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Abstract—Three numerical methods, iterative finite difference
(FD), split-step, and iterative split-step beam propagation meth-
ods (BPM’s), for modeling second-order nonlinear effects are
evaluated. All three methods are able to handle the depletion of
the pump wave. The evaluation shows that both iterative methods
are more accurate than the split-step method. In addition, the
iterative split-step method, even with its iterative nature, is
more efficient than the split-step one. Between the two iterative
methods, further comparisons indicate that, for a small stepsize,
both have comparable accuracy. As the stepsize increases, the
iterative split-step method is not as accurate as the iterative
finite-difference one. However, the former method has a higher
efficiency, suggesting that it is a better choice when the stepsize
has to be small because of, for example, the quasiphase-matched
geometrical configuration.

Index Terms— Finite difference beam propagation method
(FD/BPM), quasi-phase matching, second harmonic generation,
second-order nonlinear effects, split-step beam propagation
method.

I. INTRODUCTION

DUE to the versatile and efficient frequency conversion
ability, second-order nonlinear effects, especially those

implemented with the quasi-phase matching (QPM) technique
[1], [2], have potential applications in many areas. For ex-
ample, the QPM second harmonic generation (SHG) [3] can
provide laser sources in the visible region [4]. Other QPM
second-order nonlinear effects like sum frequency generation
(SFG) and difference frequency generation (DFG) are useful
in frequency tripling and quadrupling [5], mid-infrared (IR)
generation [6], and wavelength division multiplexing (WDM)
networks [7]. Large nonlinear phase shifts induced by QPM
second-order nonlinear effects [8] have also been proposed to
realize all-optical switching [9] and short-pulse compression
[10].

QPM devices have been successfully fabricated on ferro-
electric materials such as LiNbO3, LiTaO3, and KTP [11]–[13]
as well as semiconductors like AlGaAs [14], [15]. To under-
stand the function of these devices, theoretical modeling for
the QPM nonlinear effects is important. Although analytical
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analyzes had been done to provide a quick insight into
QPM nonlinear effects, many approximations are required for
those analyzes [16]–[19]. When large or irregular geometrical
variations exist and the depletion of the pump wave is not
negligible, precise analytical modeling of these second-order
nonlinear devices becomes quite difficult. For a general and
accurate analysis, numerical methods are required. The beam
propagation method (BPM) [20] is a powerful and flexible
approach to design and simulate linear optical devices. It
had also been extended to simulate second-order nonlinear
effects based on schemes such as fast Fourier transform (FFT)
[21], finite element (FE) [22]–[24], and finite difference (FD)
methods [25]–[30].

In the past, the numerical methods for nonlinear effects,
mostly for SHG, still assume that the fundamental wave is in-
dependent of the propagation distance. This assumption greatly
simplifies the treatment of the nonlinear terms. However, in
devices where the conversion efficiency is high or where there
is a geometrical variation of the waveguide structure, this
assumption is not valid. Therefore, methods being able to deal
with the depletion of the fundamental wave are necessary. In
this paper, we evaluate three such methods. The scope will be
restricted exclusively to the finite difference category because
it is mostly preferred for better efficiency and accuracy and
is more easily implemented than FFT or FE methods [20],
[31]. The comparisons will be done only in one- and two-
dimensional (1-D) and (2-D) cases, which is sufficient for
lucid manifestation of these BPM algorithms. Without loss
of generality, the formulations below are given for the SHG
case. The extension to the general three-frequency situation is
straightforward.

II. FORMULATION

Employing paraxial approximation, the wave equation in the
presence of nonlinear polarization is reduced to the following
form:

(1a)

(1b)
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where and are the effective index of the guided
mode, the wave vector in free space, the nonlinear susceptibil-
ity, and the slowly varying envelope of the field, respectively.
Subscripts and represent the second harmonic and the
fundamental waves, respectively, and .
Note that the definition of here is the same as what is
usual and differs from our previous paper [30] by a factor of
one-half. Propagation along the direction is assumed. For
concise expressions, the following finite difference operators
are defined:

(2a)

(2b)

(2c)

(2d)

Note that represents the electric field at the point
.

A. IFD-BPM

In the IFD-BPM [30], the difference equations involve
undetermined nonlinear source terms in the next step, and
iterative schemes [32]–[34] are required to solve this problem.
The fixed-point iteration [34] is chosen for the IFD-BPM.
It has the advantage of great simplicity and requires the
minimal modification from the linear BPM, compared with
other iterative methods. The IFD-BPM is briefly described in
the following. First, one set of solution, , the initial guess
of the electric fields in the iterative algorithm, is obtained
by some simpler methods such as the EFD-BPM [26] or the
rectangular approximation (RA) scheme [30]. This algorithm
can be expressed as

(3a)

(3b)

where is the iteration count, starting from one, and is
the th iteration field. In this study, RA scheme is used to
obtain the initial guess.

B. SS-BPM

Split-step methods [35], sometimes called operator splitting
methods in some literature [32], are commonly used for time-
dependent partial differential equations. They are often applied

to reduce problems in multidimensional space to a sequence
of problems in one dimension and can significantly reduce
the work required for implicit methods. In [28] and [29], the
split-step method is applied to (1) so that each propagation
step is split into two sequential steps: one deals with only
linear propagation of the waves while the other takes care of
the nonlinear coupling between different frequencies. In our
notation, the method presented in [29] can be reexpressed as
follows.

Step 1) Linear:

(4a)

(4b)

Step 2) Nonlinear:

(5a)

(5b)

where

and are the effective refractive indexes of the funda-
mental and the SH waves, respectively. The superscript ()
denotes the corresponding intermediate field. Note that when
dealing with the nonlinear terms, it is assumed in the SS-BPM
that the coupling between frequencies is constant within each
propagation step. In [29], improvements on the accuracy of
the nonlinear step are also mentioned, which involve repeated
execution of the procedures in Step 2). However, as will be
clearly shown later, these are not economical approaches since
the second step of the SS-BPM takes much longer computation
time than that of the ISS-BPM.

C. ISS-BPM

In this paper, we propose a hybrid method, the iterative
split-step BPM (ISS-BPM), which combines the iterative and
the split-step methods. In the next section, it will be shown
that the ISS-BPM is more efficient and accurate than the SS-
BPM. There are also two steps in the ISS-BPM. The first
step considers only the linear propagation and is identical to
that of the SS-BPM. The second step employs the fixed-point
iteration as in the IFD-BPM to handle the nonlinear coupling
terms. The ISS-BPM is expressed as follows.
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Step 2) Nonlinear:

(6a)

(6b)

The iteration is performed in Step 2), which is similar to the
IFD-BPM but without linear terms. Note that in this work, the
initial guess is obtained by the RA scheme [30].

III. COMPARISON

For comparison purposes, a 1-D plane-wave, fully
birefringent-phase-matched SHG case is simulated first.
In this case, analytical solutions exist and can be used to
examine the numerical results. With the initial power of the
SH equal to zero, the intensities of the fundamental and the
SH waves are given by

(7a)

sech (7b)

where and are the initial intensity,
the free-space wavevector and the field amplitude of the
fundamental wave. and are the refractive indexes of
the fundamental and the SH waves. In the simulation, they are
both set to 2.2. The wavelengths of the two waves are 0.808

m and 0.404 m. The nonlinear susceptibility, , is 85
pm/V. The initial power levels of the fundamental and the SH
waves are 4 and 0 W, respectively.

The normalized intensities calculated analytically and by
various numerical methods are plotted in Fig. 1(a), in which
no difference can be observed. For detailed comparison, the
absolute differences between the analytical and the numerical
solutions are plotted in Fig. 1(b). Note that the RA scheme
[30] provides initial guesses for the iterative methods. In the
1-D situation, there are no diffraction terms, so the ISS-BPM
is exactly identical to the IFD-BPM. This figure shows that
the iterative method converges substantially right after the
first iteration. However, for the SS-BPM, even with a stepsize
that is five times smaller, the result is still less accurate than
those of the ISS-BPM. Moreover, the SS-BPM takes longer
computation time than the ISS-BPM with one iteration. The
computation times required by different schemes with the same
stepsize are in the following ratio:

RA : 1 IT : 2 IT : 3 IT : SS-BPM

1 : 2 : 3.3 : 4.5 : 3.6

where 1 IT represents one iteration and similarly for 2 IT and
3 IT. It is possible to improve the accuracy of the SS-BPM
to the extent similar to 1 IT [29], but the computation time
will be more than doubled. As a result, the SS-BPM will be

(a)

(b)

Fig. 1. (a) The normalized intensities of the fundamental and the SH waves
calculated analytically and by different numerical schemes. (b) Absolute dif-
ference of normalized fundamental intensities between the analytical solution
and the result obtained by different numerical methods.

Fig. 2. The index profile along thex-axis. w, ng, and nc are the width
of the waveguide and the refractive indexes of the guiding and the cladding
layers, respectively.

much slower than the ISS-BPM with one iteration for the same
accuracy. The bottleneck of the SS-BPM is in the evaluation
of trigonometric functions.

Next, a 2-D birefringent phase-matched SHG case is used
for comparison. Due to the discrete nature of the FD methods,
different stepsizes could cause different period irregularities of
the modulation and so lead to extra calculation error. Then
the stepsize in the numerical calculation for QPM condition
has more or less influences on the convergence rate. Therefore,
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(a) (b)

(c) (d)

Fig. 3. The simulated SH power variation along the propagation direction for (a)�z = 0:1 �m, (b)�z = 1 �m, (c)�z = 5 �m, and (d)�z = 20 �m.

a birefringent phase-matched case is use here for studying the
convergence rate. The configuration is a straight waveguide as
shown in Fig. 2, where , , and are the width of the
waveguide and the refractive indexes of the guiding and the
cladding layers. The wavelengths and the refractive indexes of
the fundamental and the SH waves are 0.808m, 0.404 m,
2.32723, and 2.32679, respectively. For evaluation purposes,
a typical value of the index difference of the waveguide,

, is used for both frequencies. The
width of the waveguide is 4 m and is 46.5 pm/V. The
initial power levels of the fundamental and the SH waves are
4 and 0 W/ m. The computation window is 40m wide with

m for all methods. The SH power at
is defined as

(8)

where is the free-space impedance, and the summation,,
runs over the discretization points along the x-direction. The
unit is in W/unit length because of the 2-D configuration. The
power diagrams of the SH wave for the four stepsizes, 0.1, 1,
5, and 20 m, are shown in Fig. 3(a)–(d), respectively. Only
one iteration is executed for the iterative methods. Fig. 3(a)
shows that, with m, the results obtained by the

three schemes are indistinguishable, which means that they
all converge and agree with one another. Without loss of
generality, the power diagram calculated by the IFD-BPM with

m is used as a reference in other figures. As can
be seen from Fig. 3(b) and (c), the power diagrams calculated
by the SS-BPM deviate progressively from the reference as
the stepsize increases while the results obtained by the other
two schemes remain almost the same. To be more specific,
the SS-BPM predicts a slower conversion of the SHG. This
lag of interaction may be attributed to the approximation of
constant coupling.

As the stepsize increases further, as shown in Fig. 3(d),
the results calculated by both ISS-BPM and SS-BPM be-
come inaccurate. It is interesting to note that the deviation
is not gradual. Instead, it deviates from the reference curve
outrageously after some critical distance. Similar behavior
had been observed for the EFD-BPM [30]. This precipitous
behavior probably results from the exponentially accumulated
numerical error. On the other hand, the result calculated by
the IFD-BPM, even with m, still agrees with the
reference very well. For a closer investigation, the convergence
of field is shown in Fig. 4(a) and (b) for and 15

m, respectively. Fig. 4(a) shows that the fields calculated
by the three schemes with m after 12 000
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(a)

(b)

Fig. 4. Time averaged SH field profiles after 12 000�m of propagation
calculated by different methods with different stepsizes: (a)�z = 0:1 �m
and (b)�z = 15 �m.

m of propagation distance remain the same. However, with
m, only the field calculated by IFD-BPM closely

resembles the one with m, as shown in Fig. 4(b).
The above comparisons show that ISS-BPM has better

accuracy and efficiency than the published SS-BPM. Between
the two iterative methods, ISS-BPM has a worse convergence
rate than the IFD-BPM for large stepsizes, but the former one
has a better efficiency. Depending on the way the initial guess
used in IFD-BPM, usually about 33–50% of computation time
can be saved if ISS-BPM is used. For numerical calculation
in QPM, the stepsize cannot be large in order to minimize
the possible error due to the period irregularities caused by
the discrete of FD method. Then, ISS-BPM could be a better
choice in the consideration of efficiency.

IV. CONCLUSION

Three numerical methods, IFD-BPM, SS-BPM and ISS-
BPM, for modeling second-order nonlinear effects are eval-
uated. All three methods are able to handle the depletion
of the pump wave. From the above evaluations, the newly
proposed hybrid method, ISS-BPM, was shown to be more

efficient and accurate than the SS-BPM. When compared to
our previously published IFD-BPM, ISS-BPM has a lower
stepsize convergence rate. However, if the stepsize is small
enough, ISS-BPM is almost as accurate as IFD-BPM and
it could save about 33–50% computation time. Therefore,
when the stepsize has to be small because of the QPM
geometrical configuration, ISS-BPM should be a better choice
for efficiency reason.
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