
Fuzzy Sets and Systems 108 (1999) 179–191
www.elsevier.com/locate/fss

Fuzzy system modeling using linear distance rules
Sheng-De Wang∗, Chien-Hui Lee

Department of Electrical Engineering, EE Building, Rm. 441, National Taiwan University, Taipei 106, Taiwan

Received July 1996; received in revised form August 1996

Abstract

An approach of determining signi�cant variables for multi-input systems is proposed by using a modi�ed fuzzy rule
form, called linear distance rules (LDR). By de�ning an index, we can know the in
uences of input signals on output and
can determine signi�cant variables from the index. We also propose a simple three-layered generalized neural network to
realize the LDRs. Furthermore, this approach can be extended to decompose a multi-input–multi-output (MIMO) system
into several simpler multi-input–single-output (MISO) systems. c© 1999 Elsevier Science B.V. All rights reserved.

Keywords: Fuzzy model; Neural networks

1. Introduction

Takagi and Sugeno [26] proposed a type of fuzzy rules with consequences consisting of linear combination
of input signals. In [8,25], they used the Kalman �ltering algorithm to update the parameters in both premises
and consequences based on the Takagi–Sugeno fuzzy rules. In [8], it is assumed that all the input signals are
equally crucial without determining which variables are signi�cant. This could make the updated parameters
more than it does require. Appropriately selecting signi�cant variables can help us not only achieve the task of
identi�cation easier and even obtain more precise result, since dummy variables may disturb training e�ect. In
[25], Sun sketched fuzzy curves for a MISO system to decide signi�cant variables through human inspection.
Using this approach, n · m fuzzy curves must be drawn for an n-input and m-output system, and then select
signi�cant variables by investigating the fuzzy curves. This seems a time-consuming task.
For modeling an unknown system, a modi�ed Takagi–Sugeno fuzzy rule form, called linear distance rules

(LDR), is proposed. Based on the LDR, we propose an algorithm to determine signi�cant variables without
the need of human inspection, and we use the back-propagation algorithm to complete our identi�cation task.
In [8], it is shown that using the Kalman �ltering algorithm can be much faster than applying the back-
propagation algorithm for modeling a system. However, if there are m consequence parameters to be adapted,
an m×m matrix must be constructed for the Kalman �ltering algorithm. In other words, it may require large
space to store data if there are a lot of parameters to be updated. This may be even worse when all variables

∗ Corresponding author.
E-mail address: sdwang@cc.ee.ntu.edu.tw (S.-D. Wang)

0165-0114/99/$ – see front matter c© 1999 Elsevier Science B.V. All rights reserved.
PII: S 0165 -0114(97)00306 -0

180 S.-D. Wang, C.-H. Lee / Fuzzy Sets and Systems 108 (1999) 179–191

are used. This is why we use the back-propagation algorithm instead of the Kalman �ltering algorithm.
Furthermore, we shall discuss the tasks related to discarding unimportant variables and incorporating a set of
fuzzy rules with the same premises into one rule to reduce the size of neural networks. And we can also
use the same approach to decompose a complicated MIMO system into several simpler and almost decoupled
MISO systems if the solution exists.

2. Motivations

One type of fuzzy rules with singleton consequences for a MISO system is described as

Rule i: if x1 is Ai1 and · · · and xn is Ain then u is ai, (1)

where ai ∈R: If all the membership functions in the premise are de�ned as Gaussian functions and their
parameters are �xed, by the product operation, the �ring strength is in the form of fuzzy basis function
(FBF) and can be written as

gi

(‖x− ci‖
�i

)
=

n∏
j=1

�Aij (xj); i=1; 2; : : : ; N; (2)

where x is the input vector, �Aij (xj) are the Gaussian membership functions, ci=(c
i
1; c

i
2; : : : ; c

i
n)∈Rn are the

centers of the ith rule and N is the number of fuzzy rules. Then the output of the fuzzy system can be written
as an FBF expansion:

f(x)=
N∑
i=1

wigi

(‖x− ci‖
�i

)
; (3)

where wi is a real number and equivalent to the singleton consequence of a fuzzy rule.
In fact, fuzzy inference can be viewed as an interpolation of completely or partially matching fuzzy rules.

One property of interpolation is that the result must be something in between the largest and smallest values.
Similarly, the fuzzy reasoning result must be smaller than the maximal consequence and larger than the
minimal consequence of �ring rules. Let us consider a function y=f(x) to be identi�ed, and we have a set
of I=O data pair. The function f(x); x is in some closed bounded set, could contain several local minima and
maxima. If the centers of prede�ned fuzzy rules are located on the maxima or minima, the interpolation result
will be better; otherwise, the value of the approximation result cannot reach the extremities. Unfortunately,
in general, we cannot precisely pinpoint where the local minima and maxima of an unknown function f(x)
are located just from the I=O data. To �nd the local minima and maxima of a function is another research
subject. So it is impossible for users to set the centers of fuzzy rules exactly on these peaks or valleys. If
we regularly de�ne the fuzzy linguistic terms by equally dividing the range of each variable, the inference
result, from these fuzzy rules, would have large error in the maximal or minimal values. So some learning
algorithms try to train both parameters in the premise and consequence to change the centers of fuzzy rules
[14] as well as the weightings of �ring strengths.
Consider a simple SISO function f(x)= x+2 sin(x), where x∈ [0; 2�]. The function has one local maximum

(x= �=2) and one local minimum (x=3�=2). If we give three SISO fuzzy rules as (1), their centers of the
premise are de�ned as 0; �; 2�, respectively, and their consequences are given in advance and kept �xed, i.e.

if x is near zero, then y=0 + 2 sin(0)= 0;

if x is near �, then y= �+ 2 sin(�)= �;
if x is near 2�, then y=2�+ 2 sin(2�)= 2�:

S.-D. Wang, C.-H. Lee / Fuzzy Sets and Systems 108 (1999) 179–191 181

Fig. 1. Modeling of a x + 2 sin(x) function with three rules with singleton consequences. The desired output is shown by the solid line
and the actual output by the dashed line.

It is obvious that the inference result of using the three fuzzy rules cannot well mimic the function f(x) for
x∈ [0; 2�]. Now, we assume the consequences are the only adjustable parameters, the result obtained by using
the back-propagation training algorithm is shown in Fig. 1. The approximation capability through training of
three fuzzy rules with singleton consequences still cannot emulate the function. Since the consequences of
fuzzy rules are fuzzy singletons, the peak or valley value between two centers of rules cannot be reached
through the fuzzy reasoning or interpolation. To solve such problem, there are several methods: (1) add more
fuzzy rules; (2) not only adjust the consequences but also update the parameters in the antecedence of fuzzy
rules through a learning algorithm, such as back propagation, in order to move the centers of rules to the
suitable positions; however, this must propagate the error messages back to the prior layer and will slow down
the training process; (3) concern the consequences of fuzzy rules with input signals. In this paper, we shall
focus on the third point.

3. An introduction to Takagi–Sugeno fuzzy rules

In the last section, we demonstrate some disadvantages of fuzzy rules with singleton consequences. For
overcoming the disadvantages, Takagi–Sugeno fuzzy rules provide an alternative approach. Such type of fuzzy
rules can be expressed as

Rule i: if (x1 is Ai1 and · · · and xn is Ain);
then (u is ai0 + a

i
1x1 + · · ·+ ainxn);

(4)

where the coe�cients ai0; a
i
1; : : : ; a

i
n are adjustable. The inference procedure in the premise part is the same

as the fuzzy basis function expansion. The di�erence between fuzzy rules with singleton consequences and
Takagi–Sugeno fuzzy rules is only in the action part. The former is just a real number, while the latter is
a linear combination of input signals. From (4) if we set aij =0; ∀j=1; 2; : : : ; n, the fuzzy rules will be the
same as (1). In fact, the span of fuzzy rules as (1) is, indeed, a subset of Takagi–Sugeno fuzzy rules.
Fig. 2 shows that the inference result of two Takagi–Sugeno fuzzy rules can be out of range [c1; c2], where

c1 and c2 are the smaller and larger consequences of given two fuzzy rules, respectively. Let us consider
identifying the previous function f(x)= x + 2 sin(x) by using Takagi–Sugeno fuzzy rules. Fig. 3 shows that

182 S.-D. Wang, C.-H. Lee / Fuzzy Sets and Systems 108 (1999) 179–191

Fig. 2. Inference result of two Takagi–Sugeno fuzzy rules.

Fig. 3. Modeling of a x+2 sin(x) function with three Takagi–Sugeno fuzzy rules. The desired output is shown by the solid line and the
actual output by the dashed line.

it can emulate the function by using only three Takagi–Sugeno fuzzy rules whose centers are also located on
0; � and 2�, respectively.
Actually, it is possible for Takagi–Sugeno fuzzy rules to produce one maximum and one minimum between

two consecutive fuzzy rules by appropriately designing consequence parameters. So it is expected that using
less fuzzy rules of form (4) to mimic a function than applying fuzzy rules of form (1).
From Figs. 1–3, we have demonstrated a simple example and compare with fuzzy rules with singleton

consequences to explain why we use Takagi–Sugeno fuzzy rules. The disadvantages of (1) we have mentioned
can be overcome if we apply Takagi–Sugeno fuzzy rules instead. In this paper, we use a class of membership
functions called Gaussian-like function (GLF). The GLF, gl(x), is de�ned as

gl(x)= exp

(
−
(
x − c
2�

)2)
; (5)

where c is the center of the fuzzy set.

S.-D. Wang, C.-H. Lee / Fuzzy Sets and Systems 108 (1999) 179–191 183

Fig. 4. The architecture of generalized neural networks (GNN).

An introduction to the architecture of generalized neural networks (GNN) was presented in [8,25]. Here,
we modify the structure and use only three layers in our proposed GNN as shown in Fig. 4. The circle
nodes only perform some known special function and have no parameters to be tuned. However, the square
nodes represent there are some adjustable parameters in it. In the following, the processing functions of the
proposed GNN are explained. The �rst node distributes the input signal to the network just like traditional
neural networks. The weights in the second layer depict the centers of premises of fuzzy rules. The inputs to
the second layer are the distances between the �rst-layer outputs and the weights in the layer 2. If we take
the product operation in computing the �ring strength, we have the following matching point of the ith fuzzy
rule:

�i(x)= gl(x1 − ci1) · gl(x2 − ci2) · · · gl(xn − cin) (6)

and the defuzzi�cation output of fuzzy inference is the linear combination of �ring strength [22] as follows:

o =
∑
i

oi =
N∑
i=1

�i(ai0 + a
i
1x1 + · · ·+ ainxn); (7)

where o is the output of fuzzy reasoning, N is the number of fuzzy rules, oi and �i are the contribution to
the output and the �ring strength of the ith fuzzy rule, respectively.
Nevertheless, we must compute the linear combination of input signals by using Takagi–Sugeno fuzzy rules.

In [8], the computing processes are not assigned to the GNN and they are considered as extraneous signals
to nodes in the fourth layer.
For simplifying the GNN, we slightly modify the rule expression, called linear distance rule (LDR), and

the ith rule is shown as

Rule i : if (x1 is Ai1 and · · · and xn is Ain);

then (u is ai0 + a
i
1(x1 − ci1) + · · ·+ ain(xn − cin));

(8)

184 S.-D. Wang, C.-H. Lee / Fuzzy Sets and Systems 108 (1999) 179–191

where cik is the center of the membership function A
i
k . Then the third-layer nodes complete the defuzzi�cation

task, i.e.

o=
N∑
i=1

gl(x1 − ci1) · · · gl(xn − cin) · (ai0 + ai1(x1 − ci1) + · · ·+ ain(xn − cin))

=
N∑
i=1

�i · (ai0 + ai1(x1 − ci1) + · · ·+ ain(xn − cin))

=
N∑
i=1

Gil(x1 − ci1; x2 − ci2; : : : ; xn − cin); (9)

where Gil is the function that the ith node of layer 2 achieves and a
i
0; a

i
1; : : : ; a

i
n are the adjustable parameters

in layer 2. From (9), we can �nd the functions that the second-layer nodes perform are functions of distances
between input signals and centers of fuzzy rules. Finally, the node in the third layer just completes a summation
function that corresponds to the defuzzi�cation process. The advantages of the type of rules (8) over that of
(4) is that we can acquire the fuzzy rules with singleton consequences easily without computation. This can
help us incorporate the system with fuzzy rules from experts, and we can know the in
uence of displacement
(x − ci) on the output.
For system identi�cation, we apply the supervised back-propagation learning method. First, de�ne an error

function to be the square sum of di�erence between desired and actual outputs, i.e.

E=
1
2

∑
(od − o)2; (10)

where od and o are the desired output and actual output, respectively. Our objective is to minimize the error
function. The general learning rule using the concept of gradient descent is

�aij ∝ − @E
@aij

(11)

and

aij(t + 1)= a
i
j(t) + �j

(
− @E
@aij

)
; (12)

where �j is the learning rate.
For simplicity, we keep the parameters in the second layer unchanged and only update the consequence

parameters. In the condition part, we �rst decide how many terms for each variable, and equally divide the
range of each variable.
In the following, we shall simply derive the updating rule for the coe�cients in the consequence of fuzzy

rules. Assume aij are the adjustable parameters, the updating rules are

@E
@aij

=
@E
@o

· @o
@oi

· @oi
@aij

=



(od − o) · �i∑

�i
if j=0;

(od − o) · �i∑
�i
xj otherwise.

(13)

S.-D. Wang, C.-H. Lee / Fuzzy Sets and Systems 108 (1999) 179–191 185

From Eq. (13), we can obtain the updating rule

aij(t + 1) = a
i
j(t) + �j

(
− @E
@aij

)
=



aij(t) + �0(o

d − o) · �i∑
�i

if j=0;

aij(t) + �j(o
d − o) · �i∑

�i
xj otherwise.

(14)

If the modeling accuracy cannot satisfy us, we can back propagate error messages to the previous layer
to update the premises. The derivation processes of updating rule for the previous layer can be found
in papers discussing back-propagation [14,15]. We shall not rewrite these mathematical equations here.
By this way, we must consider some in
uences of moving centers of fuzzy rules, e.g., the property of
completeness.

4. Selecting signi�cant variables

For an unknown system, it could contain many associated input and state variables. If all the vari-
ables are considered, the number of fuzzy rules will increase exponentially. For example, a system with
�ve input variables and each variable is assigned three terms, i.e. the number of total rules is 125. If
we choose Takagi–Sugeno fuzzy rules or LDRs, the adjustable parameters will also increase by several
orders.
For fuzzy-rule-based identi�cation task, we must take two main issues into account. One is the modeling

accuracy that should satisfy our expectation; the other is the number of fuzzy rules should be small. By the
Stone–Weierstrass theorem, the fuzzy basis function expansions can be a universal approximator [28] and
the modeling error can be arbitrarily small if there are a considerable number of fuzzy rules; however, in
real applications the number of fuzzy rules is �nite. Therefore, it is generally a dilemma between the two
above-mentioned subjects – the accuracy and the size of rule base. Based on this concept, developing an
approach to select signi�cant variables becomes an important issue to solving the identi�cation problems by
using fuzzy systems.

4.1. Algorithm

Firstly, we choose LDRs as our fuzzy rules and the updating rules of the back-propagation (BP) algorithm
should be modi�ed as

@o
@aij

=



(od − o) · �i∑

�i
if j=0;

(od − o) · �i∑
�i
(xj − cij) otherwise.

(15)

From the experience of applying BP, the value of the error function decreases rapidly in the beginning. After
that, the error will be decreased very very slowly. Therefore, we propose a two-phase learning procedure.
In phase 1, our main objective is to select signi�cant variables. If the number of training iterations is less
than some integer It set by users, we only adjust the consequences of fuzzy rules and keep the premise part
unchanged. While the iteration number reaches It , we shall make a decision to choose the signi�cant signals
and shrink the neural network such that its inputs are just the selected signi�cant variables.

186 S.-D. Wang, C.-H. Lee / Fuzzy Sets and Systems 108 (1999) 179–191

To shrink the architecture of neural networks, we alloy the trained fuzzy rules by average, e.g., originally
we have four fuzzy rules as below

x2 is near 0 x2 is near 1

x1 is near 0 a10 + a
1
1(x1 − c11) + a12(x2 − c21) a20 + a

2
1(x1 − c11) + a22(x2 − c22)

x1 is near 1 a30 + a
3
1(x1 − c12) + a32(x2 − c21) a40 + a

4
1(x1 − c12) + a42(x2 − c22)

Now, we assume that x1 is the signi�cant variable, the consequences of fuzzy rules can be averaged by the
associated rules as

if then

x1 is near 0 1
2 (a

1
0 + a

2
0) +

1
2 (a

1
1 + a

2
1)(x1 − c11)

x1 is near 1 1
2 (a

3
0 + a

4
0) +

1
2 (a

3
1 + a

4
1)(x1 − c12)

After reducing the networks, we can restart the training task. In the second phase, we can transfer error
message back not only to the third layer but also to the second layer to update the consequences and centers
and widths in the premise part in order to minimize the error function if error cannot be lowered down to
a desired value. The training process stops when the error function is less than an acceptable value or the
running time reaches a value we de�ned, which is denoted Istop. In the following, we give a simple example
to demonstrate some properties of LDR.

Example 1. Given two rules with only one condition and one action, we wish to complete some mapping
f : x→y, where x and y are both scalars:

Rule 1: if x is A1 then a1 is a10 + a
1
1(x − c1)

and

Rule 2: if x is A2 then a2 is a20 + a
2
1(x − c2), (16)

where ci; i=1; 2 are the centers of membership functions A1 and A2. In (16), each consequence is a straight
line and a11; a

2
1 are the slopes of the lines in the x–y plane. For Rule 1 (or Rule 2), the action will be a

1
0 (or a

2
0),

if x is equal to c1 (or c2). While a11 and a
2
1 approach zeros, the line a

1
0 + a

1
1(x1 − c1) and a20 + a21(x2 − c2)

are both almost horizontal. For any almost horizontal line, we can use a line with zero slope to approximate
it, since we only consider that variables are in a compact set. This situation implies that the input variable x
has no in
uence on function f(·) and the function f(·) can be approximated by fuzzy rules with singleton
consequences. Obviously, we can discard the variables whose coe�cients are very near to zeros in the linear
combination of consequence of each rule.
Whether the coe�cients are small enough to be eliminated, sometimes it depends upon human intuition.

But for a self-learning machine, we may de�ne an index function called “near-zero index (NZI)” which is
described as

NZIj =

∑
i |aij|

the number of rules
: (17)

The range of NZI depends upon the range of the output data and the property of the identi�ed system itself. It
is a relative value rather than an absolute one. Therefore, we think if NZIj=NZI0 is less than some pre-de�ned

S.-D. Wang, C.-H. Lee / Fuzzy Sets and Systems 108 (1999) 179–191 187

small value �NZI, the signal is regarded as an unimportant variable. Then we construct a neural network with
signi�cant variables only. To evaluate the performance of identi�cation, we use a performance index from
[13]. It is de�ned as in the following:

PI=

√∑m
i=1(o

d
i − oi)2∑m

i=1 |oi|
: (18)

If the performance index cannot satisfy our criterion, we can give a smaller �NZI to consider more input
signals. The following is the algorithm of the proposed method:

BEGIN
decide how many terms for each variable,
design It ,
de�ne initial centers and widths of membership functions in the second layer,
if iteration times ¡ It ,
update consequence parameters,

else if (iteration times= It),
{
calculate NZIs for each input signal,
if NZIj ¡ �NZI discards the jth input signal,
else the signal is considered as a signi�cant variable,
reconstruct the neural networks for only the signi�cant variables,

}
restart training consequence parameters,
calculate performance index (PI),
if PI does not satisfy us, cut down �NZI and back to the step of reconstructing neural networks

END

To use this approach, it is very important to normalize all the input signals into some interval, for instance,
[−1; 1]. We give an example in the following:
Assume the consequence of a fuzzy rule can be described as

a= a0 + a1(x1 − c1) + · · ·+ an(xn − cn); (19)

where the range of a is known as [−aU ; aU], x1 is between −1000 and +1000, and let xi; i¿2, ci; i=1; : : : ; n
and a0 be all zeros. Thus, a1 should be in the interval [−aU =1000; aU =1000]. If we change the unit of x1 such
that x1 is between −1 and 1, a1 should be enlarged in the range [−aU ; aU]. It illustrates that the consequence
parameters a1; a2; : : : ; an would be in
uenced severely by di�erent units. In other words, xi with di�erent units
will have di�erent coe�cients ai. If x1 is enlarged ten times, a1 will be decreased to 1

10 . This will lead to
the variation of NZI values if the input signals are not normalized. So it is necessary to map input signals
onto some range.

4.2. Decomposition of a MIMO system

An n-input and m-output plant can be intuitively decomposed into m n-input MISO plants. Actually, some
inputs only contribute some outputs and have nothing to do with other outputs. In other words, it is possible
to decompose into m plants with the number of inputs less than n by properly selecting signi�cant variables.
Some MIMO systems have very complex mathematical models. It is hard to identify such plants by tra-

ditional identi�cation approaches. If we have no idea about what input signals dominates the output, the

188 S.-D. Wang, C.-H. Lee / Fuzzy Sets and Systems 108 (1999) 179–191

modeling fuzzy system will require a lot of hidden-layer nodes in the neural networks. If we can decompose
a MIMO into many simpler MISO plants, it would be very helpful to a control designer to �nd out the
respective e�ect that an input would impose on an output. Using the proposed approach and evaluating the
input variables based on the NZI can e�ciently accomplish the task of decomposition.

5. Simulation

In this section, we apply the proposed approach to determine signi�cant variables. First, we choose two
systems to be identi�ed:

Example 2. Consider the nonlinear function y=(2+ x1:51 − 1:5 sin(3x2))2. We randomly take 100 points from
06 x1; x26 3 and obtain 100 sets of input–output data. We also add a dummy variable x3 with the same
range [0; 3]. We de�ne three linguistic terms for each variable. All the consequence parameters are initially
set to zeros and all the learning rates are de�ned to be 0.01. The simulation results are shown in Table 1,
where aj =

∑n
i=1 |aij|; j=0; 1; 2; : : : ; n. From Table 1, we can �nd NZI3 is much less than NZIi ; i=0; 1; 2.

Therefore, we can clearly �nd out the signi�cant variables are x1 and x2. The simulation results are compared
with [13] as tabulated in Table 2. Table 3 shows the relation between PI after 5000 iterations with four rules
and data number in the simulation. Fig. 5 shows the performance index versus iterations.

Example 3. In this example, we try to model a time-delay system. Its mathematical equation is expressed
as

y(t)= (x(t − 1) + x(t − 2))=2 + sin((x(t − 1) + x(t − 2))=2): (20)

Assume we know the delay time of the system is less than two. So we can only take x(t); x(t− 1); x(t− 2)
into consideration; i.e., there are three initial input signals for the fuzzy inference engine. There are three
terms for each input signal and totally 27 fuzzy rules. Table 4 shows the simulation data and the NZI for

Table 1
Near-zero index (NZI) value of each variable

Variable NZI value

x0 = 1 372.208835
x1 279.786558
x2 1081.63277
x3 83.666059

Table 2
Model performance and training iterations for the nonlinear system y= (2 + x1:51 − 1:5 sin(3x2))2

using various number of rules

Number Method in [13] Proposed method
of rules

Performance Training steps Performance Training steps

4 0.00497 2800 0.00499 875
5 0.00336 5000 0.00337 900
6 0.00183 4400 0.00183 925
7 0.00144 5000 0.00144 1850

S.-D. Wang, C.-H. Lee / Fuzzy Sets and Systems 108 (1999) 179–191 189

Fig. 5. Model performance index on the nonlinear system y= (2 + x1:51 − 1:5 sin(3x2))2.

Table 3 Table 4
The relation between performance index values and number of Near-zero index (NZI) value of each variable of a time-delay
data system

Number of data Performance index value

25 0.00879223
50 0.00639761
75 0.00305832
100 0.00275896
125 0.00269427
150 0.00204051
200 0.00173671
250 0.00149740
300 0.00148791

Variable NZI value

x0 = 1 30.62493=27
x1 = x(t) 4.139764=27
x2 = x(t − 1) 8.222736=27
x3 = x(t − 2) 7.977414=27

each input signal. From Table 4, we can know x(t−1) and x(t−2) are more important than x(t), since NZI2
and NZI3 are larger than NZI1.

After determining the signi�cant variables, x(t − 1) and x(t − 2), we assign two membership functions to
each variable, i.e. we use four fuzzy rules to model the system. After �nishing 5000 iterations, the excellent
simulation results are shown in Fig. 6.

6. Summary

For improving the fuzzy modeling precision and reduce the size of fuzzy rule base, we propose an approach
for determining signi�cant variables. The signi�cant variables are determined based on the LDRs or Takagi–

190 S.-D. Wang, C.-H. Lee / Fuzzy Sets and Systems 108 (1999) 179–191

Fig. 6. Output of fuzzy model and actual output of time-delay system. The desired output is shown by the dashed line and the actual
output by the solid line.

Sugeno fuzzy rules. The use of near-zero index can point out the respective importance of each input signal
in the input–output relations. A signi�cant variable is selected according to its near-zero index value. For
a MIMO system, we can consider it as several MISO systems and the proposed method can be applied to
e�ciently realize this concept.

References

[1] F. Bouslama, A. Ichikawa, Application of neural networks to fuzzy control, Neural Networks 6 (1993) 791–799.
[2] C.-H. Chang, F.-H. Huang, J.-Y. Cheung, Design of a fuzzy controller using input and output mapping factors, IEEE Trans. Systems

Man Cybernet. 21 (1991) 952–960.
[3] J. Hao, J. Vandewalle, A rule-based neural controller for inverted pendulum system, Internat. J. Neural Systems 4 (1993) 55–64.
[4] S.-Z. He, S. Tan, C.-C. Hang, Control of dynamical processes using an on-line rule-adaptive fuzzy control system, Fuzzy Sets and

Systems 54 (1993) 11–22.
[5] R. Hecht-Nielsen, Neurocomputing, Addison-Wesley, Reading, MA, 1990.
[6] S.-I. Horikawa, T. Furuhashi, Y. Uchikawa, On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm,

IEEE Trans. Neural Networks 3 (1992) 801–806.
[7] H. Ishibuchi, R. Fujioka, H. Tanaka, Neural networks that learn from fuzzy if–then rules, IEEE Trans. Fuzzy Systems 1 (1993)

85–97.
[8] J.S. Jang, Fuzzy modeling using generalized neural networks and Kalman �lter algorithm, in: Proc. 9th National Conf. Arti�cial

Intelligence, Anaheim, 1991, pp. 762–767.
[9] J.-S.R. Jang, Self-learning fuzzy controllers based on temporal back propagation, IEEE Trans. Neural Networks 3 (1992) 714–723.
[10] H.M. Kim, J.M. Mendel, Fuzzy basis functions: comparisons with other basis functions, IEEE Trans. Fuzzy Systems 3 (1995)

158–167.
[11] C.-C. Lee, Fuzzy logic in control systems: fuzzy logic controller – parts I and II, IEEE Trans. Systems Man Cybernet. 20 (1990)

404–435.
[12] C.-H. Lee, S.-D. Wang, A self-organizing adaptive fuzzy controller, Fuzzy Sets and Systems 80 (1996) 295–314.
[13] Y. Lin, G.A. Cunningham III, A new approach to fuzzy-neural system modeling, IEEE Trans. Fuzzy Systems 3 (1995) 190–197.

S.-D. Wang, C.-H. Lee / Fuzzy Sets and Systems 108 (1999) 179–191 191

[14] C.-T. Lin, C.S.G. Lee, Neural-network-based fuzzy logic control and decision system, IEEE Trans. Comput. 40 (1991) 1320–1336.
[15] C.-T. Lin, Y.-C. Lu, A neural fuzzy system with linguistic teaching signals, IEEE Trans. Fuzzy Systems 3 (1995) 169–189.
[16] S. Mitra, S.K. Pal, Fuzzy multi-layer perceptron, inferencing and rule generation, IEEE Trans. Neural Networks 6 (1995) 51–63.
[17] R.W. Newcomb, Nonlinear Systems Analysis, Prentice-Hall, Englewood Cli�s, NJ, 1978.
[18] D.H. Nguyen, B. Widrow, Neural networks for self-learning control systems, IEEE Control Systems Mag. 10 (1990) 18–23.
[19] J. Nie, D.A. Linkens, Neural network-based approximate reasoning: principles and implementation, Internat. J. Control 56 (1992)

399–413.
[20] J. Nie, D.A. Linkens, Learning control using fuzzi�ed self-organizing radial basis function network, IEEE Trans. Fuzzy System 1

(1993) 280–287.
[21] R.M. Sanner, J.-J.E. Slotine, Gaussian networks for direct adaptive control, IEEE Trans. Neural Networks 3 (1992) 837–863.
[22] C.-Y. Su, Y. Stepanenko, Adaptive control of a class of nonlinear systems with fuzzy logic 2 (1994) 285–294.
[23] M. Sugeno, G.T. Kang, Structure identi�cation of fuzzy model, Fuzzy Sets and Systems 28 (1988) 15–33.
[24] K. Sugiyama, Rule-based self-organizing controller, in: M.M. Gupta, T. Yamakawa (Eds.), Fuzzy Computing, North-Holland,

Amsterdam, 1988, pp. 341–353.
[25] C.-T. Sun, Rule-base structure identi�cation in an adaptive network based fuzzy inference system, IEEE Trans. Fuzzy Systems 2

(1994) 64–73.
[26] T. Takagi, M. Sugeno, Fuzzy identi�cation of systems and its applications to modeling and control, IEEE Trans. System Man

Cybernet. 15 (1985) 116–132.
[27] L.-X. Wang, Stable adaptive fuzzy control of nonlinear systems, IEEE Trans. Fuzzy Systems 1 (1993) 146–155.
[28] L.-X. Wang, J.M. Mendel, Fuzzy basis functions, universal approximation, and orthogonal least-squares learning, IEEE Trans. Neural

Networks 3 (1992) 807–814.
[29] C.-W. Xu, Y.-Z. Lu, Fuzzy model identi�cation and self-learning for dynamic systems, IEEE Trans. System Man Cybernet. SMC-17

(1987) 683–689.

