Samarium diiodide promoted coupling of thiophenecarbaldehydes

Shyh-Ming Yang and Jim-Min Fang*
Department of Chemistry, National Taiwan University, Taipei, Taiwan 106, Republic of China

Thiophene-2-carbaldehyde adds to aromatic and aliphatic aldehydes with the mediation of samarium diiodide and hexamethylphosphoramide. These hydroxalkylations occur at the 5-position of thiophene-2-carbaldehyde. The self- and cross-coupling reactions of thiophene-3-carbaldehyde occur at the 2-position. S-Alkylation of the reaction intermediates gives substituted γ-lactols.

Thiophenecarbaldehydes are generally reduced to the thiophenemethanols by catalytic hydrogenation or by treatment with LiAlH₄ or Fe·HOAc. On treatment with Mg·MgI₂ thiophenecarbaldehydes undergo self-coupling to give pinacols. Electrochemical reductions of acetylthiophene or benzoylthiophene also give pinacols. Reductions of alkanoylthiophenes with dissolved metals such as Li·NH₃ or Na·NH₃ give the 2,5-dihydro derivatives. However, reductions of thiophenes to tetrahydrothiophenes are achieved with Et₃SiH·CF₃CO₂H. We demonstrated previously that bimolecular reduction of benzaldehydes or indolecarbaldehydes by way of arylicarbonyl couplings, occur with SmI₂ in the presence of hexamethylphosphoramide (HMPA) whereas pinacol couplings are diminished under these conditions. We report herein the self- and cross-coupling of thiophenecarbaldehydes 1 and 2 promoted by SmI₂·HMPA. The thiophene-carbonyl coupling products were trapped with halogenalkanes and the products were elaborated to butenolides.

As shown in Table 1, acceptor substrates include benzaldehydes 3 and 6, a pyrrolecarbaldehyde 4 and an aliphatic aldehyde 5. The cross-coupling of thiophene-2-carbaldehyde and thiophene-3-carbaldehyde (entry 2) gave a product 8, indicating the former aldehyde served as the donor whereas the latter aldehyde served as the acceptor. The reactions occurred via thiophene-carbonyl couplings although small amounts of products such as 13 and 19 derived from pinacol couplings were also found (entries 6 and 8). The pinacol of thiophene-3-carbaldehyde and 1-methylpyrrole-2-carbaldehyde might transfer a hydride to thiophene-3-carbaldehyde, so that both the reductive product, 3-thenymethanol 18, and the oxidative product, 19, were obtained in nearly equal amounts.

Oxidation of alcohols 7–11 with pyridinium dichromate-molecular sieves (PDC·MS) gave the corresponding solid ketones 20–24. The intermediate in the self-coupling of thiophene-3-carbaldehyde was trapped with benzyl bromide to give lactol 25 (65%, two epimers), which was transformed into lactone 26 (79%) on treatment with PDC·MS (Scheme 1). The intermediate in the cross-coupling of thiophene-3-carbaldehyde and 4-methylbenzaldehyde also underwent S-alkylation. The reaction mechanism presumably involved sequential electron-transfer from SmI₂ (2 equiv.) to thiophene-3-carbaldehyde, giving an organosamarium intermediate B, which was stabilised synergistically by the adjacent sulfur atom and by co-ordination with the oxygen ion.

Thiophenecarbaldehydes are conventionally converted into the corresponding α-amino alkoxides which react with electrophiles to give substituted thiophenecarbaldehydes. This one-pot reaction requires, however, sequential treatment with amine (such as N-methylpiperazine) and BuLi (several molar proportions) at low temperatures. The regiochemistry of the reaction varies depending on the reaction conditions. Our present method is relatively simple and gives products with predictable regiochemistry. The SmI₂-promoted thiophene-carbonyl coupling is likely to be applicable to acetylthiophenes of which hydroxalkylations cannot be realised by the conventional methods.

**Experimental**

**General procedure**

Under an atmosphere of argon, Sm (660 mg, 4.4 mmol) and 1,2-diiodoethane (1.03 g, 3.65 mmol) were stirred in anhydrous tetrahydrofuran (THF, 40 cm³) until a dark blue solution formed. HMPA (2.8 cm³, 16 mmol) was added and then the solution was cooled to 0 °C, after which a mixture of thiophene-2-carbaldehyde (the donor substrate, 0.094 cm³, 1.0 mmol) and

*SmI₂·HMPA promoted dimerisation of acetophenone (phenyl-carbonyl coupling) was reported in ref. 8.
Table 1  Coupling of thiophencarbaldehydes promoted by SmI$_2$ in THF and HMPA

<table>
<thead>
<tr>
<th>Entry</th>
<th>Donor</th>
<th>Acceptor</th>
<th>Coupling products (yield / %)</th>
<th>Reagents</th>
<th>Products (yield / %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7 (49)</td>
<td>PDC-MS</td>
<td>20 (89)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>8 (45)</td>
<td>PDC-MS</td>
<td>21 (83)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>9 (45)</td>
<td>PDC-MS</td>
<td>22 (86)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>10 (36)</td>
<td>PDC-MS</td>
<td>23 (84)</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>11 (49) + 7 (24)</td>
<td>PDC-MS</td>
<td>24 (72)</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>12 (48) + 13 (21)</td>
<td>PhCH$_2$Br</td>
<td>25 (65)</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>14 (43) + 12 (10)</td>
<td>PhCH$_2$Br</td>
<td>27 (63)</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>4</td>
<td>15 (21) + 18 (16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19 (14) + 12 (14)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (contd)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Donor</th>
<th>Acceptor</th>
<th>Coupling products (yield / %)</th>
<th>Reagents</th>
<th>Products (yield / %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
<td><img src="image" alt="Chemical Structure" /> + 12 (22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>6</td>
<td><img src="image" alt="Chemical Structure" /></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4-methoxybenzaldehyde (the acceptor substrate, 0.146 cm³, 1.2 mmol) in THF (2 cm³) were added dropwise. The mixture was stirred for 10 min at 0 °C and 30 min at room temperature (27 °C). The reaction was quenched by the addition of saturated aqueous NH₄Cl, and the mixture was filtered through a pad of silica gel to remove HMPA. The residue was concentrated and chromatographed on a silica gel column by elution with EtOAc-hexane (2:8) to give the product 9 (102 mg, 45%). About 10-20% of the thiophene-2-carbaldehyde was recovered.

The coupling reactions of thiophene-3-carbaldehyde was carried out by similar procedures. In entries 6 and 7, the intermediates obtained by addition of the appropriate aldehyde at 0 °C for 10 min, were treated with benzyl bromide (0.224 cm³, 2.0 mmol) for 24 h at room temperature (27 °C) to give lactols 25 (205 mg, 65%) and 27 (213 mg, 63%), respectively, after the usual work-up.

All new compounds had compatible IR, mass, high-resolution mass, ¹H and ¹³C NMR spectra. Some pertinent data are listed:

- **8**, δ(¹H) (200 MHz; CDCl₃; J/Hz) 9.80 (1 H, s), 7.61 (1 H, d, J 3.8), 7.33-7.29 (2 H, m), 7.06 (1 H, dd, J 4.6, 1.6), 6.99 (1 H, d, J 3.8), 6.10 (1 H, s), 2.96 (1 H, br s, OH).
- **12**, δ(¹H) (200 MHz; CDCl₃; J/Hz) 12.92 (1 H, s), 7.43 (1 H, d, J 5.1), 7.27 (2 H, m), 7.20 (1 H, d, J 5.1), 7.08 (1 H, dd, J 4.4, 1.9), 6.42 (1 H, d, J 4.9), 4.43 (1 H, d, J 4.9, OH).
- **14**, δ(¹H) (50 MHz; CDCl₃; J/Hz) 186.0 (d), 159.6 (s), 159.5 (s), 136.1 (s), 133.9 (s), 129.8 (d), 127.9 (d, 2 C), 124.2 (d), 113.8 (d, 2 C), 70.2 (d), 55.2 (d).
- **15**, δ(¹H) (200 MHz; CDCl₃; J/Hz) 8.16 (1 H, s), 7.46 (1 H, d, J 5.2), 7.22 (1 H, d, J 5.2), 6.60 (1 H, d, J 2.7, 1.8), 6.37 (1 H, d, J 5.7), 5.99 (1 H, dd, J 3.6, 2.7), 5.86 (1 H, dd, J 3.6, 1.8), 4.15 (1 H, d, J 5.7, OH), 3.68 (3 H, s).
- **20**, mp 102-103 °C.
- **21**, mp 95-97 °C. δ(¹H) (75 MHz; CDCl₃) 183.3 (d), 180.8 (s), 149.9 (s), 147.8 (s), 140.3 (s), 135.0 (d), 133.5 (d), 132.8 (d), 128.1 (d), 128.9 (d).
- **22**, mp 111-112 °C. δ(¹H) (75 MHz; CDCl₃) 24.5 (d).
- **23**, mp 90.5-91.5 °C.
- **26**, δ(¹H) (200 MHz; CDCl₃; J/Hz) 7.46 (1 H, d, J 9.1), 7.34-7.30 (7 H, m), 6.98 (1 H, d, J 3.6, 1.6), 6.68 (1 H, d, J 10.5), 6.24 (1 H, d, J 10.7), 6.05 (1 H, d, J 1.9), 4.05 (2 H, s).

**Acknowledgements**

We thank the National Science Council for financial support (Grant NSC84-2113-M002-010).

**References**