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Rice (Oryza sativa L.) is a major staple food worldwide, and is traded extensively. The objective of this
study is to distinguish the rice grains of 30 varieties nondestructively using image processing and
sparse-representation-based classification (SRC). SRC uses over-complete bases to capture the
representative traits of rice grains. In the experiments, rice grain images were acquired by microscopy.
The morphological, color, and textural traits of the grain body, sterile lemmas, and brush were quantified.
An SRC classifier was subsequently developed to identify the varieties of the grains using the traits as the
inputs. The proposed approach could discriminate rice grain varieties with an accuracy of 89.1%.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Rice (Oryza sativa L.) is an essential staple food for half of the
global population. Rice grains of hundreds of varieties are
cultivated and traded in considerable amounts worldwide. Most
facilities share the same equipment for handling various products.
Rice grains of different varieties can be mixed during the cultiva-
tion, harvesting, transporting, and processing, reducing the purity,
quality, and value of the subsequent products. Despite the neglect,
the introduction of impurities can also be intentional, in a dishon-
est manner. Hence, the demand for the nondestructive authentica-
tion of grain varieties is emerging. The grains of different varieties
can vary in appearance (Fig. 1). Specialists traditionally identify
grains manually based on their appearance. However, this process
is time-consuming and subjective. This study proposes identifying
the rice grains of 30 varieties (Appendix A) through image analysis
and sparse-representation-based classification (SRC; Wright et al.,
2009) techniques.

Various genetic marker-based methods have been applied for
identifying rice grain varieties. Steele et al. (2008) selected inser-
tion and deletion markers to distinguish Basmati rice grains from
some other fragrant rice varieties. Cirillo et al. (2009) applied ran-
dom amplified polymorphic DNA (RAPD) approach to fingerprint
rice grains of 13 Italian accessions. Becerra et al. (2015) determined
the genetic variability of certain Chilean and foreign commercial
rice cultivars using simple sequence repeat (SSR) markers. Another
study reported using SSR markers to distinguish 36 varieties of rice
grains from different countries (Chuang et al., 2011). Although
these genetic marker-based methods are accurate, they are often
too time-consuming or costly to be suitable for online applications.

Image-based approaches, by contrast, are nondestructive and
rapid. They combine image analysis and machine learning tech-
niques to achieve automatic inspection and evaluation. Image-
based approaches have been applied for discriminating varieties
of cereal grains using either one of the morphological, color, and
textural traits, or a combination. Camelo-Méndez et al. (2012)
characterized the rice grains of 9 Mexican cultivars by performing
principle component analysis (PCA) and hierarchical analysis. Kong
et al. (2013) classified the rice seeds of 4 accessions using a
near-infrared hyperspectral imaging system and various machine
learning algorithms. Mebatsion et al. (2013) distinguished between
barley, oat, and rye using a least-squares classification approach.
Another study applied multilayer perceptron and neuro-fuzzy
classification networks for identifying 5 Iranian rice varieties
(Pazoki et al., 2014). Although the results of these studies have
been promising, they have included a relatively limited number
of varieties for discrimination.

SRC is a machine learning algorithm that is suitable for solving
high-dimensional problems. It encodes the representative charac-
teristics of training samples as the atoms in a dictionary. When a
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Fig. 1. Rice grains of 30 varieties.
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query sample is provided, it is coded as a sparse combination of
atoms. The query sample is then assigned to the class that yields
the least coding errors. SRC is robust to noise and computationally
inexpensive. The method has been used for denoising images
detecting the flowers of various species (Yuan et al., 2012), recog-
nizing field crop insects (Xie et al., 2015), and assisting with the
diagnosis of Alzheimer’s disease (Liu et al., 2012).

The current study aimed to differentiate the rice grains of 30
varieties using locality-constrained SRC (Wei et al., 2013). The
following were the specific objectives of the study: (1) establish
a microscopic imaging system for acquiring grain images; (2)
quantify the morphological, color, and textural traits of the grain
body and parts; and (3) develop a locality-constrained SRC classi-
fier for identifying rice grain varieties.
2. Materials and methods

2.1. Sample preparation

The rice grains of 30 varieties were used in this study (Fig. 1;
Appendix A). Oryza sativa L. consists of 5 genetic subpopulations
(Garris et al., 2005): indica, aus, aromatic, temperate japonica, and
tropical japonica. The varieties used in this study were selected
from these subpopulations, including 7 from indica, 8 from aus, 3
from aromatic, 7 from template japonica, and 5 from tropical
japonica. The grain samples were acquired from the Genetic Stocks
Oryza germplasm collection (Agricultural Research Service, United
States Department of Agriculture) and reproduced in a local green-
house (Kaohsiung District Agricultural Research and Extension
Station, Taiwan) in 2013. For the details of the rice varieties, refer
to Zhao et al. (2011). After harvesting, the grains were dried to a
moisture content of approximately 13% and refrigerated at 4 �C.
Fifty grains of each variety were prepared.
2.2. Rice grain exterior

A grain body is typically composed of husk and sterile lemmas
(Fig. 2). In certain varieties, brush covers the husk surface. The
morphological, textural, and color traits of these organs (i.e., husk,
sterile lemmas, and brush) can be used for distinguishing between
grain varieties. Because the awns of the grains typically shed dur-
ing drying, their traits were not considered in this study.
2.3. Imaging system and image acquisition

Fig. 3 displayed the image acquisition system developed for
acquiring the grain images. It comprised a digital camera (EOS
450D, Canon; Tokyo, Japan), a microscope (BXFM, Olympus; Tokyo,
Japan), a 2X objective lens (PLN UIS2, Olympus; Tokyo, Japan), and
a ring-shaped LED illuminator. The LED illuminator was placed
15 mm above the surface of the sample placement platform of
the microscope. The system was enclosed in a dark chamber to
prevent exposure to stray light. The barrel or pincushion distortion
of the microscope system was measured using a checkerboard, and
the distortion level was negligible. Before image acquisition, the
system was calibrated using a standard color reference board
(Color Checker Passport, X-rite; Grand Rapids, USA) to estimate
the device-independent color parameters of the grains. The camera
was set in manual mode for image acquisition with an ISO of 400
and a shutter of 1/30 s. The acquired images were saved in raw for-
mat, in which no adjustment (e.g., white balance) was applied.
2.4. Multifocus image fusion and background removal

Multifocus image fusion (Wang and Chang, 2011) was applied
to improve the quality of the grain images (Figs. 4a–c). The lenses
of an optical microscope typically have a limited field depth. Two
micrographic images of the same rice grain, one focused at the
grain center (Fig. 4a) and the other at the grain edge (Fig. 4b), were
obtained. The 2 photographs were merged to obtain an image with
all of the pixels in focus (Fig. 4c). The fusion involved matching,
registration, and consolidation. In the matching process, the same
characteristic points of the rice grain in the 2 photographs were
identified using speeded up robust features (Bay et al., 2006). Next,
the 2 images were registered using the identified characteristic
points and the fast approximate nearest-neighbor search algorithm



Fig. 2. Husk, sterile lemmas, and brush of a rice grain. The husk is the outermost layer. Sterile lemmas are 2 flowerless bracts connected to the pedicel. Brush is the hair on the
husk, and is clearly visible in certain varieties.

Fig. 3. Image acquisition system.
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(Muja and Lowe, 2009). The 2 images were subsequently
consolidated into a single image through Laplacian pyramid
transformation (Jin et al., 2005). The fused image contained
1068 � 712 pixels at a resolution of approximately 95 pixels per
millimeter (2413 pixels per inch). The image fusion algorithm
was implemented in C language, and the program was developed
using Xcode (Apple Inc.; Cupertino, CA, USA).

The rice grain in each image was segmented from the back-
ground (Fig. 4d). First, a k-means operation (Hartigan and Wong,
1979) was applied to the hue channel in the hue-saturation-
value color space. The number of clusters in the k-means operation
was set to 2. The algorithm labeled each pixel in the image
‘‘foreground” or ‘‘background.” Next, connected-component label-
ing (Dillencourt et al., 1992) was applied to identify the largest
foreground object as the grain body. For certain varieties, the brush
was recognized as a part of the grain body (Fig. 4d). This false
recognition reduced the accuracy in estimating the grain perime-
ter. Therefore, morphological closing (Gonzalez and Woods,
2007) was performed to remove the brush outside the grain con-
tour from the grain body (Fig. 4e). After grain body segmentation
was complete, the awn and pedicel points were determined as
the 2 points on the grain contour with the largest distance apart.
The sterile lemmas and brush (Fig. 4f), which are usually associated
with colors different from the color of the husk, were identified
through color thresholding.
Fig. 4. Multifocus image fusion and background removal. Grain images with the (a) cent
brush-eliminated image; and (f) sterile lemmas and region of interest.
2.5. Trait quantification

To describe the characteristics of the rice grains, their traits were
categorized into 4 groups: morphological traits, color traits, textu-
ral traits, and Fourier descriptors. Twelvemorphological traits were
calculated for the grain body: perimeter, surface area, length of
major axis, length of minor axis, aspect ratio, arc ratio, standard
deviation (SD) of radii, maximum radius, minimum radius, radius
ratio, Haralick ratio, and thinness ratio (Fig. 5; Camelo-Méndez
et al., 2012; Majumdar and Jayas, 2000). Themajor axis was defined
as the line connecting the awn and pedicel points. Conversely, the
minor axis was defined as the line perpendicular to the major axis
with the longest segment intersecting the grain. The aspect ratio
was the ratio of the major axis length to the minor axis length.
The arc ratio was the ratio of the major arc length to the minor
arc length. The major and minor arcs were the long and short con-
tour segments, respectively, along the grain contour between the
awn and pedicel points. The radii were the distances between the
contour points and geometric centroid of the grain. The radius ratio
was the ratio of the maximum radius to the minimum radius. The
Haralick ratio was the ratio of themean radius to the SD of the radii.
The thinness ratio was the ratio of the area to the perimeter. A grain
with a larger thinness ratio is more circular, whereas that with a
smaller thinness ratio is pointier. The morphological traits of the
sterile lemmas were also quantified, and included the lengths along
the major arc (L1 in Fig. 5) and the minor arc (L2 in Fig. 5), the ratio
of L1 to themajor arc, the ratio of L2 to theminor arc, the area of the
sterile lemmas, and area ratio. The area ratio was defined as the
ratio of the sterile lemma area to the grain body area.

Nine color traits were acquired for the husk: red, green, and
blue (RGB) parameters; hue, saturation, and value parameters;
and Commission Internationale de l’Eclairage (CIE) L⁄, a⁄, and b⁄

(Hunter, 1975) parameters. The color traits were the mean color
parameters of the pixels in the region of interest (ROI). The ROI
was a rectangle centered at the grain centroid, with its edges
parallel to the major and minor axes of the grain. The length and
width of the ROI were 50% of the lengths of the major and minor
er and (b) edge in focus; (c) image fused from (a) and (b); (d) foreground image; (e)



Fig. 5. Morphological traits of the grain body and sterile lemmas. L1 and L2 denote
the lengths of the sterile lemmas along the major and minor arcs, respectively.
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axes, respectively. The L⁄, a⁄, and b⁄ parameters were converted
from the ROI RGB values using the transform functions obtained
during calibration. These 9 color parameters were also quantified
for the sterile lemmas using the entire area of the sterile lemmas
as the ROI.

Seven textural traits were assessed for the husk: brush ratio and
6 gray-level co-occurrence matrix (GLCM; Haralick et al., 1973)
traits. The brush ratio was defined as the percentage of the husk
ROI covered with brush. Here the brush was identified using edge
detection and color thresholding. The 6 GLCM traits included the
mean, variance, uniformity, entropy, contrast, and correlation
(Galloway, 1975). To quantify the GLCM traits, the ROI was first
converted into a grayscale image with a 3-bit word length. The
GLCM of this image was then calculated using a displacement vec-
tor with a direction parallel to the major axis and a distance of 1
pixel. The 6 traits were subsequently calculated from the GLCM fol-
lowing their definitions (Haralick et al., 1973).

Fourier descriptors were quantified for the grain body. Fourier
descriptors are a set of sine and cosine harmonics at various fre-
quencies for encoding the outline of an object (Rohlf and Archie,
1984). To calculate the descriptors, the grain contours were first
represented as sequentially connected points (8-connected) in a
Cartesian coordinate system. The coordinates of the connected
points in each dimension were then converted into Fourier
descriptors by using discrete Fourier transform (Harris, 1978).
The first 20 low-frequency descriptors were retained for character-
izing the grain shapes. The harmonics at high frequencies were dis-
regarded because the grain images had a limited resolution. The
high-frequency harmonics may depict noise, rather than the native
structures of the grain contours. The Fourier power of the first 20
harmonics was 99.9% (Costa et al., 2009). The grain images were
two-dimensional, with a sine and a cosine harmonic in each
dimension. Thus, a total of 80 coefficients of the descriptors were
collected as the traits.

2.6. Grain shape variation

The shape variations among the grains of the 30 varieties were
examined. PCA was first conducted on the Fourier descriptors to
obtain the principal components (PCs). Each PC was associated
with a particular grain shape variation, and the PCs were arranged
in descending order based on their percentage variance. The first
few PCs accounted for a large proportion of the variance and could
represent the major shape variations. Next, the shape variation
associated with each PC was visualized by reconstructing the grain
contours. In this process, the mean and SD of the PCs were calcu-
lated. Fourier descriptors were next derived through inverse PCA,
with a specific PC value being manipulated while maintaining
the mean values of the others. The manipulated PC values were
set to be the mean and mean ± 2 SD (Williams et al., 2013). Grain
contours were then reconstructed using the resulting Fourier
descriptors and by conducting inverse Fourier transform.
2.7. Grain variety identification

Locality-constrained SRC was applied for identifying the rice
grain varieties. The objective of SRC was to encode the grain traits
as a sparse linear combination of a dictionary, which is composed
of atoms that represent the essences of the grain traits. The dic-
tionary was learned from the collected traits. The learning process
is explained as follows. Consider that N 2 N training samples (i.e.,
number of grain images) of the jth variety, where j ¼ 1 � � � J 2 N

were gathered. Each training sample was associated with M 2 N

traits. Assume that the dictionary has K 2 N atoms. Let
Xj 2 RM�N , Dj 2 RM�K , and Aj 2 RK�N denote the matrix of the train-
ing samples, the dictionary to be trained, and the sparse coefficient
matrix, respectively, of the jth variety. The dictionary was obtained
by solving the following equation:

Dj ¼ arg
Dj ;Aj

min kXj � DjAjk22 þ k
XN

i¼1
kpji � ajik22

s:t: 1Taji ¼ 1; i ¼ 1; . . . ;N
ð1Þ

where aji 2 RK�1 is the ith column of Aj, k 2 R is a regularization
parameter that controls the sparsity of aji, Pji 2 RK�1 is the locality
adaptor, and the symbol � denotes element-wise multiplication.
The locality adaptor pji was defined as a vector consisting of the
Euclidean distances between a training sample (i.e., a column of
Xj) and the columns of Dj . This regularization formulation using
the locality adaptor considered the underlying manifold structures
of the grain traits (Wang et al., 2010). Hence, SRC could produce a
dictionary that encodes the essential patterns of the grains. The dic-
tionaries for all varieties were developed using the locality-
sensitive dictionary learning algorithm proposed by Wei et al.
(2013). The optimal regularization parameter k and dictionary size
K were determined by conducting a grid search and 10-fold cross-
validation (Arlot and Celisse, 2010).

Once developed, the dictionaries Dj were employed to classify
the grains using the traits as the inputs. Let y 2 RM�1 be a query
sample. The sparse coefficients a j 2 RK�1 were calculated for all
varieties (j ¼ 1 � � � J) to assemble the sparse reconstructions
ŷ � Dja j of the query sample. The variety of the query sample
was then determined as a variety associated with the dictionary
that yields the minimum reconstruction error:

cultivar ðyÞ ¼ arg
j

minky � Dja jk22 þ kkpj � a jk22

s:t: 1Ta j ¼ 1; j ¼ 1; . . . ; J
ð2Þ

where pj represents the Euclidean distances between the sample y
and the columns of Dj . The dictionary training and variety identifi-
cation were performed using MATLAB (The MathWorks; Natick, MA,
USA).

3. Results and discussion

3.1. Morphological and textural traits

Fig. 6 shows the boxplots of (a) area, (b) aspect ratio, (c) area
ratio, (d) ratio of L2 to the minor arc, (e) brush ratio, and (f) GLCM
entropy. The traits were color-coded by their subpopulations,
where purple, blue, green, red, and yellow stand for aromatic, tem-
perate japonica, tropical japonica, indica, and aus, respectively. Vari-
ations in the traits were observed. Some varieties were associated
with larger areas (e.g., varieties NSF�TV 27, NSF-TV 107, and
Caawa; Fig. 6a) or longer major axis (e.g., varieties Dom�Sufid,
T1, and Dom Zard; Fig. 6b) compared with some other cultivars.
In addition, the aspect ratio of subpopulation temperate japonica
is significantly smaller than the aspect ratios of subpopulations
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Fig. 6. Boxplots of the morphological and textural traits. The varieties were color-coded by their subpopulations, where purple, blue, green, red, and yellow stand for aromatic,
temperate japonica, tropical japonica, indica, and aus, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 7. Major grain shape variations. Each column shows the grain contours with
altered PC values (mean � 2SD, mean, and mean + 2SD) as labeled. The left-hand
column shows the 3 contours stacked together. That PC2 primarily corresponds
with the roundness of the grain is clearly visible.

Fig. 8. Grains of varieties (a) Dourado Agulha, (b) R101, (c) Tainung 67, and (d) T1.
The grains are dissimilar in size and roundness.

T.-Y. Kuo et al. / Computers and Electronics in Agriculture 127 (2016) 716–725 721
aromatic and tropical japonica (P < 0.001). Particularly, the sterile
lemmas of variety Pappaku were larger in size and longer in length
(Figs. 1, 6c and d). As for the textural traits, the brush ratios of vari-
eties Dosel, Dourado Agulha, and Caawa were evidently larger than
the brush ratios of varieties Sitpwa, Dular, and Tainung 67 (Fig. 6e).
The GLCM entropy also varied from one variety to another. The
GLCM entropy of varieties Dom-Zard, Dom-Sufid, and Dourado
Agulha were greater than the GLCM entropy of some other vari-
eties (Fig. 6f). Note that some traits of the same varieties may vary
at a considerable degree (e.g., the aspect ratio of variety Aswina
Fig. 9. Grain color distribution of the 30 varieties on the (a) chromaticity and (b) chroma
are pseudo-colored. (For interpretation of the references to color in this figure legend, t
330, Fig. 6b; the area ratio of variety Pappaku and Edomen Scented,
Fig. 6c). These within-variety variations increase the challenge of
grain variety identification.

3.2. Major grain shape variations

The grain shape variations among the 30 varieties were deter-
mined. The PCA results revealed that the first 2 PCs accounted
for 98.6% and 0.5%, respectively, of the total variance. Each remain-
ing PC accounted less than 0.3%. Hence, only the shape variations
associated with the first 2 PCs were devised. Fig. 7 illustrates the
grain contour variations. Major variations were observed in grain
length, width, and roundness. The figure indicates that PC1 primar-
ily corresponded with the grain size. The grains of large PC1 values
were greater in volume compared with those of small PC1 values.
PC2 principally corresponded with roundness. The grains of large
PC2 values were relatively slender, whereas those of small PC2 val-
ues were more spherical.

Fig. 8 shows sample grain images of varieties (a) Dourado
Agulha, (b) R101, (c) Tainung 67, and (d) T1 (Appendix A). The
grain contours vary considerably from one variety to another.
The grains of Dourado Agulha and R101 resembled the contours
reconstructed using extreme PC1 values (�2 SD and +2 SD, respec-
tively) in Fig. 7. Also, the grains of Tainung 67 and T1 resembled
the contours reconstructed using extreme PC2 values (�2 SD and
+2 SD, respectively) in Fig. 7. These observations indicated that
the morphological traits and Fourier descriptors can be used to dif-
ferentiate the grains of certain varieties effectively.

3.3. Grain color discrepancies

The color discrepancies among the grains of the 30 varieties
were examined. In the analysis, PCA was conducted to summarize
the color distribution for the 50 grains of each variety in the
CIE L⁄-a⁄-b⁄ color space (Fig. 9). The color distribution was pre-
sented using an ellipsoid. The ellipsoid was centered at the mean
L⁄, a⁄, and b⁄ color parameters of a variety. The principal axes of
the ellipsoid were set parallel to the first 3 PCs, and were 2 SDs
of the PC scores in length. Fig. 8(a) and (b) display the ellipsoids
ticity-lightness planes. The ellipsoids represent the color ranges of the varieties, and
he reader is referred to the web version of this article.)



Fig. 10. Grains of varieties (a) Dosel, (b) NSF-TV 107, (c) Dular, and (d) NSF-TV 160.
The grains are dissimilar in color. Traits such as the brush coverage and sterile
lemma color considerably differ among varieties. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)
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of the 30 varieties projected onto the chromaticity (a⁄ � b⁄) and
chromaticity-lightness (b⁄ � L⁄) planes, respectively. The ellipsoids
were pseudo-colored for illustration purposes. The figures show
that the grains were associated with a considerable variation in
lightness (L⁄) and yellow-blue channel (b⁄). The colors of certain
varieties (e.g., Dosel, NSF-TV 107, Dular, and NSF-TV 160) were
apparently distinct from those of certain other varieties.

Fig. 10 shows sample grain images of varieties (a) Dosel, (b)
NSF-TV 107, (c) Dular, and (d) NSF-TV 160. The grain colors vary
Fig. 11. Classification accuracies for the 30 varieties. Each row represents the grains in
class.
considerably from one variety to another. The Dosel and NSF-TV
107 grains were evidently brighter than the Dular and NSF-TV
160 grains (Fig. 10b). The Dosel grain was associated with a
stronger yellow compared with the NSF-TV 160 grain (Fig. 10a).
These observations indicated that the color traits can be used to
differentiate the grains of certain varieties effectively.
3.4. Classification performance

The dictionaries for the SRC classifier were developed using the
12 morphological traits, 9 color traits, 7 textural traits, and 20
Fourier descriptors quantified from the 1500 grains. The classifier
was then evaluated using 10-fold cross-validation. In the cross-
validation, the original samples were randomly partitioned into
10 groups. Nine groups were used as training data for developing
the model, and the remaining group was retained as validation
data for testing the classifier. The process was repeated for 10
times, with each of the group used once as the validation data.
The averaged accuracies were then presented. Fig. 11 shows the
classification accuracies of the 30 varieties in a confusion matrix.
In the matrix, each row represents the varieties in an actual class,
and each column represents the varieties in a predicted class. The
color of each entry indicates the percentage of the prediction from
the SRC classifier. Overall, the SRC classifier attained an averaged
accuracy of 89.1% and a SD of 7.0%. The classification accuracies
were not statistically different among the subpopulations.
an actual class, and each column of the matrix represents the grains in a predicted
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Fig. 13. Grains of varieties (a) Aswina 330 and (b) R101. The grains are similar in
appearance.
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The performance of the SRC classifier were compared with the
performance of support vector machine (SVM) classifiers. Soft-
margin SVM classifiers and radial basis function kernels were used.
The optimal margin and kernel parameters for the SVM classifiers
were determined using grid search and 10-fold cross-validation.
The SVM classifiers were developed using an open-source library
LIBSVM (Chang and Lin, 2011) and all the quantified traits. The
SVM classifiers achieved an averaged accuracy of 92.8% and a SD
of 6.8%. Fig. 12 shows the performance comparison of the SRC
and SVM classifiers. The performance of the SRC classifier did not
significantly differ from the performance of the SVM classifiers
(P < 0.0001). Although the SVM classifiers achieved a slightly better
performance compared with the SRC classifier, the SVM classifiers
are known to be completely heuristic. They merely provide the
function of classification, but the insight of the discrimination is
unavailable. In contrast, the SRC classifier constructed a dictionary
for each variety. The dictionaries contained essential trait informa-
tion of the varieties. In addition, SVM classifiers are known to be
binary. Thirty classifiers were required to classify 30 varieties of
rice based on one-versus-all scheme.

One limitation in using the image-based approach for identify-
ing the varieties of rice grains is that grains require distinct mor-
phological and color traits. The SRC classifier achieved a
relatively mediocre accuracy in classifying certain varieties,
because the grain appearances of these varieties were similar to
those of certain other varieties. For example, the classification
accuracy for variety Aswina 330 was 74.0%. This was because that
the appearance of variety Aswina 330 resembled the appearance of
variety R101 (Fig. 13). A certain amount of Aswina 330 grains were
misclassified as R101 grains owing to the similar appearances.

4. Conclusion

For this study, we nondestructively distinguished the rice grains
of 30 varieties through image analysis and SRC techniques.
Morphological and color variations among the rice grains of
different varieties were observed. This prompted the use of
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image-based approaches for differentiating the rice grains. In the
proposed approach, we acquired the rice grain images through
microscopy at a resolution of approximately 95 pixels per millime-
ter. The high resolution enabled observations of fine details of the
rice grains. The morphological, textural, and color traits of the
grains were quantified, and an SRC classifier was then developed
to predict the varieties of the grains using the traits as the inputs.
The classifier achieved an overall accuracy of 89.1%.
No. Name NSFTV IDa S

1 NSF-TV 160 160 a

2 Dom Zard 191 a

3 Dom-Sufid 640 a

4 NSF-TV 13 13 a

5 Chuan 4 33 a

6 Kalamkati 81 a

7 Phudugey 131 a

8 T1 152 a

9 Aswina 330 312 a

10 DD 62 316 a

11 Dular 651 a

12 Binulawan 17 in

13 Guan-Yin-Tsan 61 in

14 Kiang-Chou-Chiu 90 in

15 Mudgo 110 in

16 Pappaku 126 in

17 LD 24 298 in

18 Yodanya 339 in

19 Agostano 1 te

20 Chinese 31 te

21 Oro 118 te

22 Dosel 296 te

23 Sitpwa 338 te
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Appendix A
ubpopulation Origin Contourb

romatic Iran

romatic Iran

romatic Iran

us Pakistan

us Taiwan

us India

us Bhutan

us India

us Bangladesh

us Bangladesh

us India

dica Philippines

dica China

dica Taiwan

dica India

dica Taiwan

dica Sri Lanka

dica Myanmar

mperate japonica Italy

mperate japonica China

mperate japonica Guinea

mperate japonica Spain

mperate japonica Myanmar



Appendix A (continued)

No. Name NSFTV IDa Subpopulation Origin Contourb

24 Edomen Scented 363 temperate japonica Japan

25 Tainung 67 641 temperate japonica Taiwan

26 Caawa 22 tropical japonica Taiwan

27 NSF-TV 27 27 tropical japonica Pakistan

28 Dourado Agulha 46 tropical japonica Brazil

29 NSF-TV 107 107 tropical japonica Bangladesh

30 R 101 310 tropical japonica Zaire

a Accession identification number of the ‘‘Exploring the Genetic Basis of Transgressive Variation in Rice” project, National Science Foundation.
b Mean contours of the 50 grains of the same variety reconstructed using Fourier descriptors.
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