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A Moment-Based Approach for Deskewing
Rotationally Symmetric Shapes

Soo-Chang Pei and Ji-Hwei Horng

Abstract—The covariance matrix of a pattern is composed by its second
order central moments. For a rotationally symmetric shape, its covariance
matrix is a scalar identity matrix. In this work, we apply this property to
restore the skewed shape of rotational symmetry. The relations between
the skew transformation matrix and the covariance matrices of original
and skewed shapes are derived. By computing the covariance matrix of
the skewed shape and letting the covariance matrix of the original shape
be a scalar identity matrix, the skew transformation matrix can be solved.
Then, the rotationally symmetric shape can be recovered by multiplying
the inverse transformation matrix with the skewed shape. The method
does not rely on continuous contours and is robust to noise, because only
the second-order moments of the input shape are required. Experimental
results are also presented.

Index Terms—Covariance matrix, reflective symmetry, rotation matrix,
rotational symmetry, shear matrix, skewed symmetry.

I. INTRODUCTION

A rotationally symmetric shape is a shape that repeats itself after
being rotated around its centroid through any multiple of a certain
angle. To satisfy this property, the minimum repeating angle must
be 2�=n; wheren is a positive integer. This shape is called ann-
fold rotationally symmetric shape. Many researchers on the area of
image analysis have pay attention to the importance of rotational
symmetry. Lots of methods have been proposed to normalize the
rotationally symmetric planar shapes (RSS) [1]–[5]. However, none
of them has dealt with the skewed shape of rotational symmetry. In
real applications, the view direction is not always perpendicular to the
plane containing RSS, it results in a skewed RSS on the image plane.
Thus, a complete normalization system must includes thedeskew
procedure.

Many methods have been proposed to recover the skewed shape
of reflective symmetry [6]–[8]. But they are not directly applicable
to the case of rotational symmetry. Although the set of reflectively
symmetric shapes overlaps with the set of rotationally symmetric
shapes, they are not identical. The relation of these two sets are
shown in Fig. 1, where a typical example is given for each subset.

An alternative procedure for generating a skewed shape is to
perform a shear operation with parameter� followed by a rotation
in the image plane with parameter�: Friedberg proposed a moment-
based method to recover the skewed reflective symmetry [7]. He used
the property that the covariance matrix for a reflectively symmetric
shape is a diagonal matrix, that is, the momentm11 is necessarily
equal to zero. For a set of assumed parameters� and� of the skew
coordinate transformation matrix, the momentm11 of the recovered
shape can be written as a function of the set of parameters and
the second-order moments of the skewed shape. Let the moment
m11 of the deskewed shape be equal to zero,� can be described
as a function of�: The constraint reduces the search space from
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Fig. 1. Relation of reflective symmetry and rotational symmetry.

a two-dimensional (2-D) parameter space to one dimension. The
sector symmetry evaluator is applied to search desired solutions
along the one-dimensional (1-D) parameter space. This method is
computationally expensive, since a search process is required. In
addition, it does not guarantee to get exact solutions. In this paper,
the Friedberg’s method is generalized to recover the skewed RSS
by setting an additional constraint according to the second order
statistical property of the RSS.

II. PROPOSEDMETHOD

In this section the problem is formulated into a mathematical form,
solution is derived, and uniqueness property is discussed. At last, an
algorithm is provided to help the programmers in implementing this
method.

A. Problem

Let us assume thatf and g represent the images containing the
original and skewed version of an RSS. The sets of coordinate vectors
Sp = fpkjk = 1; 2; � � � ; n:g and Sq = fqkjk = 1; 2; � � � ; n:g
represent the pixels occupied by the shapes inf andg respectively.
By the definition of the skew transformation [8],qk = Tpk; k =
1; 2; � � � ; n whereT is the skew transformation matrix and is defined
by

T =
cos� cos� cot � � sin �
sin� sin� cot� + cos�

;

0 � � < �; 0 < � < �:

The angles� and� are the degrees of rotation and shear, respectively,
in the skew generation process. Assuming that the origin of the
coordinate system is set to the centroid of each shape. Then, the
covariance matrixM andN of Sp and Sq can be represented by
their second-order momentsmij andnij [9] as follows:

M =
k

pkp
T
k =

m20 m11

m11 m02

:

N =
k

qkq
T
k =

n20 n11
n11 n02

:

Our problem is to solve the skew transformation matrixT based
on the second order momentsmij and nij of the original and the
skewed shapes.

B. Solution

It can be proved that the covariance matrix of an RSS is a scalar
identity matrix [1]. That is, there are two constraints on the RSS
m11 = 0 and m20 � m02 = 0: In comparison with the method
proposed by Friedberg [7], an additional constraintm20 �m02 = 0
is available, since our problem is dealt with the RSS instead of the
reflectively symmetric shape. Of course, the solution space to be
searched is reduced by the additional constraint.

Based on the skew transformation relation, the covariance matrices
of the RSSM and the skewed RSSN are related by

N =
k

qkq
T
k =

k

(Tpk)(Tpk)
T

=T
k

pkp
T
k T T = TMT T : (1)

After manipulations, it can be rewritten in terms oftan� andtan�

[n220 � n20n02 + n211] tan
4 �+ [�4n20n11] tan

3 �

+ [6n211] tan
2 �+ [�4n11n02] tan�

+ [�n20n02 + n211 + n202] = 0: (2)

[�n11 tan
2 �� (n20 � n02) tan�+ n11] tan�

+ [�n20 tan
2 �+ 2n11 tan�� n02] = 0: (3)

C. Uniqueness

It can be proved that given the covariance matrixN of a skewed
RSS, there exists exactly one skew transformation matrixT with
0 < � < �=2; such that

TMT T = N;

whereM is a scalar identity matrix.

D. Algorithm

According to the above discussions, we propose our deskew
algorithm as follows.

1) Extract the pixels of the skewed shape from the input image.
Translate the centroid of these pixels to the origin of the
coordinate system. Let the setSq = fqkjk = 1; 2; � � � ; n:g
represents the resulting coordinate vectors.

2) Compute the covariance matrixN of Sq by the equation

N =

n

k=1

qkq
T
k :

3) Compute the two distinct real solutions of the following quartic
equation in terms oftan� by using explicit formula

[n220 � n20n02 + n211] tan
4 �+ [�4n20n11] tan

3 �

+ [6n211] tan
2 �+ [�4n11n02] tan�

+ [�n20n02 + n211 + n202] = 0:

4) For each resultingtan�; solve its correspondingtan� by
substituting into the following equation.

[�n11 tan
2 �� (n20 � n02) tan�+ n11] tan�

+ [�n20 tan
2 �+ 2n11 tan�� n02] = 0:

5) Apply the parameter pair of� within (0; �=2); which is unique,
to construct the deskew transformation matrixT�1:

T�1 =
cos�+ sin� cot � sin�� cos�cot �

� sin� cos�
:

6) Deskew the given skewed RSS by the equation.

pk = T�1qk; k = 1; 2; � � � ; n:
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(a) (b)

(c) (d)

Fig. 2. (a) Skewed version of a rotationally symmetric shape. (b) Loci of our
constraints. The locus corresponding to the constraintm11 = 0 is represented
by a solid line and the locus corresponding to the constraintm20�M02 = 0

is represented by crosses. (c) Deskewed version of the shape shown in (a).
(d) Deskewed version of the shape shown in (a); it is a rotated version of (c).

III. EXPERIMENTAL RESULTS

Three experiments are made in this research. In the first experiment,
we generate a set of coordinate vectors, which forms the contour
of an RSS. The point set is deformed by a skew transformation to
serve as the input. In the second experiment, a synthetic image of
a parallelogram is used to simulate an orthographic projection of a
square from the three-dimensional (3-D) space. In the last experiment,
three real images of arbitrarily skewed RSS are examined.

The input skewed RSS of our first experiment is shown in Fig. 2(a).
To understand how we get the solution, the loci of parameters
corresponding to our two constraints are plotted in Fig. 2(b). Each
point on a locus represents a possible solution under its corresponding
constraint. The loci are plotted by equally sampling on the� space
and solving� for each given value of�: The locus corresponding
to the constraintm11 = 0 is represented by a solid line and the
locus corresponding the constraintm20�m02 = 0 is represented by
crosses. Because the constraintm20�m02 = 0 is a quadratic equation
in cot �; there are two� values for each� value or is no solution
sometimes(when the two cot� values are complex conjugates). The
intersections of the two loci are solutions of the problem. The two
deskewed shapes corresponding to the two intersections are shown
in Fig. 2(c) and (d). In fact, applying our algorithm gives the version
shown in Fig. 2(c). The shape of Fig. 2(d) is a rotated version of
Fig. 2(c) and can be ignored.

The synthetic image of a parallelogram is shown in Fig. 3(a). The
output image of applying our algorithm is shown in Fig. 3(b). It
looks like a perfect square.

Two real images of skewed RSS are shown in Figs. 4(a) and 5(a).
They are taken by digital camera with different space angles to the

(a)

(b)

Fig. 3. (a) Synthetic image of a parallelogram. (b) Recovered pattern by
using the proposed method.

(a)

(b)

Fig. 4. (a) Real image of a rotationally symmetric shape. (b) Recovered
pattern by using the proposed method.

rotationally symmetric patterns. Experimental results are shown in
Figs. 4(b) and 5(b), respectively.

IV. DISCUSSION

The first experiment confirms the theoretical derivations of this
research. The second experiment shows the applicability of the
proposed method to images. The real images of the third experiment
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(a)

(b)

Fig. 5. (a) Real image of a rotationally symmetric shape. (b) Recovered
pattern by using the proposed method.

demonstrate the robustness of this method to noise and digitization
errors.

The output images of the last experiment are imperfect RSS.
This is due to the nonlinear distortion caused by the camera lens.
In such situation, orthographic projection assumption is no longer
valid. However, fairly well results are provided and this indicates the
usability of our method to imperfect rotational symmetry. To achieve
better results , a camera calibration procedure may be placed before
our system. It is beyond the scope of this research.

V. CONCLUSION

In this work, we propose anO(n) algorithm to recover the skewed
RSS. Our algorithm needs no numeric method and no information
about the number of folds. Since this method is based on the moments,
it does not rely on smooth or continuous contours and is robust to
noise or digitization errors but assumes there is no occlusion. We do
not intend to finding the axis of symmetry, because a given RSS may
not have any axis of reflective symmetry. However, it does have axes,
several kinds of axes are proposed by previous researchers [1]–[4].

The experimental results confirm our derivations of constraints and
show availability of our algorithm. Shapes with and without reflective
symmetry are all presented. The algorithm gives accurate estimation
of the skew parameters� and �:

After applying our algorithm, any of the algorithms proposed in
[1]–[5] can be used to find the axes and normalize the deskewed RSS.
Thus, the whole normalization procedure is completed.
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Tri-State Median Filter for Image Denoising

Tao Chen, Kai-Kuang Ma, and Li-Hui Chen

Abstract—In this work, a novel nonlinear filter, called tri-state median
(TSM) filter, is proposed for preserving image details while effectively
suppressing impulse noise. We incorporate the standard median (SM)
filter and the center weighted median(CWM) filter into a noise detection
framework to determine whether a pixel is corrupted, before applying
filtering unconditionally. Extensive simulation results demonstrate that
the proposed filter consistently outperforms other median filters by
balancing the tradeoff between noise reduction and detail preservation.

Index Terms—Impulse noise, median filter, noise detection.

I. INTRODUCTION

Digital images are often corrupted byimpulse noiseduring the
acquisition or transmission through communication channels. Con-
sequently, some pixel intensities are inevitably altered while others
remain noise-free. The image model containing impulse noise with
probability of occurrencep can be described as follows:

Xij =
Nij ; with probability p;
Sij ; with probability 1� p

(1)

where Sij denotes the noiseless image pixel andNij the noise
substituting for the original pixel.

In order to remove impulse noise and enhance image quality,
the median filter has been extensively studied and presented in
the literature (e.g., [1] and [2]). Median filtering being a nonlinear
filtering technique, it is generally superior to linear filtering (e.g.,
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