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A procedure for estimating the reliability of test scores in the context of ecological

momentary assessment (EMA) was proposed to take into account the character-

istics of EMA measures. Two commonly used test scores in EMA were consid-

ered: the aggregated score (AGGS) and the within-person centered score (WPCS).

Conceptually, AGGS and WPCS represent the interindividual differences and the

intraindividual differences, respectively. The reliability coefficients for AGGS and

WPCS were derived using a multilevel factor model with a serial correlation

structure framework. Point estimates and confidence intervals of these coefficients

were obtained using Mx (Neale, Boker, Xie, & Maes, 2004). A simulation study

showed that the proposed procedure performed well empirically. Diary data from

Huang (2009), which recorded daily joy level of 110 undergraduate students for 8

days, was used to illustrate the applicability of the proposed method.

Over the past 2 decades, ecological momentary assessment (EMA; Stone &

Shiffman, 1994) has been adopted in several areas of psychology, including clin-

ical psychology (Trull & Ebner-Priemer, 2009; Wenze & Miller, 2010), health

psychology (Shiffman & Stone, 1998), and personality psychology (Tennen,

Affleck, & Armeli, 2005). According to Stone and Shiffman (1994), EMA is not
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422 HUANG AND WENG

a single method but rather a collection of methods that share the following four

characteristics: (a) data are collected in real-world environments, (b) assessments

focus on individuals’ current states or behaviors, (c) assessment moments are

strategically selected (e.g., event-based, time-based, or randomly prompted), and

(d) participants complete multiple assessments over time. These characteristics

indicate that EMA may increase ecological validity, avoid biased recollections of

memories, and allow researchers to explore within-person changes in experiences

or behaviors over time as well as across contexts (for a detailed discussion,

see Bolger, Davis, & Rafaeli, 2003; Hektner, Schmidt, & Csikszentmihalyi,

2007; Shiffman, Stone, & Hufford, 2008; Stone, Shiffman, Atienza, & Nebel-

ing, 2007).

Although the use of EMA is promising, it also presents several methodolog-

ical challenges (e.g., Hufford, 2007; Schwarz, 2007; Shiffman, 2007; Shiyko

& Ram, 2011). In this article, the issue of reliability estimation with EMA-

related test scores is considered. Based on classical test theory (Lord & Novick,

1968), several popular procedures have been proposed to estimate test score

reliability (see Feldt & Brennan, 1989; Haertel, 2006, for a review). However,

these procedures may not be appropriate in EMA studies. The first reason for

this is that EMA measurements are repeatedly measured, which usually implies

the violation of the independence assumption among observations (Raudenbush

& Bryk, 2002). When the independence assumption does not hold, Type I error

rate may be incorrect (Kenny & Judd, 1986; Muthén & Satorra, 1995). Second,

in EMA studies, the most commonly used test score, the composite score—

defined as the unweighted sum of item scores for a given person at specific

timepoint—carries two types of information: the information of interindividual

differences (i.e., the typical response) and the information of intraindividual

differences (i.e., the deviations from the typical response). These two types

of information reflect different aspects of human behaviors and should not be

treated in the same way (see Molenaar, 2004, for a discussion). Unfortunately, the

traditional procedures for estimating reliability do not make this distinction and

may result in ambiguous interpretations. To our knowledge, only a few studies

have considered the reliability issue of EMA scores (Csikszentmihalyi & Larson,

1987; Hektner et al., 2007). Yet, these studies simply applied comprehensive

evaluations based on traditional reliability estimation procedures, such as the

coefficient ’ (Cronbach, 1951; Guttman, 1945) and the test-retest reliability

coefficient, to EMA studies; the characteristics of EMA measurement have yet

to be taken into consideration. As a consequence, both the nonindependence

issue remains untouched and the meaning of the obtained coefficients remains

ambiguous.

Some studies have come close to investigating the reliability of measurements

with data structure similar to those in EMA but ultimately fall short. Several

studies have focused on the reliability of repeated measures (Biemer, Christ, &
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RELIABILITY ESTIMATION IN EMA 423

Wiesen, 2009; Laenen, Alonso, & Molenberghs, 2007; Laenen, Alonso, Molen-

berghs, & Vangeneugden, 2009; Laenen, Vangeneugden, Geys, & Molenberghs,

2006). In these works, the nonindependence problem was overcome by modeling

the dependence structure directly, but none of these studies consider the reliabil-

ity of test scores that represent intraindividual differences. Because EMA data

can be approached from a multilevel perspective, reliability estimation proce-

dures proposed under multilevel measurement models are legitimate alternatives

(Raudenbush, Rowan, & Kang, 1991; Raykov & du Toit, 2005; Snijders &

Bosker, 1999). The main strength of these procedures is that they allow for the

estimation of test score reliability at different levels (Raudenbush et al., 1991).

However, the dependency structures considered in these works are relatively

simple and do not incorporate the essential property of serial correlation that

is embedded in EMA measures. Serial correlation is defined as the correlation

between two measurements on a single person in a longitudinal study (Everitt,

2002). Modeling such a correlation structure in EMA studies has been recom-

mended (Schwartz & Stone, 1998, 2007) and ignoring them may result in biased

variance estimates (Laenen, 2008).

In this study, a procedure for estimating the reliability of EMA-related scores

is proposed. The proposed procedure is based on the framework of a multilevel

factor model with serial correlation structure (MFM-SCS). MFM-SCS is an

extension of the traditional multilevel factor model (MFM; Lee, 1990; McDonald

& Goldstein, 1989; Muthén, 1989) and accounts for the serial correlation among

repeated measures. Two types of EMA-related test scores are considered in

this study: the aggregated score (AGGS) and the within-person centered score

(WPCS). AGGS is the arithmetic average of the composite score from repeated

measurements for a given person and WPCS is the deviation score from AGGS

for a given person measured at a certain time point. AGGS and WPCS are

widely used in multilevel modeling to represent the information of interindivid-

ual differences and the information on intraindividual differences, respectively

(see Curran & Bauer, 2011, for a discussion). Because an important advantage

of using EMA data is that it allows researchers to model interindividual and

intraindividual processes simultaneously, the choice of AGGS and WPCS as the

target test scores for further reliability estimation is straightforward. Reliability

coefficients for AGGS and WPCS are to be derived using the model-based

approach, which has been used pervasively (e.g., Bentler, 2009; Jöreskog, 1971;

Raykov & Shrout, 2002).

The proposed method can be implemented in Mx (Neale, Boker, Xie, & Maes,

2004). Supplemental materials, including Mx scripts and artificial data sets, are

available on the Web (http://homepage.ntu.edu.tw/�f97227110/Rel_Est_EMA.

zip). Diary data from Huang (2009), which recorded daily joy level of 110

undergraduate students for 8 days, is used to illustrate the applicability of the

proposed method.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l T
ai

w
an

 U
ni

ve
rs

ity
] 

at
 2

2:
41

 0
4 

D
ec

em
be

r 
20

12
 



424 HUANG AND WENG

This article is organized as follows: it begins with the introduction of the

MFM-SCS model followed by a proposal for a procedure for estimating the

reliabilities of AGGS and WPCS. A simulation study to evaluate the empirical

performance of the proposed procedure is presented. This is followed by the

real data example. Finally, merits, cautions, and further directions concerning

the procedure are discussed.

MULTILEVEL FACTOR MODEL WITH SERIAL

CORRELATION STRUCTURE

This section specifies the MFM-SCS model and explains its implications in the

context of EMA studies. Without loss of generality, all the items are assumed

to be congeneric (i.e., all the items are measuring the same latent construct).

Let yijk denote the response for person i.i D 1; 2; : : : ; N / on item k.k D

1; 2; : : : ; K/ at time j.j D 1; 2; : : : ; J /, MFM-SCS decomposes yijk into the

sum of the between-person component vik and the within-person component

vijk

yijk D vik C vijk; (1)

In Equation 1, vik represents the typical response of person i to item k and con-

tains the information of interindividual differences. Similarly, vijk represents the

deviation from vik and contains the information of intraindividual differences.

In the literature of multilevel modeling, vik and vijk are also called the Level 2

component and Level 1 component, respectively. MFM-SCS describes the linear

relationship between the components and the corresponding latent factors as

vik D ’k C œbk˜i C ©ik ;

vijk D œwk˜ij C ©ijk ;
(2)

where ’k is the intercept for item k, ˜i is the Level 2 latent factor, œbk is the

Level 2 factor loading, ©ik is the Level 2 residual, ˜ij is the Level 1 latent factor,

œwk is the Level 1 factor loading, and ©ijk is the Level 1 residual. For EMA

measurements, ˜i and ˜ij can be regarded as the same psychological attribute

at different levels to make the distinction between trait and occasion effects

(e.g., Cole, Martin, & Steiger, 2005). In this sense, ˜i represents the latent trait

score for person i , and ˜ij represents the occasional score for person i at time

j . For example, suppose the items measure people’s current level of joy, then

˜i represents the trait joy level for person i and ˜ij represents the occasional

joy level for person i at time j . The factor loadings œbk and œwk describe the

degrees of association between the corresponding components and the factors.
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RELIABILITY ESTIMATION IN EMA 425

The residuals ©ik and ©ijk represent measurement errors that cannot be explained

by the latent factors.

Equations 1 and 2 can be written in a compact matrix form as

yij D vi C vij D .’ C œb˜i C ©i/ C .œw˜ij C ©ij /; (3)

where yij , vi , vij , ’, œb , ©i , œw , and ©ij are all K � 1 vectors that stack the

elements in Equation 2, and ˜i and ˜ij are scalars in the one-factor model. The

following assumptions are made for the MFM-SCS model:

(A1) For each i , the Level 2 component vi is uncorrelated with Level 1

components fvi1; vi2; : : : ; viJg.

(A2) Level 2 components fv1; v2; : : : ; vN g are independently and identically

distributed with vi � N.’; †b/, where ’ is a K � 1 mean vector and

†b is a K � K covariance matrix.

(A3) Let Vi D Œvi1 vi2 vi3 � � � viJ �; Vi follows a matrix normal distribu-

tion independently, that is, Vi � MNK�J .0; †w; ˆi / (see Kollo & von

Rosen, 2005), where †w is a K � K covariance matrix and ˆi is a

J � J serial correlation matrix illustrating the dependence structure

among observations across time.

(A4) For each i , the Level 2 latent factor ˜i is uncorrelated with the Level 2

residual ©i . In addition, ˜i � N.0; §b/ and ©i � N.0; ‚b/, where ‚b

is a K � K Level 2 residual covariance matrix.

(A5) For each i and j , the Level 1 latent factor ˜ij is uncorrelated with the

Level 1 residual ©ij . In addition, ˜ij � N.0; §w/ and ©ij � N.0; ‚w/,

where ‚w is a K � K Level 1 residual covariance matrix.

(A1) is the standard assumption in multilevel modeling that allows for variance

decomposition. (A2)–(A3) state the independence/dependence and distribution

assumptions for Level 2 and Level 1 components. The independence assumptions

for both components are essential and can be achieved when the participants are

sampled independently. The dependence structure made in (A3) is the main

difference between MFM-SCS and traditional MFM. Traditional MFM assumes

that the Level 1 components fvi1; vi2; : : : ; viJ g are independently and identically

distributed with vij � N.0; †w/. Note that MFM is a special case of MFM-SCS

with the serial correlation matrix ˆi being a J �J identity matrix. The normality

assumptions in (A2)–(A3) are not necessary for deriving the model-implied

mean and covariance structure but will be crucial when maximum likelihood

estimation is used. (A4)–(A5) make further assumptions on latent factors and

residuals. Because latent factors are often treated as true score and residuals

are treated as measurement errors, the independence between latent factors and

residuals is an analogy of independence between true scores and residuals in
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426 HUANG AND WENG

classical test theory. Again, the distribution assumptions in (A4)–(A5) are only

important for maximum likelihood estimation.

When (A1)–(A5) are satisfied, the model-implied mean and covariance struc-

ture for yij is

�.™/ D ’;

†.™/ D †b C †w D .œb§bœT
b C ‚b/ C .œw§wœT

w C ‚w/;
(4)

where ™ is a Q-dimensional vector of model parameters. Equation 4 shows that

the total covariance is decomposed into a between-person covariance †b and a

within-person covariance †w. Each of the two covariance matrices can be further

decomposed into two parts: the covariance associated with true score (œb§bœT
b

and œw§wœT
w) and the covariance associated with measurement errors (‚b and

‚w). This decomposition is crucial for deriving the reliability coefficients.

Notice that the mean and covariance structures in Equation 4 are identical for

MFM-SCS and traditional MFM. The difference will appear if we consider the

covariance structure for the complete response vector, y�
i D ŒyT

i1; yT
i1; : : : ; yT

iJ �T

(see Appendix A). In such case, the serial correlation matrix ˆi is involved.

ˆi is always structured by a P -dimensional serial correlation parameter “ and

the fixed time separation dijj 0. Here, dijj 0 D jtij � tij 0 j, where tij denotes the

time coding given to person i at time j . An element of ˆi , ¥ijj 0 , describes

the magnitude of serial correlation between times j and j 0 for person i and is

assumed to be a function of “ and dijj 0. For “ > 0, the associated function value

must be decreasing with respect to dijj 0 and tends toward zero as dijj 0 goes to

infinity with appropriate order. This restriction reflects the fact that the serial

correlation between two measurements will disappear as the time separation

becomes longer. There are several commonly used serial correlation structures

in the literature (see Verbeke & Molenberghs, 2000, p. 99). For example, if the

intervals between measurements are discrete with equal spacing, the first-order

autoregressive structure can be adopted

ˆAR1
i .“/ D

2

6

6

6

6

6

4

1

“ 1 Sym:

“2 “ 1
:::

:::
:::

: : :

“J �1 “J �2 “J �3 � � � 1

3

7

7

7

7

7

5

; (5)

where “ is the so-called autoregressive parameter that represents the correlation

between times j and j C1 for the considered variable. Taking another example,

when the intervals of observations are continuous with unequal spacing, we may
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RELIABILITY ESTIMATION IN EMA 427

consider the exponential structure

ˆEXP
i .“/ D

2

6

6

6

6

6

4

1

exp.�jdi21j=“/ 1 Sym:

exp.�jdi31j=“/ exp.�jdi32j=“/ 1
:::

:::
:::

: : :

exp.�jdiJ1j=“/ exp.�jdiJ 2j=“/ exp.�jdiJ 3j=“/ � � � 1

3

7

7

7

7

7

5

:
(6)

With this structure, the serial correlation structure for persons i and i 0 may be

different when the time separations for them are not equal.

The parameters in MFM-SCS can be estimated by maximum likelihood

estimation (see Appendix A). The statistical software Mx (Neale et al., 2004),

characterized by its flexibility in defining complex mean and covariance struc-

tures, is used to obtain the maximum likelihood estimates. The “individual”

serial correlation matrix can also be modeled by using the definition variable

approach in Mx (see Mehta & West, 2000).

RELIABILITY ESTIMATION FOR AGGS AND WPCS

This section illustrates the procedure for estimating the reliability of AGGS and

WPCS. First, three relevant indices ¡IC C , ¡LV1 , and ¡LV 2 are defined. Let 1

denote the K-dimensional vector of 1’s, then yC
ij D 1T yij is the composite

score of the K items for person i at time j . Conceptually, the composite score

yC
ij is used to measure the state level of some psychological attribute that is a

linear combination of the trait level ˜i and the occasional level ˜ij (see Cole

et al., 2005). Similarly, vC
i D 1T vi and vC

ij D 1T vij denote the composite

scores of Level 2 and Level 1 components. The associated true scores are £C
i D

E.vC
i j˜i / D 1T ’ C 1T œb˜i and £C

ij D E.vC
ij j˜ij / D 1T œw˜ij , respectively,

where E.�j�/ denotes the operator of conditional expectation. The three indices

are defined as

¡IC C D
Var.vC

i /

Var.yC
ij /

D
1T †b1

1T .†b C †w/1
;

¡LV1 D
Var.£C

ij /

Var.vC
ij /

D
1T œw§wœT

w1

1T †w1
;

¡LV 2 D
Var.£C

i /

Var.vC
i /

D
1T œb§bœT

b 1

1T †b1
:

(7)
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428 HUANG AND WENG

¡IC C is a multivariate extension of the intraclass correlation coefficient (ICC)

in multilevel models. ICC is defined as the proportion of the total variance

based upon differences between clusters (Raudenbush, & Bryk, 2002). In EMA

studies, ¡IC C is used to describe the relative importance between the variances

of the Level 1 and Level 2 components. A higher ¡IC C indicates yC
ij being more

stable across time. Coefficients ¡LV1 and ¡LV 2 can be taken as the reliability

coefficients for vC
i and vC

ij , respectively. The values of ¡LV1 and ¡LV 2 depend

on the magnitudes of the factor loadings and the total number of items. When

the magnitudes of the factor loadings or the total number of items increase, the

values of ¡LV1 and ¡LV 2 also increase. Notice that there is no ordinal relationship

between the values of these indices. It is possible for a measurement to have a

reasonable ¡LV1 but tiny values for ¡LV 2 and ¡IC C .

For deriving the reliability coefficient of AGGS, AGGS and its true score

should be represented formally. Let yAGG
i D J �1†J

j D1yC
ij denote the AGGS

for person i . yAGG
i can be interpreted as the typical response for person i on a

given measurement. As a test score, yAGG
i is used to measure the latent trait ˜i .

Therefore, the true score for yAGG
i will be £AGG

i D E.yAGG
i j˜i / D £C

i . From

the derivations given in Appendix B, the reliability coefficient for yAGG
i is

¡AGG
i D

Var.£AC C
i /

Var.yAGG
i /

D
¡IC C

¡IC C C .1 � ¡IC C /J �2†J
j D1†J

j 0D1
¥ijj 0

¡LV 2: (8)

As a reliability coefficient, ¡AGG
i can be understood as the proportion of variance

that £C
i can account for in yAGG

i . The subscript i in ¡AGG
i shows that the value

of ¡AGG
i depends on which person is being considered. Several factors influence

the value of ¡AGG
i , including ¡LV 2, J , and ¥ijj 0. The higher the ¡LV 2, the larger

the value of ¡AGG
i will be. J and ¥ijj 0 influence ¡AGG

i through the second term

of the denominator in Equation 8. This term tends toward zero when J is large,

and the magnitude of ¥ijj 0 influences the rate of such convergence. When there

is no serial correlation, Equation 8 reduces to

¡AGG
i D

¡IC C

¡IC C C .1 � ¡IC C /J �1
¡LV 2: (9)

This simplification shows that the Level 2 reliability coefficients proposed by

Raudenbush et al. (1991) and Snijders and Bosker (1999) are special cases of

¡AGG
i .

For deriving the reliability coefficient of WPCS, let yWP C
ij D yC

ij � yAGG
i

denote the WPCS for person i at time j . In contrast to yAGG
i , yWP C

ij concerns a

different aspect of human behavior: the deviation from the typical response for

person i at time j . This type of score is often used in multilevel modeling to

represent the pure Level 1 information. As a measure for ˜ij , the true score for
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RELIABILITY ESTIMATION IN EMA 429

yWP C
ij will be £WP C

ij D E.yWP C
i j˜ij / D J �1

J
£C

ij . The reliability coefficient for

yWP C
ij as derived in Appendix B will be

¡WP C
ij D

Var.£WP C
ij /

Var.yWP C
ij /

D
.J � 1/2

.J 2 C †J
lD1†J

l 0D1¥i l l 0 � 2J †J
lD1¥ij l /

¡LV1: (10)

Similarly, ¡WP C
ij quantifies the explained variance of yWP C

ij by £WP C
ij . Clearly,

the value of ¡WP C
ij is mainly determined by ¡LV1. In addition, the value of ¡WP C

ij

depends on not only which person is considered but also which time is selected.

The selected time j influences the value of ¡WP C
ij through the third term of the

denominator in Equation 10. Because this term becomes larger when j is close

to J
2

, so does ¡WP C
ij . If serial correlation is zero, Equation 10 reduces to

¡WP C
ij D

J � 1

J
¡LV1: (11)

The simplified expression has a form similar to that of the Level 1 reliability

coefficient proposed by Raudenbush et al. (1991).

The invariance property of maximum likelihood estimation is used to obtain

the maximum likelihood estimate (MLE) of ¡AGG
i and ¡WP C

ij . If O™ is the MLE

of ™, then for any function g.™/, the MLE of g.™/ is g. O™/ (Cassella & Berger,

2002). Therefore, given specific i and j , we can substitute the obtained MLEs

of parameters into Equations 8 and 10 to obtain O¡AGG
i and O¡WP C

ij . In addition to

the point estimates, the confidence intervals (CIs) of ¡AGG
i and ¡WP C

ij can also

be constructed by the likelihood-based approach.1 The likelihood-based 1 � ’

CI for ¡ is the set P’ that satisfies

P’ D

�

¡j2 log
L.O¡/

L.¡/
< ¦2

1;1�’

�

; (12)

where L.O¡/ is the value of the likelihood function of Equation A3 in Appendix

A evaluated at the MLE O¡ and ¦2
1;1�’ is the critical value corresponding to the

chosen ’ for chi-square variable with one degree of freedom. The likelihood-

based CIs for the ¡’s can also be obtained in the output of Mx.

Taking into account the fact that the values of ¡AGG
i and ¡WP C

ij depend on

which person or time is considered, a comprehensive way to evaluate the reliabil-

ities of yAGG
i and yWP C

ij is to estimate ¡AGG
i and ¡WP C

ij for each combination of

i and j . However, this is a cumbersome task in practice. Therefore, to avoid such

1To construct the CIs for the reliability coefficients, several studies used the delta method (e.g.,

Laenen et al., 2009; Raykov & Shrout, 2002). The likelihood-based approach is another method

to construct CIs in maximum likelihood estimation. The relative merits and drawbacks of the two

approaches were discussed by Cheung (2009) and Neale and Miller (1997).
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430 HUANG AND WENG

a cumbersome task, we propose “pooled” versions of ¡AGG
i and ¡WP C

ij , denoted

by ¡AGG
p and ¡AGG

p , as an alternative method. Let tj denote the expected time

coding at time j , then the pooled serial correlation matrix ˆp D f¥jj 0g can be

constructed by using the expected separation d jj 0 D jt j � tj 0 j. We define ¡AGG
p

and ¡WP C
p as

¡AGG
p D

¡IC C

pIC C C .1 � ¡IC C /J �2†J
j D1†J

j 0D1
¥jj 0

¡LV 2;

¡WP C
p D

.J � 1/2

.J 2 � †J
j D1†J

j 0D1
¥jj 0/

¡LV1:

(13)

When ˆi’s are heterogeneous or J is large, researchers can use ¡AGG
p and ¡WP C

p

to obtain pooled information about the ¡AGG
i ’s and ¡WP C

ij ’s.

A SIMULATION STUDY

A small simulation study was conducted to evaluate the empirical performance

of the proposed procedure. The parameter values of †.™/ were set as ’ D

Œ0; 0; 0; 0�T , œb D Œ0:8; 0:6; 0:8; 0:6�T , ‚b D diagŒ0:108; 0:192; 0:108; 0:192�,

§b D 0:3, œw D Œ0:8; 0:6; 0:8; 0:6�T , and ‚w D diagŒ0:252; 0:448; 0:252; 0:448�,

and §w D 0:7. According to Equation 7, we have ¡IC C D :3 and ¡LV1 D ¡LV 2 D
:7967. Two types of serial correlation structures were considered: the first-order

autoregressive structure (AR1) and the exponential structure (EXP). The serial

correlation matrix in AR1 was set as ˆi .“/ D f“jj �j 0jg, where “ D :3 and j D

1; 2; : : : ; 8. The corresponding true values of the pooled reliability coefficients

are ¡AGG
p D :5322 and ¡WP C

p D :7751. For EXP, ˆi .“/ D fexp.�jtij � tij 0 j=“/g,

where “ D :8, j D 1; 2; : : : ; 8, and di.j C1/j D jti.j C1/ � tij j followed a

uniform distribution in the interval of [0.5, 1.5] independently. The EXP shown

here took into account the heterogeneity of sampling intervals. In this case,

¡AGG
p D :5365 and ¡WP C

p D :7700. The simulated data sets were generated

in R (R Development Core Team, 2010). The sample size N was set to be

100 with 500 replications in both conditions. After data generation, the data

sets were analyzed by Mx. All the parameters were set to be free with the

exception of §b and §w, which were fixed at 0.3 and 0.7 for identification. In

addition to evaluating the empirical performance of the proposed procedure, we

also evaluated the data under traditional MFM to assess the consequences of

ignoring serial correlations.

Several criteria were used to evaluate the empirical performance of the pro-

posed procedure. First, the convergence rate was used to assess the quality of
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RELIABILITY ESTIMATION IN EMA 431

optimization. Second, the empirical biases of estimates were used to evaluate the

performances of parameter estimates. Here, the empirical bias of the estimates

is defined as the difference between the mean of estimates .O™/ and the true

value ™0. Third, the ratios of the means of estimated standard errors .ŜE.™// to

the empirical standard deviations of estimates .SD.O™// were examined with the

expectation that they were to be around 1. Finally, the coverage rate of the 95%

likelihood-based CIs for ¡AGG
p and ¡WP C

p were examined. Under the assumption

that the CIs behave well, the coverage rate should be close to 95%.

In general, the proposed procedure performed well under MFM-SCS with

serial correlations considered. The convergence rate was acceptable with four

data sets in AR1 (0.8%) and three data sets in EXP (0.6%) yielding a noncon-

vergence problem. New data sets were generated to replace the original data

sets for further analysis. As shown in Tables 1 and 2, both the model parameter

estimates and their associated standard errors performed well. Table 3 shows

TABLE 1

Results of Parameter Estimations for the First-order Autoregressive (AR1) Structure

MFM-SCS MFM

Parameter

™0
O™ � ™0 ŜE.™/=SD.O™/ O™ � ™0 ŜE.™/=SD.O™/

œb1 D :8 �.0040 .9758 .0870 .9739

œb2 D :6 �.0121 .9624 .0596 .9575

œb3 D :8 �.0039 .9882 .0883 .9843

œb4 D :6 .0012 .9796 .0694 .9624

™b1 D :108 �.0093 .9658 .0178 .9265

™b2 D :192 �.0029 1.0203 .0429 .9961

™b3 D :108 �.0096 1.0236 .0169 1.0405

™b4 D :192 �.0081 1.0021 .0397 1.0025

’1 D 0 .0052 .9384 .0046 .9311

’2 D 0 .0074 1.0631 .0071 1.0581

’3 D 0 .0103 1.0280 .0097 1.0246

’4 D 0 .0071 .9921 .0067 .9871

œw1 D :8 .0018 .9590 �.0403 1.0322

œw2 D :6 .0029 1.0415 �.0287 1.1131

œw3 D :8 .0014 1.0385 �.0408 1.1193

œw4 D :6 �.0007 .9526 �.0321 .9991

™w1 D :252 .0004 1.0334 �.0253 1.1266

™w2 D :448 �.0014 1.0255 �.0469 1.0717

™w3 D :252 .0006 1.0111 �.0251 1.0619

™w4 D :448 .0006 .9176 �.0456 .9729

“ D :3 .0024 .9487 — —

Note. MFM-SCS D multilevel factor model with serial correlation structure; MFM D

multilevel factor model; ‘—’ indicates that MFM did not estimate “.
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432 HUANG AND WENG

TABLE 2

Results of Parameter Estimations for the Exponential (EXP) Structure

MFM-SCS MFM

Parameter

™0
O™ � ™0 ŜE.™/=SD.O™/ O™ � ™0 ŜE.™/=SD.O™/

œb1 D :8 �.0149 1.0100 .0780 .9971

œb2 D :6 �.0237 1.0216 .0472 1.0181

œb3 D :8 �.0055 1.0648 .0873 1.0709

œb4 D :6 �.0072 .9916 .0609 .9908

™b1 D :108 �.0057 .9978 .0215 .9854

™b2 D :192 �.0024 .9937 .0455 1.0039

™b3 D :108 �.0092 1.0151 .0180 .9958

™b4 D :192 �.0065 .8722 .0403 .8785

’1 D 0 �.0012 1.0531 �.0020 1.0594

’2 D 0 �.0053 1.0609 �.0057 1.0582

’3 D 0 �.0034 1.0279 �.0040 1.0338

’4 D 0 �.0032 1.0085 �.0037 1.0109

œw1 D :8 �.0010 .9964 �.0441 1.0666

œw2 D :6 .0042 1.0212 �.0266 1.0681

œw3 D :8 .0021 1.0078 �.0397 1.0872

œw4 D :6 �.0001 .9582 �.0322 1.0486

™w1 D :252 �.0010 1.0055 �.0264 1.0619

™w2 D :448 �.0012 .9977 �.0470 1.0160

™w3 D :252 �.0006 .9732 �.0271 1.0675

™w4 D :448 �.0038 1.0250 �.0494 1.0929

“ D :8 �.0028 1.0411 — —

Note. MFM-SCS D multilevel factor model with serial correlation structure; MFM D

multilevel factor model; ‘—’ indicates that MFM did not estimate “.

that the empirical biases of ¡’s were also close to zero and the coverage rates

of the CIs for ¡AGG
p and ¡WP C

p were acceptable in both conditions.

However, when the data were analyzed under traditional MFM, nearly all

the parameters were biased empirically, as presented in Tables 1 and 2. The

parameters in †b were overestimated and those in †w were underestimated.

As functions of parameter estimates, O¡IC C , O¡AGG
p , and O¡WP C

p were also biased.

Furthermore, Table 3 shows that the coverage rates of the CIs under MFM were

far from the nominal level.

A REAL DATA EXAMPLE

Data from Huang (2009) were adopted for illustration. In Huang’s study, 110

undergraduate students recorded their daily positive/negative affects and thoughts
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RELIABILITY ESTIMATION IN EMA 433

TABLE 3

Empirical Biases and Coverage Rates of 95% CIs for ¡s

a. Empirical Bias

AR1 Structure EXP Structure

Parameter MFM-SCS MFM MFM-SCS MFM

¡ICC �.0045 .0675 �.0075 .0650

¡LV 2 .0005 .0008 .0058 �.0047

¡LV 1 .0003 .0002 .0010 .0009

¡AGG
p .0053 .1229 �.0057 .1182

¡WP C
p .0010 �.0777 .0009 �.0725

b. Coverage rate

AR1 Structure EXP Structure

Parameter MFM-SCS MFM MFM-SCS MFM

¡AGG
p .9640 .4180 .9600 .4380

¡WP C
p .9540 .0000 .9380 .0000

Note. AR1 D first-order autoregressive structure; EXP D exponential;

MFM-SCS D multilevel factor model with serial correlation structure;

MFM D multilevel factor model.

for 8 days. This data collection method, called the diary method, was a special

case of EMA. Daily positive affect, the piece of data chosen for present il-

lustration, was measured by three items from the Positive and Negative Affect

Schedule (PANAS; Watson, Clark, & Tellegen, 1988): excited, proud, and en-

thusiastic. These items were chosen based on the study by Egloff, Schmukle,

Kohlman, Burns, & Hock (2003), which argued that the three items reflected the

feeling of joy. Every day, participants rated the items according to their daily

average joy level by using a 5-point Likert-type scale, with 1 representing very

slightly and 5 representing extremely. All the factor loadings, intercepts, and

measurement error variances were set free with measurement errors assumed to

be independent. For identification, the variance of the latent factor “joy” was set

to one at each level. AR1 was chosen to model serial correlation. The estimates

and CIs of ¡’s are reported in Table 4. The significance of O¡IC C indicates salient

interindividual differences on the composite score among participants. Nearly

19% of the daily composite score variance can be attributed to interindividual

differences. This significance also justifies the necessity of using multilevel

modeling. O¡LV 2 D 0:90 and O¡LV1 D 0:78 gave the “ideal” values of O¡AGG
i

and O¡WP C
ij as J goes to infinity. When J is small, the estimated values may
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434 HUANG AND WENG

TABLE 4

Parameter Estimates and Confidence Intervals (CI)

of ¡s for the Illustrated Example

Coefficient O¡ 95% CI

¡ICC 0.19 [0.12, 0.26]

¡LV 2 0.90 [0.81, 0.95]

¡LV 1 0.78 [0.75, 0.81]

¡AGG
i 0.54 [0.39, 0.66]

¡WP C
i1 D ¡WP C

i8 0.69 [0.66, 0.71]

¡WP C
i2 D ¡WP C

i7 0.71 [0.68, 0.73]

¡WP C
i3 D ¡WP C

i6 0.71 [0.68, 0.74]

¡WP C
i4 D ¡WP C

i5 0.71 [0.68, 0.74]

¡AGG
p 0.54 [0.39, 0.66]

¡WP C
p 0.70 [0.68, 0.73]

be quite different from the ideal ones. Because the serial correlation matrices

are homogeneous in this example, all participants share the same ¡AGG
i and

¡AGG
i D ¡AGG

p . The value of O¡AGG
i indicates that about 54% of the variance of

AGGS can be explained by its true score, the trait level of joy. If a researcher

is unsatisfied with such a relatively low value, it is possible to obtain a more

reliable AGGS by adding more observation timepoints. By simple calculation, it

can be shown that O¡AGG
i becomes 0.73 when J D 24 under the current parameter

estimates. Intuitively, if J becomes larger, we will have more behavior samples

across time, thereby allowing AGGS to average out the occasional effect and

become a more reliable score for the latent trait. Although the serial correlation

matrices are homogeneous, the values of O¡WP C
ij ’s still depend on the timepoint

j due to the significance of the serial correlation parameter ( O“ D 0:1, 95% CI D
[0.50, 1.50]). The values of O¡WP C

ij ’s range from 0.69 to 0.71, which represents

only a slight difference. The values of O¡WP C
ij ’s indicated that the occasional joy

level can account for about 70% of the variance of WPCS. The pooled version

O¡WP C
p D 0:70 provided almost the same information about the reliability of

WPCS in this example. In conclusion, WPCS seems to be relatively reliable,

but the reliability of AGGS can be further improved by adding observation

timepoints.

One may wonder about the consequences of ignoring serial correlation in this

example. The same data were analyzed by traditional MFM and the reliability

coefficients were calculated according to Equation 9 and Equation 11. The

resulting estimates were O¡AGG
i D 0:59 and O¡WP C

ij D 0:68. Compared with the

result of MFM-SCS, the difference was only slight. This is due to the small

amount of serial correlation in this example.
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RELIABILITY ESTIMATION IN EMA 435

DISCUSSION

In this study, we extend previous works in two directions. First, MFM-SCS

was proposed as an extension of traditional MFM (Lee, 1990; McDonald &

Goldstein, 1989; Muthén, 1989). Recently, some researchers started using tra-

ditional MFM to model trait and state variation (e.g., Merz & Roesch, 2011;

Roesch et al., 2010). In their studies, the serial correlation was assumed to

be zero implicitly. However, our simulation study shows that the ignorance

of serial correlation may result in biased parameter estimates. We believe that

MFM-SCS will be a more suitable alternative. Second, two reliability coef-

ficients, ¡AGG
i and ¡WP C

ij , and their pooled versions, ¡AGG
p and ¡WP C

p , are

proposed to quantify how reliable AGGS and WPCS are in a given EMA

study. The interpretation of these coefficients is basically the same as that of

the traditional reliability coefficients. From a theoretical perspective, our work

extends reliability estimation methods to test scores that reflect intraindividual

differences, which had been thought to be measurement errors (Biemer et al.,

2009; Laenen et al., 2007; Laenen et al., 2009; Laenen et al., 2006). The

proposed reliability coefficient can also be seen as a more general form of

some previous ones to accommodate the presence of serial correlation (Rauden-

bush et al., 1991; Snijders & Bosker, 1999). We recommend that researchers

evaluate the reliabilities of AGGS and WPCS before these scores are used

for further statistical analysis. A detailed analytic strategy has been demon-

strated in the real data example provided. When several measurements are

used in an EMA study, the proposed method can be implemented separately

for each measure. Whether both reliability coefficients should be reported de-

pends on the purpose of the EMA study. Shiffman et al. (2008) have men-

tioned that EMA data are collected for four purposes: (a) characterizing indi-

vidual differences, (b) describing natural history, (c) assessing contextual as-

sociations, and (d) documenting temporal sequences. Clearly, the first purpose

is related to interindividual differences whereas the others are related to in-

traindividual differences. Therefore, if only one type of individual difference

is involved, it is sufficient to report only the corresponding reliability coef-

ficient. Of course, if both types are involved, then both coefficients should

be reported.

When the proposed procedure is used, some cautions should be taken. First,

it should be recognized that the proposed procedure only concerns the reli-

abilities of AGGS and WPCS. Therefore, the procedure is only suitable for

EMA studies that use AGGS and WPCS and is not applicable to EMA studies

that use other types of test scores, such as scores that represent the instability

of human behavior (Jahng, Wood, & Trull, 2008). Second, the total num-

ber of items K plays an important role in our procedure. K � 3 is neces-

sary for model identification.2 When the items are all congeneric, the value
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436 HUANG AND WENG

of ¡AGG
i and ¡WP C

ij are both increasing functions of K. However, a large

K may be impractical in EMA settings. Researchers should choose appropri-

ate values of K in their studies. Third, before estimating ¡AGG
i and ¡WP C

ij ,

the overall model fit should be evaluated carefully. If the overall model fit

is poor, the parameter estimates may be meaningless and the resulting relia-

bility coefficient estimates will be biased (Yang & Green, 2010). A strategy

for model evaluation in multilevel settings has been discussed by Ryu and

West (2009).

Furthermore, sample size is critical for the quality of estimates. Our simu-

lation shows that the proposed procedure performs well when sample size is

100. In real EMA studies, data sets may be of smaller sample sizes. Previous

simulations have shown that the estimated standard errors for the Level 2

parameters may be biased when the sample size is smaller than 100 in multilevel

modeling (Maas & Hox, 2005). Therefore, researchers should interpret their

results carefully when the sample size is small. Finally, the MLE is established

on the normality assumption. In practice, data are seldom normally distributed.

When the normal assumption is violated but the model is correctly specified,

the consistency of parameter estimators can still be achieved (Shapiro, 1984).

However, the estimated standard errors and the limiting chi-square distribution of

the test statistic will become invalid. In such a case, the nonparametric bootstrap

CIs for the proposed coefficients can be considered as an alternative. Bootstrap

is a data-based simulation method for statistical inference (Efron & Tibshirani,

1993) and has been used to construct CIs for reliability coefficients (Raykov &

Shrout, 2002).

Although our procedure represents an improvement over those of previous

studies, future research in several directions can further improve this procedure.

First, only the one-factor model was considered in this study. MFM-SCS can be

extended to multiple-factor models to accommodate more complicated factor

structures. Second, although the proposed procedure performed well in our

simulation study, whether the same conclusion can be reached under other

simulation conditions awaits further evaluation. Third, the simulation study

shows that ignoring serial correlation may result in biased estimates. However,

the degree of bias seems negligible when the magnitude of serial correla-

tion is of a small value as it is in the real data example. Further studies

can be conducted to explore the possible influences of the size of the serial

correlation and to understand what magnitudes of serial correlation should be

considered nonignorable.

2If K D 2, further constraints on parameters are needed. For example, the factor loadings at

each level could be constrained to be equal.
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APPENDIX A

The Derivation of the Likelihood Function of Multilevel

Factor Model with Serial Correlation Structure (MFM-SCS)

Let y�
i D ŒyT

i1; yT
i1; : : : ; yT

iJ �T denote the complete response vector and vec.Vi / D
ŒvT

i1; vT
i2; : : : ; vT

iJ �T denote the “vector form” of Vi . Then y�
i can be written as

y�
i D 1 ˝ vi C vec.Vi /; (A1)
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where 1 is the J -dimensional vector of 1’s and ˝ is the Kronecker product

operator. Based on the conditions that (a) Vi � MNK�J .0; †w ; ˆi / implies

vec.Vi / � N.0; ˆi ˝ †w/ (see Kollo & von Rosen, 2005) and (b) vi �
N.’; †b/, the model-implied mean and covariance structure for y�

i will be

��
i .™/ D 1 ˝ ’;

†�
i .™; “/ D 11T ˝ †b C ˆi ˝ †w:

(A2)

We can substitute the mean and covariance structures into the multivariate normal

density function to construct the likelihood function

log L.™; “/ D �
1

2

N
X

iD1

flog j†�
i .™; “/j C Œy�

i � ��
i .™/�T †�

i .™; “/�1Œy�
i � ��

i .™/�g:

(A3)

The maximum likelihood estimates of ™ and “ can be obtained by maximizing

this function with respect to ™ and “.

APPENDIX B

The Derivations of ¡AGG
i

and ¡WPC
ij

Because yAGG
i D J �1†J

j D11T yij and £AGG
i D 1T ’ C 1T œb˜i , the reliability

coefficient for yAGG
i is

¡AGG
i D

Var.£AGG
i /

Var.yAGG
i /

D
Var.1T ’ C 1T œb˜i /

Var.1T vi/ C Var.J �1†J
j D11T vij / C 2Cov.1T vi ; J �1†J

j D11T vij /

D
1T œb§bœT

b 1

1T †b1 C J �2†j †j 0 ¥ijj 01T †w1
:

(B1)

After dividing both the numerator and the denominator of Equation B1 by

1T .†b C †w/1, ¡AGG
i becomes

¡AGG
i D

¡IC C

¡IC C C .1 � ¡IC C /J �2†J
j D1†J

j 0D1
¥ijj 0

¡LV 2: (B2)
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Similarly, because yWP C
ij D 1T yij �J �1†J

j 0D1
1T yij 0 and £WP C

ij D J �1
J

1T œw˜ij ,

the reliability coefficient for yWP C
ij will be

¡WP C
ij D

Var.£WP C
ij /

Var.yWP C
ij /

D

Var

�

J � 1

J
1T œw˜ij

�

Var.1T yij / C Var.J �1†J
lD11T yi l/ � 2Cov.1T yi ; J �1†J

lD11T yi l/

D

�

J �1
J

�2
1T œw§wœT

w
1

1T †w1 C J �2†l †l 0 ¥i l l 01T †w1 � 2J �1†l ¥ij l 1
T †w1

D

�

J �1
J

�2
1T œw§wœT

w
1

.1 C J �2†l †l 0 ¥i l l 0 � 2J �1†l ¥ij l /1
T †w1

D
.J � 1/2

.J 2 C †l †l 0¥i l l 0 � 2J †l ¥ij l /
¡LV1

(B3)
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