in Fig. 6. Obviously, the real parts of two waves just be-
fore entering the outgoing channel have opposite signs, making the
amplitude of outgoing wave equal to zero. Besides, note that the
conditions, k ¼ p=3d and 2p=3d, also correspond to the standing
waves of a free particle in a ring. This shows that it is not adequate
to determine the properties of electron transport only by the MOs
of isolated molecules. Comparing the para- and meta-connection
cases, the different networks have indeed a great influence on
the transmission function of systems [33].

The transmission function of the ortho-connection is also shown
in Fig. 4 (the dashed line). However, we do not intend to show the
analytical form of the transmission function of the benzene with
the ortho-connection since it is too complicated. The para-connec-
tion case has given us a clear physical picture that an incoming elec-
tron may interfere with itself in the molecular wire very similar to
the double-slit experiment. The wavenumbers and wavelengths of
resonant states and anti-resonant states in the different network of
the benzene are summarized in Tables 1 and 2.
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Fig. 7. Transmission functions of benzenedithiol with the para-, the meta-, and the
ortho-connection in zero electric field: (A) Strong coupling. (B) Weak coupling. The
solid line is the ortho-connection. The dashed line is the meta-connection.
The dotted line is the para-connection.
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4. Transmission functions for phenyl dithiol junction

In addition to the simple model systems considered in the pre-
vious section, here we show that the FENM can also be employed
to model the more realistic nanoelectric devices. In this section,
we will discuss the transmission functions of phenyl dithiol in
the low bias limit with either strong or weak coupling to the
electrodes.

To model Reed’s experiment, the electrodes and junction atoms
must be considered. As usual, the electrodes are modeled as a non-
interacting electron gas. The Fermi level is taken as �10:4 eV [12];
the value of band edge is �15:93 eV based on the argument of the
non-interacting electron gas model [32].1 In the part of junction
atoms, the diameter of a sulfur atom is assumed as 2.13 Å based
on the Reed’s experiments [2]. The effective potential on the sulfur
atom is regarded as a tunable parameter. In the strong-coupling limit
between the molecular wire and electrodes, the effective potential is
chosen to be �10 eV; while in the weak-coupling limit, it is set to be
�7 eV.

Fig. 7 shows that the transmission functions of phenyl dithiol
junction in the strong and weak coupling limits. In the strong-cou-
pling situation (Fig. 7A), the transmissions for the situations with
meta- and ortho-connections fall down to zero at �2:7 eV and
�9:1 eV, corresponding to the resonant waves with wavelengths
4.2 Å and 8.4 Å, respectively. These two wavelengths are consistent
with the condition of anti-resonant states in Table 2 (d ¼ 1:4 Å,
n ¼ 0 and k ¼ 6d=ð3nþ 1Þ or k ¼ 6d=ð3nþ 2ÞÞ. Additionally, in the
meta-connection case, the transmission also vanishes at �6:5 eV,
in agreement with the condition of anti-resonant states in Table 2
1 For gold electrode, the kinetic energy is 5:53 eV.
(d ¼ 1:4 Å, n ¼ 0 and k ¼ 4d=ð2nþ 1ÞÞ. The anti-resonances in the
transmission functions arise from the interference among different
coherent transport pathways through a multiply-connected net-
work, in agreement with other works using different approaches
[34–36]. They will not disappear by changing different types of
junctions between molecular wire and electrodes.

Besides, in the strong coupling case (Fig. 7A), the widths of the
resonances are generally broader than those in the weak coupling
case (Fig. 7B). It makes sense since the height of the effective po-
tential at junction atoms represents the interaction between the
molecular wire and electrodes. When the coupling is weaker, the
position of resonant states is closer to the MOs of isolated molec-
ular wires.

Incidentally, the effect of non-zero electric field at the finite bias
can also be considered by using the symmetric [11,12] and step-
wise effective potential as shown in Fig. 8. However, since the
transmission functions under electric field do not show significant
difference from those in the zero-bias limit, the results are not
shown here.

5. I–V characteristics for benzenedithiol junction

In this section, we will discuss the I–V and G–V characteristics
based on the FENM model, and then compare the results with
the transmission functions calculated by the NEGF method at the
level of the tight-binding approximation (NEGF-TB).

In the strong coupling limit, the I–V and G–V characteristics of
BDT with the para-connection are shown in Fig. 9. The solid line re-
veals non-linear relationship between bias and current. The first
Fig. 9. The I–V characteristics and G–V characteristics of benzenedithiol calculated
by the FENM model. The solid line: I–V characteristics. The dashed line: G–V
characteristics.
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model: V ¼ 1 eV; c ¼ 3 eV.
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and the second peaks of G–V characteristics (dashed line) corre-
spond to the first and the second resonant states, respectively.
The conductance start to rise at about 0:7 eV, in agreement with
Reed’s experiments in the low bias region. In the medium and high
bias regions (> 2:0 eV), owing to the neglect of other interactions
such as electron–electron, electron–phonon, and electron–photon
couplings, the calculated I–V characteristics dose not match the
experimental result perfectly, hence we do not attempt to explain
I–V and G–V characteristics of medium and high bias regions. Nev-
ertheless, this simple model seems to capture main physical pic-
tures in the low bias limit.

At the end of the section, we will compare the transmission
functions calculated by the FENM with by the NEGF-TB approach
[37–39]. In the NEGF, the transmission function is [40]: TðEÞ ¼
Tr½CLGRCRGA�, where CLðRÞ is the spectral function of left (right) elec-
trode. GRðAÞ is the retarded (advanced) molecular Green’s function.
The spectral function and the retarded molecular Green’s function
could be represented as

C ¼ i½RR � RA� ¼ �2Im½RR�; ð8Þ

GR ¼ 1
E� Hmol � RR ; ð9Þ

where Hmol is molecular Hamiltonian. To simplify calculation, the
tight-binding Hamiltonian is adopted. RR is the retarded self-energy
treated with the Newns–Anderson model defined by

RðEÞ ¼ KðEÞ � iDðEÞ; ð10Þ

KðEÞ ¼

V2
K
c E=2c; jE=2cj < 1;

V2
K
c fE=2cþ ½ðE=2cÞ2 � 1�1=2g; E=2c < �1;

V2
K
c fE=2c� ½ðE=2cÞ2 � 1�1=2g; E=2c > 1;

8>>>><
>>>>:

ð11Þ

DðEÞ ¼
V2

K
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðE=2cÞ2

q
; jE=2cj < 1;

0; otherwise:

8<
: ð12Þ

In this model, we use Vk to characterize the coupling between elec-
trodes and the molecular wire. The index k stands for the kth site of
molecular wire. We assume V1 ¼ VN ¼ V and the other couplings
are set to be zero, i.e. the couplings only exist at the end sites of
molecular wires and electrodes. E is the energy of the electron mea-
sured from the center of energy band in the electrode. 2c is the
bandwidth of electrodes.

Based on these approximations, we can find the transmission
function as the following:

TðEÞ ¼ 2V2

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðE=2cÞ2

q !2

jGR
1Nj

2
: ð13Þ

The transmission functions of benzene with the para-, the meta-,
the ortho-connections are shown in Fig. 10. Comparison with
Fig. 7A leads to the following discussions: First, in the para-connec-
tion case, the resonant states could have good one-to-one correla-
tion between the FENM and the NEGF-TB approach: �11:0 eV to
�12 eV, �9:3 eV to �10 eV, and �5:7 eV to �6 eV. These three res-
onant states are also the eigenstates of benzene. Second, in the
meta- and the ortho-connection cases, the transmission functions
reach a zero at about �10 eV and �6 eV. These two states are
anti-resonant states and correspond to the positions at �9:1 eV
and �2:7 eV from the FENM. Third, in the meta-connection case,
the transmission function diminishes to a zero at �8 eV. The same
result could be found at �6:5 eV in the FENM. Obviously, the trans-
mission functions calculated by the FENM are in good agreement
with those by the NEGF-TB.

This agreement seems to be not a coincidence, as has been
demonstrated during the fifties by Chicagos group, there is a close
correspondence between the FENM and LCAO MO approaches [29].
Moreover, a formal equivalence can be established in the case that
LCAO MO’s approach contains only one orbital per atom [31].
When FENM is applied to quantum transport through a single-mol-
ecule junction, the most important difference between the FENM
and NEGF-TBM approaches is the neglect of the self-energy due
to the coupling to the electrodes.

The FENM approach provides a clear physical picture to help us
understand the resonance and interference effects in quantum
transport. Additionally, it also can capture the main characteristics
of the advanced nanoelectric devices. However, there are still
plenty of rooms for the improvement of this model. In particular,
it seems worthy to develop a general formulation based on the
FENM to the more general multiply-connected networks such as
polyaromatic hydrocarbons, fullerene compounds and other
molecular circuits.
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