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Abstract

Recent studies on foraminiferal Mg/Ca ratios showed increasing applicability as an
effective paleotemperature proxy. Using the Mg/Ca ratios in the planktonic foraminifer
Globigerinoides sacculifer from a well-preserved core MD972142, we have reconstructed a
170kyrs paleo-sea surface temperature (SST) record of the southeastern South China Sea.
To our knowledge this is the first foraminiferal Mg/Ca ratio derived SST data from South
China Sea. Modern temperature based on core top Mg/Ca ratio is ~28.4°C, corresponding to



the observed annual mean SST in this area. Our result suggests that SST increased by ~4-
5°C from the Last Glacial Maximum to the Holocene. The Holocene values are comparable
to those during oxygen isotope stage 5. The SST of glacial oxygen isotope stage 2 is slightly

colder than that of oxygen isotope stage 6.

Keywords: South China Sea, Mg/Ca Ratio of Planktic Foraminifera, Sea Surface
Temperature.

1. Introduction

The South China Sea (SCS} is the largest marginal sea in western Pacific and part of the
Western Pacific Warm Pool (WPWP), which mainly controls the global climate system (Yan
etal., 1992; Miao et al., 1994). Its critical location between the East Asian landmass and the
western Pacific makes this marginal sea very sensitive to climate changes especially to the
monsoon system, in both land and sea. The surface water circulation in SCS is mainly
driven by the annually reversing monsoon winds which create large volumetric changes in
surface water flow (Wyrtki, 1961). The SCS serves as an ideal location for
paleoceanography and paleoclimatic studies because of its unique setting. By using
planktonic foraminiferal transfer function, Miao et al. (1994) found that the winter
temperature anomalies between Holocene and Last Glacial Maximum (LGM) reached as high
as ~3-7.3°C in southern SCS. Other planktonic foraminiferal assemblage analyses in
northern SCS showed that the glacial-interglacial SST changes are 6.8-9.3°C for winter and 2-
3°C for summer (Wang and Wang, 1990). While SST derived using U*,, demonstrated a
~2.8°C glacial-interglacial SST variation in southern SCS (Pelejero et al., 1999). Since each
of the paleothermometers has its own advantages and drawbacks, development of a new
independent proxy for SST will be of great utility in paleoceanographic studies. We use the
newly developed foraminiferal Mg/Ca ratio as an independent proxy to estimate the paleo-
SST (Niirnberg et al.,, 1996a, b) for this study. To our knowledge, this i1s the first
foraminiferal Mg/Ca-derived SST (hereafter referred as Mg/Ca SST) in the SCS.

2. Samples and Analytical Method

Planktonic foraminifera, G. sacculifer, from core MD972142 (12°41.33'N, 119°27.90°E,
1557m) were used in this analysis. Foraminifera were handpicked from the 300-355 um size
fraction and were cleaned by performing trace-metal cleaning techniques in a HEPA laminar
flow hood.

Magnesium and calcium were measured by flame atomic absorption spectroscopy
(FAAS). The samples were dissolved and diluted in 0.002N HNO,. Measurement
precision of Mg/Ca was £ 3%.

3.RESULTS AND DISCUSSION

For the temperature calibration, we used the species-specific Mg/Ca SST calibration
curve for G.sacculifer (Niirnberg et al., 1996a, b). An exponential fit (Temperature, °C =
10.565In(Mg/Ca)+11.32, R*=0.94) was chosen. At 95% confidence interval, the error in the

temperature estimate is = 1.4°C in the range of 19.5-29.5°C.

The top 11 meters of core MD972142 covers a continuous record for the last 170,000
years (oxygen isotope stages 1-6). The Mg/Ca ratios range between ~3.0 and ~5.0



mimol/mol, corresponding to a temperatﬁre range of ~23 to 28.4°C. Clear glacial-interglacial
oscillations in Mg/Ca are observed. Comparison of the Mg/Ca record and the & "*O record
of the same core indicates that oscillations in both records match fairly well, with an r = -0.83.

The Mpg/Ca ratios of G.sacculifer are considered to record the annual mean SST
(Hastings et al., 1998). In Core MD972142, this is supported by the core top Mg/Ca SST of
~28.4°C, which corresponds well to the observed sea surface temperature in this region
{summer SST: >29°C, winter SST: ~27°C; Levitus and Boyer, 1994). Further support is
found by comparing both the Mg/Ca SST record and the annual mean SST record derived
from foraminiferal assemblages (Yu et al., 2000). The reconstructed paleo-SST record of
MD972142 reveals an average Holocene SST of ~27.0°C and a LGM SST of ~22.9°C,
showing a ~4°C glacial-interglacial SST warming. Our LGM-Holocene SST difference is
slightly smaller than those estimates using planktonic foraminiferal transfer functions, which
yield a 5-7°C LGM-Holocene winter SST anomalies in southern SCS (Miao et al., 1994) and
a ~5°C LGM-Holocene mean annual SST difference for Core MD972142 (Yu et al., 2000).
On the other hand, our result is larger than the ~2.8°C SST change estimated for southern SCS
using U*,, (Pelejero et al., 1999). However, this temperature offset between the Mg-SST
and U¥,, might be explained by the difference in the time of signal generation and the depth
habitats of the U¥,, signal producing coccolithophorids and foraminifera.

The SSTs during oxygen isotope stage 5 are comparable io those in Holocene, while the
SSTs during stage 6 are slightly warmer than those in stage 2. Both the SST and & "0
records show an obviously stable stage 5. The values of the substages 5.1, 5.3 and 5.5 are
quite similar (~27.5-28°C), a pattern remarkably differs from that in the SPECMAP stack
which shows cascading steps from substages 5.5 to 5.1. This pattern has also been observed
from other cores in southern SCS (Lee et al., 1999; Pelejero et al., 1999). In addition, both
the Mg/Ca SST record and fauna assemblages-derived SST record (Yu et al., 2000) of Core
MD972142 show similar SST values through the interglacial stage 5. The SST values of
both records are comparable during substages 5.1, 5.3 and 5.5. These consistent high SSTs
between the Mg/Ca SST and the fauna assemblages-derived SST during stage 5, demonstrate
the western extend of the WPWP in this region throughout the last interglacial. The S8Ts in
substages 5.1 and 5.3 were as high as those in substage 5.5, despite the cut off of warm water
inflow from Indian Ocean through Sunda Shelf which might be caused by a sea level
lowering of ~20-60m (Shackleton, 1987; Chapell et al., 1996). The U, SST records of
Core 17961 and Core 17964 indicated a ~2.6-2.8°C LGM-Holocene warming in southern SCS
(Pelejero et al., 1999), which are smaller than that shown in our Mg/Ca SST record.
However, the SST during substages 5.1, 5.3 and Holocene are similar (~28°C) to those
observed in Core MD972142. The SST during substage 5.5 is about 1°C higher in Core
17961 and 17964 than that in Core MD972142, suggesting a warmer condition in the southern
SCS during substage 5.5. By using the same SST proxy (U*;;), Wang, C.C. (1999) reported
a ~4°C LGM-Holocene warming in Core MD972151 from southern SCS. The Holocene
SSTs in this core (~27-28°C) are similar to that in Core MD972142; but, on the contrary, the
SSTs in stage 5 show a cascading pattern from >28.5°C in substage 5.5 to ~27°C in substage
5.1, which is significantly different from Core MD972142.

The SST records from 3 cores (GGC-13, GGC-11 and GGC-9) in southeastern SCS
were derived using planktonic foraminiferal transfer function (Miao et al., 1994). The
calculated annual mean SSTs in LGM range from 24.2°C to 25.3°C, and the annual mean
SSTs in Holocene range between ~28-29°C, leading to a LGM-Holocene warming of ~3-
4.5°C. Similar LGM-Holocene warming amplitude was also reported in the western part of
SCS and a core from west of Luzon (Wang et al,, 1999). The Mg/Ca SST estimated for



Core MD972142 is in good agreement with other SST records from this region, hence,
implying the reliability of foraminiferal Mg/Ca ratio as a SST proxy.

The last deglaciation was interrupted by a rapid return to colder condition, the so-called
Younger Dryas (YD) event, occurred at about 10.5kyrs B.P. (Broecker et al., 1988).
Temperature estimates from high-latitude climate records (e.g. Ruddiman and MclIntyre, 1981;
Dansgaard et al., 1989) indicate that cooler conditions existed during the Younger Dryas.
This event was initially thought to occur at the high latitudes in and around the North Atlantic,
however, it has now been established that the Younger Dryas event is also found in the
tropical regions (e.g. Linsley and Thunell, 1990). Linsley and Thunell (1990) proposed that
a cooling occurred in the western equatorial Pacific during Younger Dryas time based on
changes in the planktonic foraminifera assemblages that were coeval with an & "0 increase.
More recently Wei et al. (1998) reported a temperature drop by ~1°C in the northeast SCS
based upon foraminifera-derived SST and U¥,, SST. The Mg/Ca SST in Core MD972142
shows a ~1.4°C cooling at about 10-11ka which is consistent to an ~0.7%, increase in the
oxygen isotope record. Wang et al. (1999) has reported the occurrence of Younger Dryas
event in Core 17940 and Core 17927, which showed synchronous cooling signal in SST and
8 '*0 records. The Younger Dryas event was also found in the U¥,, 8ST record of Core
MD972151 and Core MD972148 from southern and northern SCS (Wang, C.C., 1999). The
U¥,, SST of Core MD972151 showed a cooling of ~1.5°C, and is comparable to the Mg/Ca
SST decrease in Core MD972142. The occurrence of the Younger Dryas in SCS confirms
that this event is not only characteristic in high-latitude records, but also observed in the
tropical regions as a global cooling event.
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Reconstruction of Paleotemperature and Paleosalinity of the South China Sea
for the Past 170kyrs Using Planktonic Foraminiferal Mg/Ca Ratio and Oxygen
Isctopes

Kuo-Yen Wei, Ee-Ee Teh and Yue-Gao Chen
Department of Geasciences, National Taiwan University, Taipei, Taiwan R.O.C.

Recent studles on foraminiferal Mg/Ca ratio have confirmed its applicability as
an effective palectemperature proxy. Using the Mg/Ca ratios in the planktonic
foraminifer Globigerinoides sacculfifer from a well-preserved sequence of core
MD972142 (12°41.33'N, 118°27 90'E, 1557m water depth), we have reconstructed a
170kyrs record of past sea surface temperature (SST) of the southeastern South
China Sea. To our knowledge this is the first foraminiferal Mg/Ca ratic derived SST
data from the South China Sea. Recent temperature based on core top Mg/Ca ratio
is ~28.4°C, corresponding to the observed annual mean SST in this area. Further
support is found by comparing both the Mg/Ca SST record and the annual mean SST
record derived from foraminiferal fauna assemblages. Qur result suggests that SST
increased by ~4-5°C from the Last Glacial Maximum to the Holocene, and is in good
agreement with other SST records from South China Sea. The Mg/Ca SST record
reveals that the SST during substages 5.1, 5.3 and 5.5 were as high as those during
the Holocene, demonstrates the western extend of the Western Pacific Warm Pool in
this regron throughout the interglacial substages during stage 5. The SST of glacial
oxygen isotope stage 2 is slightly colder than that of oxygen isotope stage 6. We
have also combined the Mg/Ca-SST record and the oxygen isotope record to
construct the salinity variation for the past 170kyrs. The resulted sea surface
salinity range from 30.5-34.5 per mil, however, the overall pattern is different from
that observed from open cceans. The sea surface salinity variations in this region
are mainly controlled by the balance between evaporation and fresh, water input,
wh_ich- is mainly reiated to the East A—sian Monsoon system, therefore the records are

useful in monitering the intensity of the monsoon system.
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Vertical Dynamic Distribution of Coccolithophorids in Relation to
Movement of Watermass: A Case Study of the Southern East China Sea

T.-N. Yang', K.-Y. Wei', Y.J. Yang? T.Y. Tang
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Flg. 1. Map of the southern East China Sea
showing the studied site, A, and composite
ship-board ADCP currant vectors at 30 min
depth in fall obtained from R/V Researcher!
oceanagraphic surveye around the studied
area during 1992-2000. Current spead values
exceading 300 cm ' were deleted and the
remaining data screened against a 3 standard
deviation filter. Stations B and C anly show
values of temperature and salinity here. The
topography data are from the Ocean Data
Bank, Natlenal Center for Ocean Research,
Taiwan, Republic of China.
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Abstract--This study depicts tha diurnal vertical

dynamic distribution of coccolithophorid assemblages

at a single site In reiation to movement of watarmass In

a domain where Kuroshio interacted with shelf watars

on the southern East China Sea continentalshalf. An
Acoustlc Doppler Current Profiler (ADCP)-mooring was
deplayed at the depth of 30 mievel at a thme series site,
station A (Fig. 1), on Nov. 10-13, 1895 for monitoring

the current variations in detail at minute time-scale. At

the last day of the deployment, from 04:00 Nov. 12

through 06:00 Nov. 13, a diurnal observation of physical
cenditions and coccolithophorid communities at this site

was conducted. The T-S diagram of atation A shows a
cemplicated dynamic variations in hydrolegical conditions
(Fig. 2). Furthermere, the sigma-t profile of water column

at this site displays a vigorous dynamic variations betwean
20- and 70 m in dapth (Fig. 3). We follow Okada's (1983)
idea with minor modification in categerizing coccolithophorid
assemblages into three groups to construct a triangular
ceordinate diagram on which the environmental affinities of
coccolithophorid flara are characterized. The taxa includad
in the three apax are: (1)the deep-dwalling group {F}, including
Florisphaers profunde, F. Profunda elongeata and
Thorosphaera flabelats; (2)the neritic group (G), including
Gephyrocapsa spp., Anoplosolenia spp. and Caleiosclenia
murrayi; and (3) the remaining species (O}, representing
open-ocean condition. Despite the fact that the Investigated
site is located on continental shelf with a maximum water
depth of 110 m, the coccolithophorid assamblages contain
abundant pelagic and deep-dweiling species, The triangular
coordinate disgrams against monitaring time and investigated
depth revealed by dynamic coceolithophorid distributions
also show that the movement of watermass betweoen 20- and
70 min depth displayed dynamic complications during the
menitering period (Figs.4,5). It is evident that a strong
influence of Kuroshio and associatad upwelled cold water
played major role in affecting the vertical distribution of
coceolithephorids.

Fig. 4. Triangutar coordinate diagrams showing the
environmental affinity of coccosphere assembiages
collected at various time. See the text of abstract for
more expianation of the triangular diagrams.
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Fig. 2. Temperature-salinity plot of Stations
A (red lines), B (green line) and C (blue lina).
Al red lines represent the 27 data which
were invastigated at station A in every one
heur from 04:00 Nav. 12 through 06:00 Nov.
33, 1995, Thered line group showe a
sophisticated physical condition, whereas
stations B and C display both end-members,
shelf and Kuroshio waters, raspactivaly.
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Flg. 3. The sigma-t profile of water
column at time seriea station A from
04:00 Nov. 12through 06:00 Nov, 13,
1995, The square symbols indicate
that the coceolithephorid communities
were investigated In water samples

at various depth.

Fig. 5. Triangular coordinate dlagrams
showing the environmental affinity of
coccosphere assemblages collected at
various depths. A vigorous vertical
dynamic distribution of coccolithophorids
is documented at water depth between
20-and 70 m. See also the text of abstract
for more explanation of the triangular
dlagrams,



