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Based on the skew transformation relation, the covariance matrices
of the RSSM and the skewed RSY are related by

N= Z wal = Z (Tpi)(Trr)"
k

k
=T (Z i pz,) T =TMT". (1)
k

After manipulations, it can be rewritten in termstaf « andtan /3

Reflective symmetry Rotational symmetry

Fig. 1. Relation of reflective symmetry and rotational symmetry.

2 i 2 and Ay 3
a two-dimensional (2-D) parameter space to one dimension. The [n20 = n20mos + niy | tan” @ + [=dnzoni] tan” o
sector symmetry evaluator is applied to search desired solutions + [6n7] tan® a + [—4ny17m02] tan o
along the one-dimensional (1-D) parameter space. This method is + [~na0m02 + 2y + ns] = 0. )

computationally expensive, since a search process is required. In

2 . ’ o
addition, it does not guarantee to get exact solutions. In this paper, [=rtan®a = (n20 — noz) tana + nu ] tan

the Friedberg’'s method is generalized to recover the skewed RSS + [—n20 tan® a + 2n11 tan @ — ng2] = 0. 3)
by setting an additional constraint according to the second order
statistical property of the RSS. C. Uniqueness

It can be proved that given the covariance mat¥ixof a skewed
Il. PROPOSEDMETHOD RSS, there exists exactly one skew transformation mafriwith

In this section the problem is formulated into a mathematical fordl, < # < 7/2, such that
solution is derived, and uniqueness property is discussed. At last, an
algorithm is provided to help the programmers in implementing this
method.

TMTT = N

EAR]

where M is a scalar identity matrix.

A. Problem .
. - D. Algorithm
Let us assume thaf and g represent the images containing the

original and skewed version of an RSS. The sets of coordinate vector§\ccording to the above discussions, we propose our deskew

S, = {pe]k = 1.2,---.n.} and S, = {qulk = 1.2,--.,n.} @&lgorithm as follows.

represent the pixels occupied by the shapeg and g respectively. 1) Extract the pixels of the skewed shape from the input image.
By the definition of the skew transformation [8]; = Tpx, k = Translate the centroid of these pixels to the origin of the
1,2,---.n whereT is the skew transformation matrix and is defined coordinate system. Let the st = {qx|k = 1,2,---,n.}

by represents the resulting coordinate vectors.

2) Compute the covariance matriX of S, by the equation
cosa  cosa COt — sin

sinaw  sina cotg 4 cosa |’ i "
, N=>" ara-
0<a<nw, 0<g<m. —

The anglesy and;3 are the degrees of rotation and shear, respectively,3) Compute the two distinct real solutions of the following quartic
in the skew generation process. Assuming that the origin of the equation in terms ofan o by using explicit formula

coordinate system is set to the centroid of each shape. Then, the
covariance matrixt/ and N of S, and S, can be represented by [0 — naonoz + nip] tan” o + [—4naoni] tan® o

their second-order moments;; andn;; [9] as follows: : ;
v is [9] + [anl] tan® o + [—4n11n02] tan «

- , 2 2
M= LT Mo man | + [—n20m02 + 111 + nge) = 0.
S mk = [
. e iy 4) For each resultingan «, solve its correspondingan 5 by
N = Z i = |:77/IL nm}. substituting into the following equation.

k

. . —ni1 tan® o — (n20 — no2) tan a tan 3
Our problem is to solve the skew transformation maffixbased [=nin tan”a = (n20 = moz) tan a4 ] tan

on the second order moments;; andn;; of the original and the + [=n20 tan® a + 2n13 tan a — no2] = 0.
skewed shapes.
5) Apply the parameter pair gf within (0, 7/2), which is unique,

; 7l
B. Solution to construct the deskew transformation maffix".

It can be proved that the covariance matrix of an RSS is a scalar 71 _ [cosa + sine cot  sin o — cos acot 3
identity matrix [1]. That is, there are two constraints on the RSS - —sin « cos « )

my; = 0 and mag — mo2 = 0. In comparison with the method

proposed by Friedberg [7], an additional constrainty — moz = 0 6) Deskew the given skewed RSS by the equation.
is available, since our problem is dealt with the RSS instead of the

reflectively symmetric shape. Of course, the solution space to be e =T "q. E=1.2-,n.
searched is reduced by the additional constraint.
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Fig. 3. (a) Synthetic image of a parallelogram. (b) Recovered pattern by
using the proposed method.

I1l. EXPERIMENTAL RESULTS

Three experiments are made in this research. In the first experiment,
we generate a set of coordinate vectors, which forms the contour
of an RSS. The point set is deformed by a skew transformation to
serve as the input. In the second experiment, a synthetic image of
a parallelogram is used to simulate an orthographic projection of a
square from the three-dimensional (3-D) space. In the last experiment,
three real images of arbitrarily skewed RSS are examined.

The input skewed RSS of our first experiment is shown in Fig. 2(a).
To understand how we get the solution, the loci of parameters
corresponding to our two constraints are plotted in Fig. 2(b). Each
point on a locus represents a possible solution under its corresponding
constraint. The loci are plotted by equally sampling on éhepace
and solvings for each given value ofe. The locus corresponding
to the constraintrny; = 0 is represented by a solid line and the
locus corresponding the constrainko — mo2 = 0 is represented by

(c) (d)
Fig. 2. (a) Skewed version of a rotationally symmetric shape. (b) Loci of our
constraints. The locus corresponding to the constraint = 0 is represented
by a solid line and the locus corresponding to the constraint — Moz = 0
is represented by crosses. (c) Deskewed version of the shape shown in (a).
(d) Deskewed version of the shape shown in (a); it is a rotated version of (c).
@

crosses. Because the constrain —mo2 = 0 is a quadratic equation (b)
in cot 3, there are twa3 values for eachy value or is no solution ) ) )
sometimes(when the two cétvalues are complex conjugates). Thdig- 4. (a) Real image of a rotationally symmetric shape. (b) Recovered
. . . . V\Pattern by using the proposed method.
intersections of the two loci are solutions of the problem. The two
deskewed shapes corresponding to the two intersections are shown . ) )
in Fig. 2(c) and (d). In fact, applying our algorithm gives the Versiofptatlonally symmetric pattel_rns. Experimental results are shown in
shown in Fig. 2(c). The shape of Fig. 2(d) is a rotated version 6{9S- 4(b) and 5(b), respectively.
Fig. 2(c) and can be ignored.

The synthetic image of a parallelogram is shown in Fig. 3(a). The
output image of applying our algorithm is shown in Fig. 3(b). It IV. DiscussioN
looks like a perfect square. The first experiment confirms the theoretical derivations of this

Two real images of skewed RSS are shown in Figs. 4(a) and 5(@search. The second experiment shows the applicability of the
They are taken by digital camera with different space angles to theoposed method to images. The real images of the third experiment
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Tri-State Median Filter for Image Denoising

Tao Chen, Kai-Kuang Ma, and Li-Hui Chen

(b)

Fig. 5. (a) Real image of a rotationally symmetric shape. (b) Recovered

pattern by using the proposed method Abstract—In this work, a novel nonlinear filter, called tri-state median

(TSM) filter, is proposed for preserving image details while effectively

. . . ... suppressing impulse noise. We incorporate the standard median (SM)
demonstrate the robustness of this method to noise and digitizatiffar and the center weighted mediafCWM) filter into a noise detection

errors. framework to determine whether a pixel is corrupted, before applying
The output images of the last experiment are imperfect RS@tering unconditionally. Extensive simulation results demonstrate that

This is due to the nonlinear distortion caused by the camera Ieﬂ? proposed filter consistently outperforms other median filters by

. . . L . . alancing the tradeoff between noise reduction and detail preservation.

In such situation, orthographic projection assumption is no longéer

valid. However, fairly well results are provided and this indicates the Index Terms—mpulse noise, median filter, noise detection.

usability of our method to imperfect rotational symmetry. To achieve

better results , a camera calibration procedure may be placed before

. . I. INTRODUCTION
our system. It is beyond the scope of this research.

Digital images are often corrupted bynpulse noiseduring the
acquisition or transmission through communication channels. Con-
sequently, some pixel intensities are inevitably altered while others

In this work, we propose a@(n) algorithm to recover the skewed remain noise-free. The image model containing impulse noise with
RSS. Our algorithm needs no numeric method and no informatigfobability of occurrence can be described as follows:

about the number of folds. Since this method is based on the moments,
it does not rely on smooth or continuous contours and is robust to X = {
noise or digitization errors but assumes there is no occlusion. We do

not intend to finding the axis of symmetry, because a given RSS Mgyare S;; denotes the noiseless image pixel aNg; the noise
not have any axis of reflective symmetry. However, it does have axX€8hstituting for the original pixel.

several kinds of axes are proposed by previous researchers [1]-[4]., order to remove impulse noise and enhance image quality,

The experimental results confirm our derivations of constraints aﬂﬂs median filter has been extensively studied and presented in
show availability of our algorithm. Shap_es with and without reflgctiv:_ghe literature (e.g., [1] and [2]). Median filtering being a nonlinear
symmetry are all presented. The algorithm gives accurate estlmaq%ring technique, it is generally superior to linear filtering (e.g.,
of the skew parameters and /5.

After applying our algorithm, any of the algorithms proposed in Manuscript received June 30, 1998; revised April 27, 1999. The associate
[1]-[5] can be used to find the axes and normalize the deskewed Re&ditor coordinating the review of this manuscript and approving it for

L . publication was Dr. Henri Maitre.
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V. CONCLUSION

Nij, with probability p;

Sij, with probabilityl — p @
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