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We have examined the stability of psychometric R, the general factor in all mental ability 

tests or other manifestations of mental ability, when g is extracted from a given correlation 

matrix by different models or methods of factor analysis. This wab investigated in simu- 

lated correlation matrices, in which the true g was known exactly, and in typical empirical 

data consisting of a large battery of diverse mental teats. Theoretically, some methods are 

more appropriate than others for extracting R. but in fact g is remarkably robust and almost 

invariant across different methods of analysis, both in agreement between the estimated g 

and the true R in simulated data and in similarity among the K factors extracted from 

empirical data by different methods. Although the near-uniformity of g obtained by differ- 

ent methods would seem to indicate that, practically speaking, there is little basis for 

choosing or rejecting any particular method, certain Factor models qua models may accord 

better than others with theoretical considerations about the nature ofg. What seems to us a 

reasonable strategy for estimating g. given an appropriate correlation matrix, is suggested 

for consideration. It seems safe to conclude that, in the domain of mental abilities, K is not 

in the least chimerical. Almost any g is a “good” R and is certainly better than no 8. 

Contrasting Views of g 

The chimerical nature of i: is the rotten core of Jensen’s edifice, and of the entire 
hereditarian school. 

So stated Stephen J. Gould in his popular book The Mismeusure of Man (198 I, 

p. 320). Gould railed against the “reification” of g, implying that g theorists 
regard it as a “thing’‘-a “single,” “innate,” “ineluctable,” “hard” “object,” to 
quote his own words. In Gould’s view, g is nothing more than a mathematical 
artifact, representing no real phenomenon beyond the procedure for calculating 
it. He argued that the x factor, its size and pattern of factor loadings in each of the 
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tests in a given battery of diverse tests administered to a particular group of 
persons can differ widely, or even be completely absent, depending on the psy- 
chometrician’s arbitrary choice among different methods of factor analysis. In 
Gould’s words, “Spearman’s g is not an ineluctable entity; it represents one 
mathematical solution among many equivalent alternatives” (p. 3 18). 

In marked contrast to Gould’s position, the most recent and comprehensive 
textbook on theories of intelligence, by Nathan Brody (1992), states 

The first systematic theory of intelligence presented by Spearman in 1904 is alive 
and well. At the center of Spearman’s paper of 1904 is a belief that links exist 
between abstract reasoning, basic information-processing abilities, and academic 
performance. Contemporary knowledge is congruent with this belief. Contempo- 
rary psychometric analyses provide clear support for a theory that assigns fluid 
ability, or g, to a singular position at the apex of a hierarchy of abilities. (p. 349) 

The g Factor as a Scientific Construct 
Jensen has commented on Gould’s argument in detail elsewhere (Jensen, 1982), 
noting that Gould’s strawman issue of the reification of g was dealt with satisfac- 
torily by the pioneers of factor analysis, including Spearman (1927) Burt (1940) 
and Thurstone ( 1947). Their views on the reification of g are entirely consistent 
with modern discussions of the issue (Jensen, 1986; Meehl, 1991), in the light of 
which Gould’s reification bugaboo simply evaporates. From Spearman (I 927) to 
Meehl (1991), the consensus of experts is that x need not be a “thing”-a “sin- 

gle, ” “hard, ” “object’‘-for it to be considered a reality in the scientific sense. 
The g factor is a wtzsrrwt. Its status as such is comparable to other constructs in 
science: mass, force, gravitation, potential energy, magnetic field, Mendelian 
genes, and evolution, to name a few. But none of these constructs is a “thing.” 
According to Gould, however, “thingness” seems to be the crucial quality with- 
out which g is, he says, “chimerical,” which is defined by Webster as “existing 
only as the product of unrestrained imagination: unreal.” 

Existence and Reality of g 
Various mental tests measure different abilities, as shown by the fact that, when 
diverse tests are given to a representative sample of the general population, the 
correlations between the tests are considerably less than perfect. Most of the 
correlations are typically between + .20 and + .X0. In batteries of mental tests, 
correlations that are very near zero or even negative can usually be attributed to 
sampling error. The fact that, in large unrestricted samples of the population, the 
correlations are virtually always positive can be interpreted to mean that the tests 
all measure some common source of variance in addition to whatever else they 
may measure. 

This common factor was originally hypothesized by Francis Galton (1869), 
but it was Charles Spearman (1904) who actually discovered its existence and 
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first measured it empirically. He called it the general factor of mental abilities 
and symbolized it as g. Since Spearman’s discovery, hundreds of factor analyses 
of various collections of psychometric tests have yielded a g factor, which, in 
unselected samples, is larger than any other factor (uncorrelated with g) that can 
be extracted from the matrix of test intercorrelations. In terms of factor analysis 
per se, there is no question of the “existence” of x, according to Carroll (1993). 

But a most crucial fact about g that makes it so important is that it also reflects 

a phenomenon outside the realm of psychometric tests and the methodology of 
factor analysis, as demonstrated by the substantial correlations of g with certain 
behavioral and biological variables that are conceptually and methodologically 
external to either psychometric or factor analytic methodologies (Jensen, 1987a, 
1987b). For example, among the various factors in every battery of tests that 
have been examined with respect to external validity, g is by far the largest source 
of practical validity, outweighing all other psychometric factors in predicting the 
outcomes of job training, job performance, and educational achievement 
(Jensen, 1992a, 1993a; Ree & Earles, 1992). 

Also, g is related to reaction times and their intraindividual variability in 
various elementary cognitive tasks (Jensen, 1992b, 1992~). Brain-evoked poten- 
tials are correlated much more with g than with other factors (reviewed in Jensen, 
1987a). The heritability (proportion of genetic variance) of scores on various 
tests is directly related to the tests’ g loadings, and g accounts for most (all, in 
some cases) of the genetic covariance in the matrix of correlations among tests 
(Cardon, Fulker, DeFries, & Plomin, 1992; Humphreys, 1974; Jensen, 1987a; 
Pedersen, Plomin, Nesselroade, & McClearn, 1992). The effects of genetic dom- 
inance, as reflected in the degree of inbreeding depression of scores on subtests 
of the Wechsler Intelligence Scale, involve g much more than the Verbal and 
Performance factors (Jensen, 1983). The complementary phenomenon, namely, 
the effect size of heterosis (outbreeding) on test scores, is related to the tests’ x 
loadings (Nagoshi & Johnson, 1986). Hence, there can now be little doubt that g 
is a solid scientific construct, broadly related to not only psychometric variables 
but also real-life behavior, as well as to electrophysiological indices of brain 
activity and to genetic phenomena. 

Stability of g Loadings Across Different Test Batteries 
Various tests, when factor analyzed together, typically differ from one another in 
their g loadings. We can ask: To what extent is any particular test’s g loading a 
function of the particular mix of other tests included in the factor analysis? If g 
were really chimerical or capricious, we might expect a test’s g loading to be 
wildly erratic from one factor analysis to another, showing a relatively high load- 
ing when factor analyzed among one set of tests and a relatively low loading 
when analyzed in a different set, even though the method of factor analysis and 
the subject sample remained constant. 

Although this question can be approached theoretically in terms of certain 
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assumptions about the nature, number, and diversity of the tests that are factor 
analyzed, it has not yet been subjected to extensive empirical investigation. The 
largest empirical study to date was conducted by the late Robert L. Thorndike 
( 1987). He began with 65 highly diverse tests used by the U.S. Air Force. Forty- 
eight of the tests were selected to form six nonoverlapping batteries, each com- 
posed of eight randomly selected tests. Each of the 17 remaining “probe” tests 
was inserted, one at a time, into each of the six batteries. Each battery, therefore, 
was factor analyzed 17 times, each time containing a different probe test. (The g 
was extracted as the first principal factor.) The six g loadings obtained for each of 
the 17 probe tests were then compared with one another. Although there was 
considerable variation among the g loadings of the 17 probe tests, their g load- 
ings were highly similar across the six different batteries: The average correlation 
of the probe tests’ g loadings across the six batteries was .85. (The stability of g 
loadings would inevitably increase as the number and diversity of the tests in 
each battery increased.) In brief, the tests maintained approximately the same g 
loadings when factor analyzed among different random sets of diverse tests. 

EXTRACTION OF g BY DIFFERENT TYPES OF ANALYSIS 

There seems little question that g is a valid construct and is of great interest and 
importance in differential psychology. But there is the problem that several differ- 
ent types, models, or methods of factor analysis are widely used in contemporary 
research. The central question to be addressed here concerns the choice of meth- 
od for best representing the general factor, or g, in a correlation matrix (hence- 
forth abbreviated as R-matrix) of mental tests. How much does g vary across 
different methods of factor analysis? Do some methods represent g better than 
others? If different methods applied to the same data yield different gs, which g is 
the “good” g? One might even ask whether these questions can be given theoreti- 
cally and empirically coherent answers. 

First, however, one might ask why psychometricians and researchers on hu- 
man mental abilities should be concerned with the choice of methods for estimat- 
ing the g factor in a given battery of tests. There are at least four main reasons 
why one might want a good g. 

I. One might wish to select from among a large battery of diverse tests some 
much smaller number of tests that have the largest g loadings. The compos- 
ite score from these g-selected tests would, of course, provide a better esti- 
mate of g than some randomly or subjectively chosen subset of the entire 
battery, provided, of course, that the g-selected tests are also sufficiently 
varied in their loadings on other, group, factors besides g, such that loadings 
on the different orthogonal (i.e., uncorrelated) group factors are approx- 
imately balanced, thereby tending to “cancel” one another in the composite 
score. 
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2. One may wish to obtain g-factor scores of individuals, a factor score being a 
weighted linear combination of the person’s z scores on a number of tests 
that maximizes the composite scores’ correlation with the g factor and mini- 
mizes its correlation with other factors. Methods for estimating factor scores 
are explicated by Harman ( 1976, chap. 16). 

3. One might want to follow Spearman, who originally gained some insight 
into the psychological nature of g by rank-ordering various tests in terms of 
their g loadings and analyzing the characteristics of the tests in terms of this 
ordering (Spearman & Jones, 1950). The method is still used, for example, 
to infer the specific characteristics of various experimental cognitive tasks 
that make them more or less g loaded, by decomposing their total variance in 
a factor analysis that includes a battery of typical g-loaded psychometric 
tests (e.g., Carroll, 1991, Table 6). 

4. One may correlate the column vector of g loadings of a number of tests with 
a parallel column vector of the same tests’ correlations with some external 
variable, to determine whether the external variable involves g, as distinct 
from other factors. The method has been used, for example, to test whether 
the lowering of test scores by the genetic phenomenon of inbreeding depres- 
sion is the result of its effect on g or on other factors (Jensen, 1983). The 
method has also been used to study the highly variable size of the average 
black-white difference across various tests (e.g., Jensen, 1985, 1993b; 
Naglieri & Jensen, 1987). This technique, which might be termed the met/z- 
od of correlated vectors, is analytically more powerful than merely correlat- 
ing the measures of some external variable with g-factor scores, because the 
vector of correlations (each corrected for attenuation) of a number of differ- 
ent tests with the external variable must necessarily involve a particular fac- 
tor, for example g, if the vector of the tests’ loadings on the factor in 
question is significantly correlated with the vector of the tests’ correlations 
with the external variable. The method may be applied, of course, to investi- 
gating whether g (or any other factor) is related to any given external vari- 
able. The method, however, is quite sensitive to the rank order of tests’ 
factor loadings and, therefore, may give inconsistent results for different 
methods of factor analysis if the rank order of the tests’ loadings on the 
factor of interest is much affected by the type of factor analysis used. 

Some Basic Definitions 
Our present purpose is not to discuss theoretical notions about the nature of g, 
that is, its causal processes, but to consider g only from the standpoint of factor 
analysis per se. Several points are called for: 

1. Not all general factors are g. For instance, there is a very large general 
factor in various measures of body size (height, weight, leg length, arm length, 
head circumference, etc.), but this general factor is obviously not g. The g factor 
applies only to measures of mental ability, objectively defined. 
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An ubility is identified by some particular conscious, voluntary behavioral act 
that can be objectively assessed as meeting (or failing to meet) some clearly 
defined standard. An ability is considered a mentul ability if individual differ- 
ences in sensory acuity and physical strength or agility constitute a negligible 
part of its total variance in the general population. 

2. The general factor of just uny set of mental tests is not necessarily g, 
although it will necessarily contain some x variance. The factor analytic identi- 
fication of g requires that the set of tests be diverse with respect to type of 
information content (verbal, numerical, spatial, etc.), mode of stimulus input 
(visual, aural, tactual, etc.), and mode of response (verbal, spoken, written, 
manual performance, etc.). Regardless of the method of factor analysis, the 
“goodness” of the g extracted from a set of tests administered to a representative 
sample of the general population is a monotonic function of the (a) number of 
tests, (b) test reliability, (c) number of different mental abilities represented by 
the various tests, and (d) degree to which the different types of tests are equally 
represented in the set. These criteria can be approximated preliminary to per- 
forming a factor analysis. 

The g factor varies across different sets of tests to the extent that the sets 
depart from these criteria. Just as there is sampling error with respect to statistical 
parameters, there is psychometric sampling error with respect to g, because the 
universe of all possible mental tests is not perfectly sampled by any limited set of 
tests. If consistently good g “marker” tests, such as Raven’s Progressive Ma- 
trices, have been previously well established in many factor analyses that ob- 
served these rules, then, of course, it is an efficiently informative procedure to 
include such tests as g markers in the analysis of a set of new tests whose factori- 
al composition is yet unknown. The above rules for identifying g originally can 
then be somewhat relaxed in determining the x loadings of new tests. 

The fact that increasing the number of tests in a set causes nonoverlapping sets 
of diverse tests to show increasingly similar and converging g factors suggests 
that the obtained g factors are estimates or approximations of a “true” g, in the 
sense that, in classical test theory, obtained scores are estimates of true scores. 
Under the necessary assumption that R was extracted from a limited but random 
sample of the universe of all mental tests, the correlation between the obtained g 
(x,) and the true g (R,) is given by the formula proposed by Kaiser and Caffrey 
( 1965) also explicated by Harman (1976, pp. 230-23 I): 

where n is the number of tests and A is the eigenvalue of the first principal 
component of the R-matrix. The formula has no practical utility, however, unless 
a universe of tests can be precisely specified and randomly sampled. But it is 
theoretically useful for showing that the reliability or generalizability of g is 
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related both to the number of tests in the factor analysis and to the eigenvalue of 
the first principal component of the R-matrix, which is intimately related to the 
average correlation among the tests. Kaiser (1968) has shown that the best esti- 
mate of the average correlation (i) in a matrix is (with n and A as defined above): 

,-h-1 
n- 1. 

3. “Spearman’s g” and “psychometric g” are both terms used in the literature, 
often synonymously. But a distinction should be noted. Spearman’s g is correctly 
associated only with his famous two-factor theory, whereby each mental test 
measures only g plus some test-specific factors (and measurement error). Spear- 
man’s method of factor analysis, which is seldom if ever used today, can properly 
extract g only from an R-matrix of unit rank, that is, a matrix having only one 
common factor. Such a matrix meets, within the limits of sampling error, Spear- 
man’s criterion of vanishing tetrad differences. This tests whether the R-matrix 
has only one common factor. Proper use of Spearman’s particular method of 
factor analysis must eliminate any tests that violate the tetrad criterion before 
extracting g (Spearman, 1927, App.). If Spearman’s method of factor analysis is 
applied to any matrix of rank > 1 (i.e., more than one common factor), the 
various tests’ g loadings are contaminated and distorted to some degree. And 
Thurstone ( 1947, pp. 279-28 1) has clearly shown that no group factors can 
properly be extracted from the residual matrix that remains after extracting g 
from an R-matrix of rank > 1 by Spearman’s method. Therefore, it is best that 
the term “Spearman’s g” be used only to refer to a general factor extracted by 
Spearman’s method from an R-matrix of unit rank. A g factor extracted from an 
R-matrix with rank > 1, by any method of multiple factor analysis, is best called 
“psychometric g.” We will refer to it henceforth simply as g, without the 
adjective. 

4. Orthogonal rotation of multiple factors, or the transformation of factors 
(rotation of factor axes), keeping them orthogonal (uncorrelated first-order fac- 
tors), is an absolutely inappropriate factor analytic procedure in the ability do- 
main, except possibly when used as a stepping-stone to an oblique rotation (i.e., 
correlated first-order factors such as promax). Yet one commonly sees orthogo- 
nalized rotations used in many factor analyses of mental tests, usually by means 
of Kaiser’s (1958) varimux, a widely available computerized analytic method for 
orthogonal rotation of factors. It is the most overly used and inappropriately used 
method in the history of factor analytic research. Varimax accomplishes remark- 
ably well its explicit purpose, which is to approximate Thurstone’s criterion of 
simple structure as nearly as the data will allow, while maintaining perfectly 
orthogonal factors. But in order to do so, varimax necessarily obliterates the 
general factor of the matrix. In fact, varimax (or any other method of orthogonal 
rotation of the first-order factors, except Comrey’s Tandem I criterion (Comrey, 
1973, p. 185) mathematically precludes a g factor. If there is, in fact, a general 
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factor in the R-matrix, as there normally is for ability tests, varimax scatters all of 
the g variance among the orthogonally rotated factors, and hence no R factor can 
appear in its own right. When the g variance is large, as it usually is in mental 
tests, varimax “tries” to yield simple structure but conspicuously fails. That is, 
on each of the first-order factors, many of the loadings that should be near-zero 
under the simple-structure criterion are inflated by the bits of g that are scattered 
about in the factor matrix. When there is, in fact, a general factor in the correla- 
tion matrix, simple structure can be closely approximated only by oblique rota- 
tion, whereby the g variance goes into the correlations between the factors. A 
higher order, or hierarchical, g can then be extracted by factor analyzing the 
correlations among the oblique factors. 

5. Theoretically, all g loadings are necessarily positive. Any negative loading 
is either a statistical fluke or a failure to reflect a variable (e.g., number of errors) 
so that superior performance is represented by higher scores (e.g., number 
correct). 

Major Methods for Extracting g 
Several different methods for representing the general factor of an R matrix are 
seen in the modern psychometric literature. (All except the LISREL model are 
explicated in modem textbooks on factor analysis, e.g., Harman, 1976.) Each 
has certain advantages and disadvantages with respect to representing g. The 
methods mentioned next are listed in order of the number of decisions that de- 
pend upon the analyst’s judgment, from least (principal-components analysis) to 
most (hierarchical analysis). All these methods are called “exploratory factor 
analysis” (EFA), except LISREL. Although LISREL is usually used for “con- 
firmatory factor analysis” (CFA), to statistically test (or “confirm”) the goodness- 
of-fit of a particular hypothesized factor model to the data, it can also be used as 
an exploratory technique. 

Principal Components. Principal components (PC) analysis is a straightfor- 
ward mathematical method that gives a unique solution, requiring no decisions 
by the analyst. The procedure begins with unities (i.e., the standardized total 
variance of each variable) in the leading diagonal of the R-matrix. It has the 
advantages that (a) it calls for no decisions by the analyst, and (b) the calculation 
of the first principal component (PC I), which is often interpreted as x, does not 
depend on the estimated number of common factors in the matrix or the esti- 
mated communalities of the variables. Although the PC1 has often been used to 
represent g, it has three notable disadvantages when used for this purpose. 

1. Not the common factor variance alone, but the total variance (composed of 
common factor variance plus uniqueness) of the variables in the R-matrix, is 
included in the extracted components. The unwanted unique variance is 
scattered throughout all the components, including PC1 This unique vari- 
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ante, which is not common to any two variables in the matrix, adds, in 
effect, a certain amount of “error” (or nonfactor) variance to the loadings of 

each component, including the PC1 , or g. 
2. Because of this, the proportion of the total variance in all of the variables 

that is accounted for by PC1 can considerably overestimate g. 
3. But by far the most serious objection to PC analysis, from the standpoint of 

estimating g, is that every variable in the matrix can have a substantial posi- 
tive loading on PC 1, even when there is absolutely no general factor in the R 
matrix, in which case the g as represented by PC1 is, of course, purely a 
methodological artifact.’ One can create an artificial R-matrix such that it 
has absolutely no general factor (i.e., zero correlations among many of the 
variables), and PC analysis will yield a substantial PC 1. However, if there is 
actually a general factor and it accounts for a large proportion of the variance 
in the matrix, PC1 usually represents it with fair accuracy, except for the 
reservations listed in Points 1 and 2. The reason is that PC analysis is really 
not formulated to reveal common factors. Rather, the column vector of PC 1 
(i.e., the loadings of the variables on PC 1) can be properly described as the 
vector of weights that maximizes the sample variance (individual differ- 
ences) of a linear (additive) composite of all of the variables’ standardized 
(z) scores. This unique property of PC 1 does not necessarily insure that PC 1 
represents a general factor. All told, there seems little justification for using 
PC1 as a measure of g. Certainly it cannot be used to prove the existence of 
g in a given R-matrix. 

Principal Factors (PF). PF analysis is one form of common factor analysis, 

in the sense that, ideally, it analyzes only the variance attributable to common 
factors among the variables in the R-matrix. The procedure requires initial esti- 
mates of the variables’ communalities (h2) in the leading diagonal of the R- 
matrix. (Such a matrix is termed a reduced R-matrix.) The most commonly used 
initial estimates of the h2 values are the squared multiple correlations (SMCs) 
between each variable and all of the remaining variables. The initial estimates of 
h2 can be fine-tuned closer to the optimal values by iteration of the PF analysis, 
by entering the improved estimates of the communalities derived from each re- 
factoring, until the h2 values stabilize within some specified limit. Communality 
estimation based on iteration also depends on determining the number of factors 
in the matrix, for which there are several possible decision rules, the most popu- 
lar being the number of eigenvalues > 1 in the R-matrix. This procedure, how- 

‘The error of interpreting PC1 as a general factor even when there are nonsignificant correlations 

between some variables that have substantial loadings on PC1 has probably been a rather common 
occurrence in studies of the relation between individual differences in performance on elementary 

cognitive tasks and psychometric R. J.B. Carroll has pointed out a clear example of this error in an 

article by Jensen (1979). 
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ever, tends to overestimate the number of factors, at least when the correlations 
among variables are generally quite small (Lee & Comrey, 1979) but at times it 
underestimates the number of factors, particularly if the factors are correlated. 
(Critiques of the eigenvalues > 1 criterion and suggested alternative solutions are 
offered by Carroll, 1993, pp. 83#:, Cliff, 1988, 1992, and Tzeng, 1992.) 

Thus, two kinds of decisions in PF analysis are up to the individual analyst: 
the methods for determining the number of factors and for estimating commu- 
nalities. Unlike PC analysis, which is a purely mathematical procedure with no 
decisions to be made by the analyst, PF analysis involves some subjective judg- 
ment. Of course, PF analyses by different analysts will give identical solutions to 
a given R-matrix if they both follow the same decision rules. If they follow 
different rules, however, there is generally less effect on the first principal factor 
(PFI) than on any other features of the solution. And if, indeed, a general factor 
exists in the R-matrix, a PFI is a better estimate of it than a PC1 , because PFl 
represents only common factor variance, whereas the PC1 loadings are some- 
what inflated by unwanted variance that is unique to each variable. 

But PF analysis has exactly the same major disadvantage as PC analysis: Even 
when there is absolutely no general factor in the R-matrix, the PFI can have all 
the appearance of a large general factor, with substantial positive loadings on 
every variable. Thus PFl is not necessarily g, but it is defined essentially as the 
vector of weights (derived from the reduced R-matrix) that maximizes the vari- 
ance of a linear composite of the variables’ z scores. However, if a true x exists 
and accounts for a substantial proportion of the variance in the R-matrix, PFI 
typically represents it with fair accuracy, but only if there is good psychometric 
sampling, that is, sufficient diversity in the types of tests included in the analysis. 
To the extent that tests of certain primary abilities are over-represented relative to 
others, PFI will not properly represent g, because it will contain variance con- 
tributed by the overrepresented group factors in addition to x. 

It should be noted also that both PC1 and PFI are more sensitive than some 
other methods (e.g., hierarchical factor analysis) to what we have termed psy- 
chomefric sampling error. That is, the variables in the R-matrix may be a strong- 
ly biased selection of tests, such that some non-g factor is overrepresented. As 
Lloyd Humphreys (1989) has nicely stated, ‘*Over-sampling of the tests defining 
one of the positively intercorrelated group factors biases the first factor [PFl] or 
component [PCI] in the direction of the over-sampled factor” (p. 320). For in- 
stance, if the R-matrix contained three verbal tests, three spatial tests, and a 
dozen memory tests, the PC 1 and PFl could possibly represent as much a memo- 
ry factor as the x factor or at least be an amalgam of both factors. One of the 
advantages of a hierarchical factor analysis is that its g is less sensitive to such 
“psychometric sampling error” than is either PC 1 or PFl , because a hierarchical 
g is not derived directly from the correlations among tests but from the correla- 
tions among the first-order, or group, factors, each of which may be derived from 
differing numbers of tests (> 2). 
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Hierarchical Factor Analysis. The highest order common factor derived 
from the correlations among lower order (oblique) factors in an R-matrix of men- 
tal tests is an estimate of g. The first-order factors are usually obtained by PF 
analysis (although PC is sometimes used), followed by some method of oblique 
rotation (transformation) of the factor axes, which determines the correlations 
among them. Hierarchical factors can be thought of in terms of their level of 
generality. Each of the first-order factors (also called primary or group factors) is 
common to only a few of the tests; a higher order factor is common to two or 
more of the first-order factors and, ipso facto, to all of the tests in which they are 
loaded. The g factor, at the apex of the hierarchy, is typically a second-order 
factor, but it may emerge as a third-order factor when a great many diverse tests 
are analyzed (e.g., Gustafsson, 1988). The g is common to all of the factors 
below it in the hierarchy and to all of the tests. A hierarchical analysis assumes 
the same rank of the R-matrix as a PF analysis. That is, it does not attempt to 
extract more factors than properly allowed by the rank of the matrix; it simply 
divides up the existing common factor variance in terms of factors with differing 
generality. The total variance accounted for by a PF analysis and a hierarchical 
analysis is exactly the same. 

Hierarchical analysis involves the same decisions by the analyst as PF analysis 
and, in addition, a decision about the method of oblique rotation, of which there 
are several options, aimed at optimal approximation to Thurstone’s criteria of 
“simple structure” (Harman, 1976, chap. 14). 

A hierarchical analysis can be orthogonalized by the Schmid-Leiman proce- 
dure (Schmid & Leiman, 19.57), which makes all the factors orthogonal (i.e., 
uncorrelated) to one another, both between and within levels of the hierarchy. 
This generally yields a very neat structure. In recent years, it has become probably 
the most popular method of exploratory factor analysis in the abilities domain. 
Wherry ( 1959) has provided a mathematically equivalent, but conceptually more 
complex, procedure that yields exactly the Schmid-Leiman solution, without 
need for oblique rotation. 

LISREL Methods of Factor Analysis. Linear Structural Relations (LISREL) 
is a highly flexible set of computer algorithms for performing confirmatory factor 
analysis (as well as other kinds of analyses of covariance structures) based on 
maximum likelihood (ML) estimation (Jbreskog & Sorbom, 1988). (Bentler, 
1989, provided a computer program, EQS, that serves the same purpose but is 
more user friendly for those not versed in the matrix algebra needed for model 
specification in LISREL.) The essential purpose of confirmatory factor analysis 
is to evaluate the goodness of fit of a hypothesized factor model to the data. A 
specific model, or factor structure, is hypothesized, based on theoretical consid- 
erations or on prior exploratory factor analysis of the set of tests in question. The 
model is specified in LISREL (or Bentler’s EQS). From the empirical data (R- 
matrix), the computer program simultaneously calculates ML estimates of all the 
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free parameters of the model consistent with the specified constraints. It also 
calculates an index of goodness-of-fit of the model to the data. If the fit is 
deemed unsatisfactory, the model is revamped and tested again against the data, 
to obtain a better fit, if possible. But a satisfactory fit to any reasonably parsi- 
monious model is not always possible. 

The flexibility of the LISREL program allows it to simulate the distinctive 
results of virtually every type of factor analysis, provided the model is properly 
specified; hence it can be used to test the goodness-of-fit of factor models derived 
by any standard method of factor analysis including those previously described. 
Also, prior estimates of communalities are not required; they emerge from the 
LISREL analysis, but the accuracy of the calculated h’ values depends on how 
correctly the factor model has been specified. 

Also, prior estimates of commuralities are not required; they emerge from the 
LISREL analysis, but the accuracy of the calculated h2 values depends on how 
correctly the factor model has been specified. 

Typical Factor Models 
Diagrams of some of the main types of factor models that have figured in x 
theory will help to elucidate our subsequent discussion. Each model needs only a 
brief comment at this point. 

Model S. Figure 1 shows the model of Spearman’s 2-factor theory, in which 
each variable (V), or test, measures only x and a component specific (s) to that 
variable. In addition to s, each variable contains a component resulting from 
random measurement error (e). The sum of their variances, s2 + e2, constitutes 
the variable’s utziquenes.~ (G), that is, the proportion of its total variance that is 
not common to any other variable in the analysis. The correlation between the 
unique element and V is the square root of V’s uniqueness, or II. This is the 
simplest of all factor models, but it is appropriate only for correlation matrices 
that contain only a single common factor. As other common factors besides x are 
usually present in any sizable battery of diverse tests, Model S (for Spearman) 
does not warrant further detailed discussion. 

Model T. Figure 2 shows the idealized case of Thurstone’s multiple-factor 
model, with perfect simple structure. The criterion of simple structure is that 
each of the different group factors (FI , F2, etc.) is significantly loaded in only 
certain groups of tests, and there is no general factor. In reality, simple structure 
allows each variable to have a large, or salient, loading on one factor and rela- 
tively small or nonsignificant loadings on all other factors. (This could be repre- 
sented in Figure 2 by faint or dashed arrows from Fl to each of the variables 
besides Vl to V3, and similarly for F2 and F3.) Kaiser’s varimax rotation of the 
principal factors (or principal components) is a suitable procedure for this model. 
However, the model is appropriate only when there is no general factor, only a 
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~1 u2 u3 u4 u5 u6 u7 u6 u9 

Figure 1. Model S. The simplest possible factor model: A single general factor. originally proposed 

by Spearman as a two-jhctw model, the two factors being the general factor (g) common to all of the 

variables (V) and the “factors” specific to each variable, termed specificifv (s). Each variable’s 

w~iqueness (u) comprises 5 and measurement error. 

number of nonsignificantly correlated group factors. Model T mathematically 
excludes a g factor, even when a large g is present in the data. A good approx- 
imation to simple structure, which is necessary to justify the model, cannot be 
achieved by varimax when g is present. Therefore, Model T is not considered 
further. It has proved wholly inappropriate in the abilities domain. The same is 
true for any set of variables in which there is a significant general factor. In such 
cases, to perform orthogonal rotation, such as varimax, as some analysts have 
done in the past, and then to argue on this basis that there is no g factor in the 
battery of tests is an egregious error. 

Model A. An ideal hierarchical model is shown in Figure 3. The numerical 
values shown on the paths connecting the factors and variables in Model A are 

ul u2 u3 u4 u5 u8 u7 u8 u9 
Figure 2. Model 7: A multiple-factor model with three independent group factors (Fl, F2, F3), 

without a ,q factor common to all of the variables, originally proposed by Thurstone. 
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ul u2 u3 u4 u5 u6 u7 u8 u9 

Figure 3. Model A. A hirrarchid model, in which the first-order, or RKXL~, factors (F) are corre- 

lated, giving rise to a second-order factor g. Variables (V) are correlated with g only via their correia- 

tion with the three first-order factors. (The particular correlation coefficients attached to each of the 

paths were used to generate the correlation matrix in Table I .) 

the linear correlations between these elements. Note that each variable (V) is 
loaded on only one factor (F). Note also that, in a true hierarchical model, the R 
loading of each variable depends on the variable’s loadings on the first-order 
factor (e.g., Fl) and on the factor’s loading on g. For example, the g loading of 
V 1 is .8 X .9 = .72. One can also residualize the variables’ loadings on the first- 
order factors; that is, the K is partialed out of F, leaving the variable’s residu- 
alized loading on F independent of g. The residualized loading is (1 - g* - 
u*)l/*, where g is the variable’s x loading of V I on Fl is [ 1 - (.72)* - (.6)*]‘/* = 
.3487. The result of this procedure, carried out on all the variables, is known as 
the Schmid-Leiman ( 1957) orthogonalization of the factor hierarchy. It leaves all 
the factors orthogonal to one another, between and within every level of the 
hierarchy. 

Model B. This might be called a mixed hierarchy. As shown in Figure 4, 
some of the variables are loaded on more than one of the group factors. This can 
happen when a test reflects two (or more) distinct factors, such as a problem that 
involves both verbal comprehension and numerical ability. In this case, the cor- 
relation between a compound variable and g has more than one path through the 
group factors. For example, in Figure 4, the g loading of Vl depends on the 
correlations represented by the sum of the two paths g + Fl -+ V 1 and g + F3 
--$ VI. An important question is whether this complication seriously affects the 
estimate of g when it is extracted by the usual methods. All of the factors in 
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ul u2 u3 u4 u5 u6 u7 u6 u9 

Figure 4. Model B. A hierarchical model, as in Model A. but one in which most of the variables (V) 

are factorially complex, each being loaded on two (or more) of the three group factors (F). 

Model B can be orthogonalized by the Schmid-Leiman transformation, as in 
Model A. 

Model C. Shown in Figure 5 is essentially what Holzinger and Swineford 
(1937) called the bi-jiicfor model. Note that it is not a hierarchical model, be- 
cause g (which is necessarily loaded in all of the variables) does not depend on 
the variables’ loadings on the group factors. (While the correlation matrices cor- 
responding to Models A and B, as depicted in Figures 3 and 4, are of rank 3, the 

ul u2 u3 u4 u5 u6 u7 u6 u9 

Figure 5. Model C. A &j&for model, originally proposed by Holzinger, in which each variable (V) 

is loaded on one of the three group factors (F) and is also loaded on g, but the variables’ R loadings are 

not constrained by their loadings on the group factors (as in the case of Models B and C). Variables’ 
correlations with F and with g are independent of one another. 
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correlation matrix corresponding to Model C is of rank 4.) First, g is extracted 
from the original correlation matrix in such a way as to preserve positive mani- 
fold (i.e., all positive coefficients) in the residual matrix; and then, from the 
residual matrix, the group factors are extracted in an orthogonalized fashion. 
(The computational procedure is well described in Harman, 1976, but this model 
is now most easily solved with LISREL or Bentler’s EQS, but only if one can 
determine the factor pattern by inspecting the R-matrix or by a prior EFA to 
determine which loadings are to be constrained to zero.) 

Model LI. Not shown here, this is the same as Model C, except that some of 
the variables are loaded on more than one group factor, as in Model B. Again, 
one wonders how this complication might affect the g extracted by the bi-factor 
method. 

Agreement Between True g and Estimated g 
Our aims here are as follows: 

1. To create four artificial, but fairly typical, correlation matrices derived from 
Models A, B, C, and D with specified parameters in each model. Hence, we 
know exactly the true g loadings of each variable. It could be argued that if 
we created a variety of sufficiently atypical correlation matrices, their g 
factors might be a good deal less similar to one another than is typically 
found for mental test data. But every form of measurement in science neces- 
sarily has certain boundary conditions, and to go beyond them has little 
theoretical relevance. As we will later show, certain matrices can be simu- 
lated even in such a way that no g factor can properly be extracted. But, 
unless one can demonstrate the existence of such grossly atypical matrices in 
the realm of mental tests, they are hardly relevant to our inquiry. 

2. To factor analyze each of these artificial matrices by each of six different 
methods that are commonly used for extracting g. 

3. To look at the degree of agreement between the known true g and the estimated 
x by calculating both the Pearson correlation and the congruence coefficient2 
between the column vector of true g loadings and the corresponding vector of 
estimated g loadings. 

‘The congruence coefficient, with a range of possible values from ~ I to + I, is a measure of 

factor similarity (Harman, 1976, p. 344). Theoretically, the congruence coetkicnt closely approxi- 
mates the Pearson correlation between g factor scores (see Gorsuch, 19X3, p. 285), but empirically 

the congruence coefficient, on average, probably overestimates slightly the correlation between the 

factor scores. At least. in a large-scale study of the stability of 8 across different methods of estima- 
tion (Ree & Earles, 199 I), a comparkon of 91 congruence coefficients and the corresponding correla- 

tions between factor scores showed a mean difference of .013 (i.e.. ,997 ~ ,984). 
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The entire procedure is here illustrated only for Model A; the same procedure 

was applied to all the other models, but, to conserve space, only the third step is 
shown for them. 

Table 1 is the correlation matrix generated from the numerical values shown 
for Model A in Figure 3.3 The true factor structure and true values of all the 
factor loadings and other parameters are shown in Table 2. Model A and each of 
the other models are treated the same way. Table 3 shows the correlations and 
congruence coefficients between the vector of true g loadings and the corre- 
sponding estimated g loadings obtained by six different methods, which are la- 
beled as follows: 

SL:PF(SMC). Schmid-Leiman (SL) orthogonalized hierarchical factor analy- 
sis, starting with a principal factor (PF) analysis with squared multiple cor- 
relations (SMC) as estimates of the communalities in the leading diagonal 
(not iterated). 
SL:IPF. Same as the first method, but with the PF analysis iterated (I) to 
obtain more accurate estimates of the communalities. 
CFA:HO. Confirmatory factor analysis (CFA), based on maximum likeli- 
hood (ML) estimation, using the LISREL program and specifying a hierarchi- 
cal (H), orthogonalized (0) model. 
CFA:g + 3F. CFA as in the previous method, using LISREL, and specifying 
Holzinger’s bi-factor model (Model C in Figure 5). 
Tandem I. Comrey’s (1967) Tandem I method of factor rotation for extract- 
ing g, a method so devised as not to extract a g unless there is truly a general 
factor in the matrix, by the criterion that any two variables positively corre- 
lated with one another must be loaded on the same factor. 
PF(SMC). g is represented by the first (unrotated) principal factor from a PF 
analysis with squared multiple correlations (SMC) in the leading diagonal 
(not iterated). This is the simplest and most frequently used method for esti- 
mating g, but, as noted previously, it runs the risk of spuriously showing a g 
when there really is no g in the matrix. All the other methods listed here 
cannot extract a g factor unless it actually exists in the correlation matrix. 

The most salient feature of Table 3 is the overall high degree of agreement 
between true g and estimated g. The overall average correlation and congruence 

3The method for calculating the zero-order correlations between variables (i.e., the R-matrix) 
from the values shown in Model A (in Figure 2) is most simply explained in terms of path analysis, 

where the given values are the path coefficients between the observed variables (VI, V2, etc.) and the 

latent variables, or factors (FI, F2, F3, and g). The correlation between any two variables, then, is 

the product of the path coefficients connecting the two variables. For example, the correlation be- 

tween VI and V2 is .8 X .7 = .56, and the correlation between VI and V7 is .8 X .9 X .7 x .6 = 
.3024. 
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TABLE 1 

Correlation Matrix Derived From Model A 

VI v2 v3 V4 V5 V6 v7 V8 v9 

Vl 

v2 

V3 

V4 

v5 

V6 

Vl 

V8 

v9 

5600 

4800 

4032 

3456 

2880 

3024 

2520 

2016 

5600 4800 

4200 

4200 

3528 3024 

3024 2592 

2520 2160 

2646 2268 

2205 1890 

I764 1512 

4032 

3528 
3024 

4200 
3500 
2352 

I960 
1568 

3456 
3024 
2592 
4200 

3000 

2016 

1680 

1344 

2880 

2520 
2160 
3500 
3000 

1680 

1400 

1120 

3024 

2646 
2268 
2352 
2016 
1680 

3000 
2400 

2520 

2205 
I890 
1960 

1680 
1400 

3000 

2016 

1764 

1512 
1568 

1344 
1120 
2400 

2000 

Nore. Decimals omitted 

coefficients are ,943 and ,998, respectively. It is also apparent that the various 
methods of analysis yield more or less accurate estimates, depending on how 
well a given method matches a particular model. Three of the methods, for ex- 
ample, estimate the x in Model A with perfect accuracy, but these same methods 
are less accurate than certain others for Model B (a “mixed” hierarchy). Judging 
from the row means in Table 3, the PF(SMC) shows the best overall agreement 
between true and estimated g, having the highest mean correlation (.966) and 
highest mean congruence coefficient (.998) and the smallest standard deviations 
for both. If PF(SMC) had been iterated to obtain more accurate communalities, it 
probably would have averaged even higher agreement with true g. (However, 

TABLE 2 

Orthogonalized Hierarchical Factor Matrix for Model A 

Factor Loadings 

Variable 

2nd Order 1st Order Communality Uniqueness 

g Fl F2 F3 hZ uz 

VI .72 .3487 0 0 .64 .36 

V2 .63 .3051 0 0 .49 .51 

v3 .54 .2615 0 0 .36 .64 

v4 .56 0 .42 0 .49 .51 

v5 .4x 0 .36 0 .36 .64 

V6 .40 0 .30 0 .25 .75 

VI .42 0 0 .4284 .36 .64 

V8 .35 0 0 .3570 .25 .75 

v9 .28 0 0 .2856 .I6 .X4 

Var. 2.2882 ,283 ,396 .3925 3.36 5.64 
%a Var. 25.42 3.15 4.40 4.36 37.33 62.67 
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TABLE 3 

Correlations and Congruence Coeffkients Between True g Loadings in Four Different 
Models and g Loadings Obtained by Four Different Analytic Methods 

Model 

Method A B C D M SD 

SL:PF(SMC) 

SL:IPF 

CFA:HO 

CFA:g + 3F 

Tandem I 

PF(SMC) 

.9990 
(.9996) 
I 0000 

(I .OOOO) 
I 0000 

( I .OOOO) 
I .oooo 

( I 0000) 

.9977 

(.9996) 

.9979 

(.9995) 

.7780 

(.9958) 

.7823 

(.9953) 

.7649 
(.9952) 

.7959 

(.9957) 

.8307 

(.9969) 

.9055 

(.9978) 

.9971 

(.9989) 

.9979 

(.9990) 

.9914 

(.9984) 

I .oooo 
( I 0000) 

.9740 

(.9983) 

.9870 

(.9987) 

.9705 

(.9965) 

.9641 

(.9964) 

.9730 
(.9968) 

.9X52 

(.9984) 

.9578 

(.9960) 

,973 I 
(.9966) 

.9361 

( .9977) 

.9360 

(.9969) 

.9323 

(.9976) 

.9452 

(.9985) 

.9408 

(.9976) 

.9658 

(.9981) 

.I062 

(.0018) 

.I038 

(.0019) 

.I 121 

(.0020) 

.0997 

(.0020) 

.0752 

(.0016) 

.0414 

(.0012) 

Note. Congruence coefficients in parentheses 

only when the correlation matrix clearly shows positive manifold is PF analysis 
warranted for estimating g.) Except for Model B, some of the other methods 
yield more accurate estimates than PF(MSC). But there is actually little basis for 
choosing among the various methods applied here, at least in the case of these 
particular artificial correlation matrices. With few exceptions, the estimated ,g 
loadings are quite close approximations to the true values. 

Another way of evaluating the similarity between the true and the estimated 
values of the R loadings is by the average deviation of the estimated values from 
the true values. This is best represented by the root mean square error (i.e., 
deviation), as shown in Table 4. It can be seen that all methods yield very small 
errors of estimation of the true g factor loadings, the overall mean error being 
only .047. By this criterion, the best showing is made by method CFA:g + 3F. 

As explained previously, Spearman’s method of extracting g is theoretically 
appropriate only for a matrix of unit rank. To determine how seriously in error 
Spearman’s method would be when applied to a matrix with rank > 1, the matrix 
in Table 1 (with rank = 3) was analyzed by Spearman’s method (1927, App., 
Formula 2 1, p. xvi). The correlation and congruence coefficients between Spear- 
man’s g and the true g are ,996 and ,999, respectively. The root mean square 
error of the factor loadings is .032. Clearly, Spearman’s method does not neces- 
sarily lead to gross error when applied to a correlation matrix of rank > 1. 

Percentage of Total Variance Accounted for by g. How much does each of 
these methods of factor analysis, including the first principal component (PCI), 
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TABLE 4 
Root Mean Square Error of g Loadings Obtained by Six Analytic Methods in Four Models 

Model 

Method A B C D M SD 

SL:PF(SMC) .0158 .0658 
SL:IPF .0005 .0737 
CFA:HO 0 .0749 
CFA:c: + 3F 0 .0723 
nndem I .0348 .I050 
PF(SMC) .0267 .0967 

M .0130 .0814 

a.SD of all values in the 6 X 4 matrix. 

.0289 .0604 .0427 .0242 

.0262 .0633 .0409 .0338 

.0333 .0640 .0430 .0336 
0 .0511 .0308 .0366 

.0479 .0813 .0672 .0318 

.039 I .0729 .0588 .0318 

.0292 .0655 .0472 .0311d 

the iterated first principal factor (IPF), and Spearman’s g (S:g), overestimate or 
underestimate the true percentage of the total variance accounted for by g? The 
answer is shown in Table 5. The overall root mean square error (RMSE) of the 
estimated percentages of variance accounted for by g is 3.91%. (Because the PC 
always includes some of the uniqueness of each variable, it necessarily overesti- 
mates x; if we omit PC, the overall RMSE = 2.13s.) 

Agreement Between Various Methods Applied to Empirical Data 
In a correlation matrix based on empirical data, it is of course impossible to know 
exactly the true g loadings of the variables. However, we can examine the degree 
of consistency of the g vector obtained by different methods of factor analysis 
when they are applied to the same data. For this purpose, we have used a classic 

TABLE 5 

Percentage of Total Variance 
Accounted for by g as Extracted by 

Different Methods From Correlations in Table 1 

Method % Variance 

True g 25.42 

SL:PF(SMC) 24.45 

SL:IPF 25.40 

CFA:HO 25.42 

CFA:g + 3F 25.42 

Tandem I 28.72 

PF(SMC) 26.62 

IPF 29.16 

PC 35.49 

s:g 27.78 
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set of mental test data, originally collected by Holzinger and Swineford ( 1939) 
consisting of 24 tests given to 145 seventh- and eighth-grade students in a suburb 
of Chicago. Descriptions of the 24 tests and a table of their intercorrelations (to 
three decimal places) are also presented by Harman (1976, pp. 123-124). The 
tests are highly diverse and comprise four or five mental ability factors besides g: 
spatial relations, verbal, perceptual speed, recognition memory, and associative 
memory. But certain analyses reveal only one memory factor comprising both 
recognition and association. 

This 24 X 24 R-matrix has been factor analyzed by IO methods. The g load- 
ings of the 24 tests obtained by each method are shown in Table 6. These meth- 
ods and their abbreviations in Table 6 are: Holzinger’s bi-factor analysis (BiF); 
principal components (PC); principal factors (PF); “minres” or minimized residu- 
als (Minr); maximum likelihood (MaxL); Alpha factor analysis (Kaiser & Caf- 
frey, 1965); Comrey’s Tandem I (Tam) factor analysis (Comrey, 1967, 1973; 
Comrey & Lee, 1992); Schmid-Leiman (1957) orthogonalized hierarchical anal- 
ysis (SL); and two applications of LISREL, in each of which Model C (Figure 5) 
is specified, first for g + 5 factors (LIS:5), then for g + 4 factors (LlS:4). The 
hypothesis of four group factors gives an overall better fit to the data than five 
group factors.4 

The percentage of total variance in the 24 tests accounted for by g differs 
across the various methods, ranging from 27% (for the Schmid-Leiman hier- 
archical g) to 34% (for the first principal component), with an overall average of 
30.4% (SD = 2.1%). In short, the various methods differ very little in the per- 
centage of variance accounted for by g. 

How similar are the g vectors across different methods‘? Table 7 shows the 
Pearson correlations and the congruence coefficients of the g vectors. The figures 
speak for themselves. The first principal component of the correlations shown in 
the upper triangle of Table 7 accounts for 92.4% of the total variance in this 
correlation matrix. The mean correlation is ,916; the mean congruence coeffi- 
cient is .995. They determine also how closely the g vectors resemble one anoth- 
er in the rank order of their g loadings. Spearman’s rank-order correlation (rho) 
was computed between all the vectors, and it ranges from ,792 to ,995, with an 
overall mean of ,909. 

Wilks’s Theorem and g Factor Scores 
If a researcher’s only purpose in factor analyzing a battery of tests is to obtain 
people’s g factor scores, the method of obtaining g is of little consequence and 
rapidly decreases in importance as the number of tests in the battery increases. 
An individual’s g factor scores are merely a weighted average (i.e., linear com- 

4The 8 + 5 factors solution has a goodness-of-fit index of .845 (on a scale from 0 to 1) and the 

root mean square error (RMSE) is .063; the R + 4 factors solution has a GFI of ,884 and an RMSE of 
,046. 
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TABLE 7 

Correlations (Above Diagonal) and Congruence Coefficients (Below Diagonal) 
Between g Loadings of 24 Tests Extracted by 10 Methods 

Method 

BiF PC PF Minr MaxL Alpha Tan1 SL Lis:.5 Lis:4 

BiF 906 865 876 865 928 145 945 881 945 
PC 996 993 997 995 992 940 914 825 919 
PF 995 1000 993 993 980 954 955 794 881 
Minr 995 1000 1000 999 985 949 960 794 899 
MaxL 995 1000 1000 1000 981 952 954 782 895 
Alpha 997 1000 999 999 999 905 992 859 932 
Tan1 984 992 994 994 994 990 866 747 805 
SL 991 999 998 999 998 1000 988 900 940 
Lis: I 995 992 991 991 991 993 984 995 897 
Lis:F 998 997 996 996 996 997 987 997 995 

Note. Decimals omitted. 

posite) of his or her standardized scores (e.g., z) on the various tests. A theorem 
put forth by Wilks (1938) offers a mathematical proof that the correlation be- 
tween two linear composites having different sets of (all positive) weights tends 
toward one as the number of positively intercorrelated elements in the composite 
increases. These conditions are generally met in the case of g factor scores, and 
with as many as 10 or more tests in the composite, the particular weights will 
make little difference. For instance, the R factor scores of the normative sample 
of 9,173 men and women (ages 18 to 23) were obtained from the 10 diverse tests 
of the Armed Services Vocational Aptitude Battery (ASVAB) when they were 
factor analyzed by 14 different methods (Ree & Earles, 1992). The average cor- 
relation obtained between g factor scores based on the different methods of factor 
analysis was .984, and the average of all the x factor scores was correlated ,991 
with a unit-weighted composite of the 10 ASVAB test scores. 

SUMMARY AND CONCLUSIONS 

We have been concerned here, not with the nature of K, but with the identijka- 
tion of g in sets of mental tests, that is, with the relative degree to which each of 
the various tests in the set measures the one source of variance common to all of 
the tests, whatever its nature in psychological or physiological terms. Various 
methods have been devised for identifying g in this psychometric sense. And 
what we find, both for simulated and for empirical correlation matrices, is that, 
when a general factor is indicated by all-positive correlations among the vari- 
ables, the estimated g factor is remarkably stable across different methods of 
factor analysis, so long as the method itself does not artificially preclude the 
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estimation of a general factor. This high degree of stability of g, in terms of 
correlation and congruence coefficients, refers both to the vector of g loadings of 
the variables and to the g factor scores of individuals. There is also a high degree 
of agreement among methods (with the exception of principal components) in the 
percentage of the total variance in test scores that is accounted for by g. 

In fact, the very robustness of g to variations in method of extraction makes 
the recommendation of any particular method more problematic than if any one 
method stood out by every criterion as clearly superior to all the others. Because 
apparently no one method yields a g that is markedly and consistently different 
from the g of rival methods, how best can we estimate a good g? It is reassuring, 
at least, that one will probably not go far wrong with any of the more commonly 
used methods, provided, of course, reasonable attention is paid to both statistical 
and psychometric sampling. An important implication of this conclusion is that, 
whatever variation exists among the myriad estimates of g throughout the entire 
history of factor analysis, exceedingly little of it can be attributed to differences 
in factor models or methods of factoring correlation matrices. 

Recognizing that in empirical science R can be only estimated, the notion of a 
good g has two possible meanings: (1) an estimated g that comes very close to the 
unknown true g, in the strictly descriptive or psychometric sense (as in our simu- 
lated example), and (2) an estimated g that is more “interesting” than some other 
estimates of g by virtue of the strength of its relation to other variables (causes 
and effects of R) that are independent of the psychometric and factor analytic 
machinery used to estimate g, such as genetic, anatomical, physiological, nutri- 
tional, and psychological-educational-social-cultural variables-in other words, 
the “g beyond factor analysis” (Jensen, 1987a). It is in the second sense, obvi- 
ously, that g is of greatest scientific interest and practical importance. Factor 
analysis would have little value in research on the nature of abilities if the discov- 
ered factors did not correspond to real elements or processes, that is, unless they 
had some reality beyond the mathematical manipulations that derived them from 
a correlation matrix. But advancement of our scientific, or cause-and-effect, un- 
derstanding of g would be facilitated initially by working with a good g in the 
first sense. This would be a feedback loop, such that cause-and-effect relations of 
extrapsychometric variables to initial estimates of R would influence subsequent 
estimates and methods for estimating g, which could then lead to widening the 
network of possible connections between g and other cause-and-effect variables. 

Suggested Strategy for Extracting a Good g 
Assuming at the outset a correlation matrix based on a subject sample of ade- 
quate size and on reasonable psychometric sampling of the mental abilities do- 
main, both in the number and variety of tests, the procedure we suggest for 
estimating g calls for the following steps: 

1. Be sure that all variables entered into the analysis are experimentally inde- 
pendent; that is, no variables in the matrix should constitute merely different 
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mathematical transformations or combinations of one and the same set of 

scores. 
Test variables (or their vector of correlations in the R-matrix) should be 
reflected so that on every variable superior performance is represented by 
numerically higher scores. A criterion that Carroll (1993, p. 83) recom- 
mends to insure proper reflection of the variables is that the sum of each 
variable’s off-diagonal elements in the R-matrix be a positive value prior to 
factoring. It is not essential that every single correlation be positive, be- 
cause, in reality, many matrices have a few negative correlations close to 
zero, due to sampling fluctuations, for variables that have low g loadings. 
If one has no clear hypothesis about the factor structure of the test battery in 
question, an exploratory factor analysis will indicate the factor structure, 
that is, the number of factors and their salient loadings in the tests. A PC 
analysis can be performed to determine the number of components with 
eigenvalues > 1, which is a commonly used criterion for the number of 
significant factors, but, as this criterion tends to overestimate (and at times 
underestimate) the number of factors (Lee & Comrey, 1979) it should be 
adjudicated by other exploratory methods such as Cattell’s scree criterion 
(Harman, 1976, p. 163). If the eigenvalue cutoff or other criteria remain 
equivocal, the analysis will suffer less inaccuracy from extracting one too 
many factors instead of one too few. 
A principal factor analysis, with the previously determined number of fac- 
tors specified and with iterated communalities (beginning with SMCs in the 
leading diagonal), followed by oblique rotation of the factor axes by promax 
(or any other convenient method of oblique rotation), will usually give a 
fairly clear picture of the first-order factors, the tests that “define” them, and 
the correlations among the first-order factors. This information is useful in 
specifying a model, or target factor matrix, for a confirmatory factor 
analysis. 
Use the model suggested by the procedures in Step 4 to do a confirmatory 
factor analysis with LISREL (or EQS). Begin by fitting a bi-factor model, 
that is, g + nF, where II is the number of group factors (e.g., Figure 5), 
keeping the number of parameters to be estimated as small as possible, con- 
sistent with the exploratory factor analysis in Steps I and 2. (For example, 
initially let each test load on only one group factor, dictated by the test’s 
largest loading in the prior exploratory analysis.) If the exploratory analysis 
leaves any doubt about n, that is, the number of group factors, try n - 1 or 
n + I to determine the effect on the goodness-of-fit index (GFI). The bi- 
factor model can be modified to achieve a better fit on the basis of examina- 
tion of the modification indices provided by the LISREL program; for exam- 
ple, a test may not be a sufficiently pure measure of just one group factor 
(besides g) and may be allowed to have loadings on more than one group 
factor. 
Finally, guided by the results of Step 5, one can test a hierarchical model 
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(orthogonalized by the Schmid-Leiman transformation) with LISREL to de- 
termine if it gives a comparable or larger GFI than the best-fitting model 
arrived at in Step 5. A hierarchical model (e.g., Figures 3 and 4) is more 
restrictive mathematically than the bi-factor model, in which no relational 
constraints are imposed on the tests’ g loadings and their loadings on the 
group factors. The hierarchical model will probably fit fewer matrices than 
the less constrained bi-factor model. The choice between factor models that 
have similar GFIs depends on theoretical or practical considerations outside 
the realm of factor analysis. Often, however, differences in the GFI for the 
bi-factor and the hierarchical models reflect only differences in the factorial 
complexity of the tests; the factorially more complex tests have a larger R 
loading and their loadings on the residualized group factors tend to be less 
clear, often being scattered among the several first-order factors, with a 
weak basis for interpretation at the level of primary abilities. 

In his critique of the procedure just presented, Carroll stated, “In my opinion, 
your suggested procedures are too laborious and pedantic. A single procedure, 
hierarchical analysis such as I used in most of my analyses [Carroll, 19933 should 
be quite sufficient for estimating g” (persona1 communication, January 30, 
1993). One could hardly disagree with Carroll on this point, given the remark- 
able stability of g across various methods of factor analysis. But to be confident 
that one has extracted the optima1 estimate of the g of a given matrix, particularly 
if the nature of the variables and the structure of the R-matrix are not known from 
previous studies, obtaining x from our suggested strategy seems to us more reas- 
suring, even if perhaps somewhat pedantic, and it is not all that laborious with 
present computer software.” 

Finally, an anecdote: When we asked the late great factor analyst, Henry 
Kaiser, if there were any way we could know for sure just how close the estimate 
of x, obtained by the most optimal procedure that we (or he) could think of, 
would approximate the “true” g. he replied after a moment’s thought, “Ask 
God.” 
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