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Abstract The usefulness and utility of QSAR modeling

depends heavily on the ability to estimate the values of

molecular descriptors relevant to the endpoints of interest

followed by an optimized selection of descriptors to form the

best QSAR models from a representative set of the endpoints

of interest. The performance of a QSAR model is directly

related to its molecular descriptors. QSAR modeling, spe-

cifically model construction and optimization, has benefited

from its ability to borrow from other unrelated fields, yet the

molecular descriptors that form QSAR models have

remained basically unchanged in both form and preferred

usage. There are many types of endpoints that require mul-

tiple classes of descriptors (descriptors that encode 1D

through multi-dimensional, 4D and above, content) needed

to most fully capture the molecular features and interactions

that contribute to the endpoint. The advantages of QSAR

models constructed from multiple, and different, descriptor

classes have been demonstrated in the exploration of

markedly different, and principally biological systems and

endpoints. Multiple examples of such QSAR applications

using different descriptor sets are described and that exam-

ined. The take-home-message is that a major part of the

future of QSAR analysis, and its application to modeling

biological potency, ADME-Tox properties, general use in

virtual screening applications, as well as its expanding use

into new fields for building QSPR models, lies in developing

strategies that combine and use 1D through nD molecular

descriptors.
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Quantitative structure–activity relationships (QSARs) are

used to describe and predict therapeutic biological potency,

adsorption, distribution, metabolism, excretion, toxicology

(ADME-Tox) properties and properties of materials, most

notably polymers. Often non-biological potency applica-

tions are referred to as quantitative structure–property

relationships (QSPRs). The usefulness of QSAR analysis as

a cheminformatics tool depends heavily on the ability to

calculate molecular descriptors relevant to the endpoints

(activity and property measures) of interest, followed by

the judicious selection of descriptors—or not—to form

QSAR models (equations) from a representative set of the

endpoints of interest (the training set). The power of

cheminformatics, specifically in this case the QSAR para-

digm, is being able to examine the resulting QSAR models

and gain an understanding of why certain molecular

descriptors are more important than others, and how these
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descriptors permit reliable endpoint predictions. In turn,

realizing this capability from a QSAR model is directly

dependent upon the molecular descriptors used to construct

the models (the trial descriptor pool).

Generally, scientists like to employ a paradigm, or

methodology, that upon first use is not overly cumbersome to

apply, and often provides interesting findings. In the case of

QSAR analysis this approach translates into discovering and

becoming familiar with a particular class of molecular

descriptors and a model generation method that results in

success. QSAR models can be created using multiple linear

regression methods as in classic Hansch analysis [1–3],

principal component analysis [4] (PCA), partial least squares

[5, 6] (PLS), artificial neural networks [7–9] (NN), evolu-

tionary algorithms including genetic algorithms [10, 11],

support vector machines [12, 13] (SVM) or combinations of

these model-building and optimization methods. Continuous

or classification (discriminant analysis) models employ the

same general protocol: assemble the dataset of compounds

and endpoints, divide the dataset into a training set and a test

set, calculate the molecular descriptors, construct and vali-

date the models, analyze and test/validate the models, and

implement the information gained from the models.

The task of QSAR model construction and optimization

continues to borrow from the social sciences, computer

science and statistics in order to better handle the ever

larger, noisier and, at times, unbalanced datasets that are

increasingly generated from experimental high-throughput

screening (HTS) assays. However, the molecular descrip-

tors that comprise QSAR models are typically unchanging.

Moreover, minimal thought seems to have gone into the

development of methods for the customized selection and

exploration of trial descriptor sets for the building of QSAR

models. Molecular descriptors belong to various classes

based on the type of information they are derived from and

contain. Descriptors that, for example, count the number of

a specific chemical entity in a molecule (e.g., the number of

aromatic rings or hydrogen bond acceptors) are often

referred to as traditional 1D (dimensional). There are also

2D (sometimes called 2�D; a 3D-based molecular property

represented as a single numerical value; e.g., the potential

energy, volume, or molecular properties mapped to the

molecule’s surface) and 3D (molecular interaction fields

based on compound-probe interaction isosurface contours;

e.g., the hydrophobic volume defined between two inter-

action energies; GRIND [14] and VolSurf [15–17])

molecular descriptors. Gaining more popularity are nD or

multi-dimensional descriptors that are molecular features

extracted from an ensemble of conformations and molec-

ular interactions: MI-QSAR analysis [18], 4D-QSAR

analysis [19–23] and 4D-Fingerprints [24]. The confor-

mations are usually an ensemble set taken from the

molecular dynamics trajectories of the compounds with

corresponding key features derived from intra- and, in some

cases, inter- molecular interactions. Quantum mechanical

properties, such as HOMO, LUMO, ionization potential

and heat of formation energies (calculated with Spartan

[25], GAMESS [26], CODESSA [27] or Gaussian [28] to

name a few), can be considered 2�D, 3D or 4D descriptors,

depending on one’s point of view, but provide high-level

information relating to intra-atomic interactions and elec-

tronic structure. Commonly used cheminformatics pack-

ages such as the Chemistry Development Kit [29, 30]

(CDK), CODESSA [27], Dragon [31, 32], MOLCON [33],

Molecular Operating Environment [28] (MOE), Pipeline

Pilot [34], and SYBYL-X [35] provide scientists a multi-

tude of molecular descriptors that span the 1D, 2D, and 3D

descriptor classes.

It is quite common, and actually almost ‘‘standard oper-

ating procedure’’, for QSAR models to be constructed from a

single class, or type, of molecular descriptors. Conversely, it

is very is infrequent for 1D and 2D descriptors and 3D and

4D descriptors to be jointly used as a trial descriptor pool to

build a QSAR model. There is no logical reason for keeping

these descriptor classes segregated. Certainly one can

appreciate situations, based upon the endpoint of interest,

where multiple classes of descriptors are needed to ade-

quately capture the molecular features and interactions that

contribute to the endpoint of interest. For example, when the

endpoint is an ED50 (an in vivo measure of biological

potency), intuition tells us that there may be a transport/

delivery component, as well as a ligand-receptor binding

component, that jointly contribute to the expression of the

ED50 value. The transport component is likely best treated

with 2D and 2�D thermodynamic and size descriptors,

whereas the ligand-receptor binding component may be best

handled using pharmacophore descriptors derived from 4D-

QSAR analysis. ADME transport properties, like cell pen-

etration, may require 1D through 4D descriptors to capture

both the magnitude and direction of the solute trajectory

through the membrane.

The advantages of QSAR models constructed from

multiple descriptor classes have been demonstrated in the

exploration of different biological systems and endpoints.

Recently we have shown that merging 1D through 4D

molecular descriptor sets into a single trial descriptor pool

leads to multi-class continuous and classification QSAR

models that are superior for the prediction of hERG car-

diotoxicity when compared to models from the corre-

sponding segregated descriptor sets. [36, 37] The transport

of organic compounds through lipid assemblies of the

stratum corneum for transdermal drug delivery applications

has also been modeled using multiple classes of descrip-

tors. [38] The trial descriptor pool consisted of intermo-

lecular interactions between a membrane (monolayer of

DMPC) and the penetrant as well as intramolecular (1D
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and 2D molecular descriptors; classic descriptors) features

of only the penetrant. Two sets of QSAR models were

constructed, one from the intramolecular-only trial

descriptor pool and another from the intramolecular and

intermolecular trial descriptor pool. The models con-

structed from the mixed-class descriptor pools resulted in

remarkably better models (r2 = 0.80, q2 = 0.77) for the

prediction of skin penetration than the intramolecular-only

models (r2 = 0.56, q2 = 0.51) [38].

Adding a known important molecular feature (e.g., log

P, number of hydrogen bond donors, or total polar surface

area, TPSA) to a trial descriptor pool consisting of

molecular interaction fields al a CoMFA [39], or a set of

4D-QSAR grid cell occupancy descriptors, GCODs [20],

can improve the predictive ability and usefulness of the

resulting models. A thorough comparison of 4D-QSAR and

CoMFA models for a steroidal dataset [40] provides insight

to the importance of including other classes of molecular

descriptors when creating QSAR models. The 4D-QSAR

models were constructed with (r2 = 0.87, q2 = 0.80, 14

descriptors) and without (r2 = 0.85, q2 = 0.76, 14

descriptors) the calculated log P values. Hence, the inclu-

sion of log P led to a better model as measured by both r2

and q2. Moreover, for this particular application, the 4D-

QSAR models are superior to the CoMFA models (elec-

trostatic only: r2 = 0.90, q2 = 0.56, 200 descriptors;

electrostatics and sterics: r2 = 0.92, q2 = 0.59, 476

descriptors) based on the leave-one-out cross-validation

and also test set average residuals of prediction [40]. Thus,

it can be seen from this example that the class/type of

descriptors used (4D GCODs versus CoMFA field

descriptors) can lead to models of near identical quality

with respect to r2, but having markedly different predictive

power.

If there were any reason for the segregation of classes of

descriptors, it would be as a component to doing consensus

modeling. One can advocate that the optimum way to do

QSAR analysis involves building QSAR models for a

common training set using segregated classes of descriptor

sets, as well as various merged combinations of classes of

descriptor sets. Comparisons of the resulting optimized

QSAR models from these multiple descriptor pools should:

(a) permit identification of the best and unique set of

QSAR models,

(b) provide a basis for consensus virtual screening,

(c) identify consistency, or lack thereof, in the features

and properties, as portrayed by the descriptors of the

QSAR models, responsible for the expression of the

endpoint,

(d) establish a basis to rank the relative importance of the

key descriptors from different classes in controlling

the endpoint, and

(e) present a landscape of how different classes and types

of descriptors are interacting with one another in

expressing the endpoint.

Very little of this type of consensus modeling, using

multiple classes and types of descriptors sets, has been, or

is being, done. Investigators seem content to use their

favorite set of descriptors and model-building technique to

construct QSAR models, and pay little heed to other

available QSAR modeling resources. In a study of can-

nabinoids [41] a single class of descriptors, namely ab ini-

tio quantum mechanical molecular descriptors, captured a

set of physicochemical properties that accounted for the

variance in the binding of cannabinoid ligands to cannab-

inoid receptor 2 (CB2). However, this class of descriptors

was unable to meaningfully describe the features for can-

nabinoid receptor 1 (CB1). The authors propose that 3D

modeling techniques and corresponding descriptors, such

as CoMFA [39] or CoMSIA [42], are better suited to model

the biological endpoints of CB1 than quantum mechanical

descriptors [41]. It would have been interesting to see this

dataset explored with ab initio quantum mechanical

descriptors along with 1D through 4D molecular descrip-

tor, as individual and combined descriptor sets, to construct

consensus QSAR models that would permit a more com-

plete examination of the key molecular features.

An example of consensus and ensemble QSAR model-

ing, using multiple descriptor classes, is the study of a set of

skin penetration enhancers [43]. A combination of classic

intramolecular descriptors and 4D-fingerprints [24], based

on the 4D-QSAR paradigm [20], were computed for mul-

tiple sets of skin penetration enhancers. Three types of

QSAR models (a) classic descriptor models, (b) 4D-fin-

gerprint models, and (c) classic and 4D-fingerprint models

[43] were constructed for two different skin penetration

enhancer training sets. The models for the first training set

of 61 compounds had comparable results; the best classic

model (r2 = 0.73, q2 = 0.66, 6 descriptors), the best 4D-

Fingerprint model (r2 = 0.74, q2 = 0.67, 5 descriptors) and

the best mixed-descriptor set model (r2 = 0.76, q2 = 0.72,

6 descriptors) [43]. While the models are statistically sim-

ilar to one another, the descriptor make-up of the individual

class models and mixed class model are significantly dif-

ferent from one another. The lone descriptor commonality

is that the mixed class model shares a single descriptor with

the classical model and also a single descriptor from the 4D-

fingerprint model. The second training set of 44 skin pen-

etration enhancers highlights the unique information con-

tained within the multidimensional 4D-fingerprints not

present in the classical molecular descriptors. Models

constructed from the classic intramolecular descriptors for

this dataset resulted in no significant QSAR models. How-

ever, models constructed from the mixed-class and the 4D-
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fingerprints only trial descriptor pools yielded the exact

same models composed only of 4D-fingerprints. Thus, in

this specific application, the 4D-fingerprints out-performed

the classic descriptors [43].

An important part of the future of QSAR analysis, and

its application to modeling biological potency, ADME-Tox

properties, as well as its expanding use into new fields for

building QSPR models, lies in developing strategies that

combine and use 1D through nD molecular descriptors.

The exploration for new, relevant and high information

content descriptors is not over, especially the development

of methods to generate custom 3D and 4D descriptors.

However, we should endeavor to combine and optimize the

use of sets of descriptor classes and types that are currently

available when constructing QSAR models.
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