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Determining the number of factors is a critical
step in factor analysis. Horn (1965) proposed the
method of parallel analysis to use mean eigenval-
ues of random data correlation matrices for esti-
mation of number of factors. Various regression
equations were developed to simplify the estima-
tion of mean eigenvalues of random data correla-
tion matrices. The present research systematical-
ly evaluated the performance of four regression
equations in estimating the eigenvalues of ran-
dom data correlation matrices. The results indi-
cated that the regression equation developed by
Longman et al. (1989) performed the best, fol-
lowed closely by Keeling (2000). Lautenschlager
et al. (1989) came next, and Allen and Hubbard
(1986) had the worst performance.

Keywords: parallel analysis, regression equa-
tions, eigenvalues, factor analysis, number of fac-
tors

Deciding the number of factors plays a crit-
ical role in factor analysis. Either overextraction
or underextraction of common factors affects
the final results of the analysis. Overextraction
may result in splitting major factors into trivial
ones, and underextraction can easily distort the
obtained factor space (Comrey & Lee, 1992;
Gorsuch, 1997). Zwick and Velicer (1986) com-
pared the performance of Bartlett's test, eigen-
values greater than one, scree test, minimum av-
erage partial, and parallel analysis in recovering

the correct number of factors by Monte Carlo
method. Parallel analysis turned out to be the
best among the five procedures. Wang (2001) al-
so found that parallel analysis outperformed the
decision rule of eigenvalues greater than one,
and the maximum likelihood chi-squares signifi-
cance test when ordered categorical variables
were submitted for factor analysis. Eigenvalues
of random data correlation matrices are required
to perform parallel analysis. The present study
was designed to evaluate the performance of re-
gression equations in estimating mean eigenval-
ues of random data correlation matrices.

Horn proposed the method of parallel
analysis (1965) to adjust for the frequently used
number-of-factor decision rule of eigenvalues
greater than one. The eigenvalue-greater-than-
one method assumed the correlation matrix ana-
lyzed to be the population correlation matrix.
Horn argued that the effects of sampling errors
on eigenvalues of sample correlation matrices
should be taken into account in applying the
eigenvalue-greater-than-one rule for determina-
tion of number of factors. The eigenvalues of
random correlation matrices in samples would
not all equal one due to sampling errors. Horn
therefore suggested comparing the eigenvalues
of sample correlation matrix with those obtained
from random data correlation matrix of the same
number of variables and sample size as the crite-

*This article is a translation from the Chinese text (see Appendix) by Li-Jen Weng (the author).
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rion to decide number of factors. Mean eigen-
values from several random data correlation ma-
trices were recommended to reduce the effects
of sampling errors. The number of factors would
equal the number of sample eigenvalues greater
than mean eigenvalues of random data correla-
tion matrices.

After Horn (1965) proposed the method of
parallel analysis, researchers have worked on
methods for estimation of mean eigenvalues of
random data correlation matrices to avoid the te-
dious computational work involved. Although
several regression equations have been proposed
(Allen & Hubbard, 1986; Keeling, 2000; Lauten-
schlager, Lance, & Flaherty, 1989; Longman,
Cota, Holden, & Fekken, 1989; Montanelli &
Humphreys, 1976), a systematic study of the
performance of these equations has been lack-
ing. The present research was therefore de-
signed to evaluate the accuracy of these regres-
sion equations in estimating mean eigenvlues of
random correlation matrices.

Montanelli and Humphreys (1976) were the
first to estimate mean eigenvalues of the random
correlation matrices by regression equation.
Their equation for approximation of the mean
eigenvalues of the random data correlation ma-
trices with squared multiple correlations in the
diagonal was given in Equation 1.

log\;,=a, + by, log(N-1)
tbylog[p(p-1)/2-(i-Dp], (1)

where N is the sample size, p is the number of
variables, and A, is the ith mean eigenvalue of

random data correlation matrices. The equation
is applicable with 25 = N = 1533 and 6 = p =
90. Montanelli and Humphreys gave the coeffi-
cients a;, by; , and b, for estimation of each mean
eigenvalue. The squared multiple correlations of
the estimated eigenvalues with those obtained
from the random data correlation matrices were
extremely high with values above .994.

However, there were two problems with E-
quation 1. First, approximately only the first
half of the eigenvalues could be estimated due

to the constraint of [(p-1) /2 - (1- 1)] being
positive (Allen & Hubbard, 1986). In addition,
the squared multiple correlations were inserted
in the diagonal of the random data correlation
matrices instead of the common practice of hav-
ing unities in the diagonal. Allen and Hubbard
therefore developed a new regression equation
for estimation of the mean eigenvalues of ran-
dom data correlation matrices with ones in the
diagonal. The equation with 30 = N = 1000
and 5 = p = 50 was as followed.

log(\,)=a;+bilog(N-1)+
cilog[(p-i-1)(p-1+2)/2]+
d; log (\i.)), with Ay = 1. 2)

Because of the third term, only the first p-2
mean eigenvalues could be estimated. The
squared multiple correlations of the estimated
eigenvalues from Equation 2 with those ob-
tained from random data were all over .998 ex-
cept for the first mean eigenvalues with a
squared multiple correlation of .931.

Because of the low squared multiple corre-
lation for the first eigenvalues and its effects on
estimation of subsequent eignevalues as ob-
served form Equation 2, Lautenschlager, Lance,
and Flaherty (1989) modified the regression e-
quation by Allen and Hubbard (1986) and sug-
gested a revised Equation 3 for 50 = N = 1000
and 5 = p = 50. Lautenschlager et al. added
the term of N/p and raised 6% of the squared
multiple correlation for the first eigenvalues up
to .991.

log(\;)=a;+b;log(N-1)+
cilog[(p-i-1)(p-1+2)/2]+
di log (7\i-)\i_1)+eip/N, Wlth )\0:1
(3)

Longman, Cota, Ronald, and Fekken (1989)
proposed a new regression Equation 4 that in-
volved less computational complexity and
reached better accuracy than the equation given
in Allen and Hubbard (1986). This equation for
50 = N=500and 5 = p = 50 yielded squared
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multiple correlations of estimated mean eigen-
values and those from random data being be-
tween .950 and .999. In addition to higher
squared multiple correlations than the equation
given by Allen and Hubbard, Equation 4 also re-
sulted in closer approximation to the eigenval-
ues obtained from random correlation matrices
as indicated by smaller mean absolute differ-
ences between estimated eigenvalues and those
obtained from 10 random data correlation matri-
ces.

log. (\;) = a;log. (N) +bjlog.(p) +
¢i[log. (N)log.(p)]+d. 4

Special tables on coefficients at various
combinations of N and p were needed when E-
quations 1 to 4 were applied to estimate mean
eigenvalues of random data correlation matri-
ces. Keeling (2000) therefore modified the re-
gression equation given by Longman et al.
(1989) to avoid the need of checking tables for
use with 50 = N = 500 and 5 = p = 50.

Log\, =-0.130827 - 0.444853i - 0.008497i*

+0.639462 log( N)

- 0.078631 [log( N) log( p)]
+0.001488i* log( N)

+0.095875i log(p)

+0.001576i*log( p )

- 0.013331i [log( N) log(p)]

- 0.000278i*[log( N ) log( p)] ®)

The regression equation proposed by Keel-
ing (2000) had the advantage of functioning
without special tables for estimation of eigen-
values of random data correlation matrices. The
estimates were completely determined by the
sample size (N), the number of variables (p), and
the order of the mean eigenvalue to be estimated
(1). Keeling used bias of the estimated eigenval-
ues to compare the performance of Equation 5
with Equations 3 and 4. With the simulated
eigenvalues from Lautenschlager (1989) as the
criteria for comparison, the estimates obtained
from regression Equation 4 by Longman et al.

(1989) were found to be closest to the criteria.
Keeling's Equation 5 performed nearly well as
the equation by Longman et al., and Equation 3
by Lautenschlager et al. had the worst perfor-
mance.

Although past research has compared the
performance of different regression equations
(e.g., Lautenschlager, 1989; Lautenschlager et
al., 1989; Longman et al., 1989; Keeling, 2000),
a comprehensive investigation is called for for
two reasons. First, previous studies usually com-
pared only two equations without simultaneous-
ly considering all the regression equations. Sec-
ond, researchers had applied different criteria to
evaluate the performance of the interested equa-
tions, including root mean squared errors, mean
absolute differences, bias, correlations, and
squared multiple correlations. Lautenschlager
used root mean squared errors, Longman et al.
employed mean absolute differences, and Keel-
ing adopted the bias of the estimated eigenval-
ues relative to the simulated mean eigenvalues
presented in Lautenschlager.

Squared multiple correlations, though fre-
quently used, illustrated the trend of the eigen-
values estimated from regression equations and
that of the eigenvalues from random correlation
matrices. However, the absolute values of eigen-
values were used to determine the number of
factors when parallel analysis was applied.
Therefore, evaluation of various equations
should emphasize the absolute differences be-
tween estimated eigenvalues and those calculat-
ed from random correlation matrices. Small ab-
solute differences indicate good approximations
to the eigenvalues of random data correlation
matrices. Accordingly the purpose of the present
study was to compare the performance of the re-
gression equations proposed by Allen and Hub-
bard (1986), Lautenschlager et al. (1989), Long-
man et al. (1989), and Keeling (2000) by mean
absolute differences. The first equation given by
Montanelli and Humphreys (1976) was not in-
cluded because squared multiple correlations in-
stead of ones were placed in the diagonal of the
random correlation matrices. Although pro-
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grams for generating eigenvalues of random cor-
relation matrices have been reported (Kaufman
& Dunlap, 2000; O'Connor, 2000), a compre-
hensive study of the regression estimates would
bring forth an appropriate summary of past ef-
forts on estimation of eigenvalues by regression
equations. In addition, the results of the present
study can help researchers who intend to use re-
gression estimates of the mean eigenvalues of
random data correlation matrices to choose ap-
propriate equations in deciding number of fac-
tors by parallel analysis.

Methods

Eighty six combinations of sample size N
and number of variables p were used to compare
the mean eigenvalues estimated by the regres-
sion equations in Allen and Hubbard (1986),
Lautenschlager et al. (1989), Longman et al.
(1989), and Keeling (2000). The sample sizes
studied including 50, 75, 100, 150, 200, 300,
400, 500, and 1000, and the number of variables
ranged from 5 to 50 with an increment of 5. Be-
cause of the required condition of N = 3p/2
(Allen & Hubbard; Lautenschlager, 1989), the
(N, p) combinations of (50, 50), (50, 45), (50,
40), and (50, 35) were excluded.

The RANNOR function in SAS was used to
generate standard normal random data with vari-
ous combinations of sample size and number of
variables. The eigenvalues of the correlation
matrix of the random data were obtained by the
EIGVAL function in Proc IML of SAS. The
mean eigenvalues of 1000 random samples
served as the criteria for computing the mean
absolute difference of estimated eigenvalues
from equations at each combination of N and p.
The average eigenvalues over 1000 random cor-
relation matrices should provide an accurate ba-
sis for comparison. The absolute difference be-
tween each estimated eigenvalue and the criteri-
on was first calculated. The mean absolute dif-
ference was obtained by averaging the absolute
differences over the number of available eigen-
values under each N, p combination. The corre-

lation between the mean eigenvalues and regres-
sion estimates were also calculated to examine
the trend of two sets of values for each combina-
tion of N and p.

Results

Correlation between Mean Eigenvalues
from Random Data and Regression Equations.
Table 1 summarized the correlations between
mean eigenvalues from random data and four re-
gression equations at all 86 combinations of N
and p. Most correlations were above 0.90 except
for sample size of 1000 with large numbers of
variables, indicating a close similarity in rela-
tive standings of two sets of eigenvalues. The
correlations from Equation 2 of Allen and Hub-
bard (1986) decreased with increasing sample
size and number of variables. The lowest corre-
lation 0.78 occurred when sample size reached
1000 and number of variables equaled 50. Al-
though the correlations obtained from Allen and
Hubbard appeared lower than other regression e-
quations, this equation was the only one that
yielded no negative correlations of the regres-
sion estimated eigenvalues with those from the
random data.

Equation 3 from Lautenschlager et al.
(1989) yielded eigenvalues that were negatively
correlated with eigenvalues from random data in
several N, p combinations. These conditions in-
cluded sample size of 1000 with over 25 vari-
ables, sample size of 500 with over 40 variables,
and sample size of 75 and 400 with 50 variables.
Equation 4 from Longman et al. (1989) and E-
quation 5 from Keeling (2000) resulted in low or
even negative correlations of estimated eigen-
values with those from random data at sample
size of 1000 and number of variables over 20.
The sample size of 1000, however, exceeded the
admissible ranges for applications of these two
equations. An examination of the results indicat-
ed that negative correlations were due to the U
shape distributed eigenvalues estimated from
the regression equations. Ideally, those eigen-
values should be of descending order.
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Table 1
Correlation between Mean Eigenvalues from Random Data and Regression Equations
Sample size (V)

50 75 100 150 200 300 400 500 1000

p=>5 Eq.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Eq.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Eq. 4 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98

Eq.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p=10 Eq. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Eq.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Eq. 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96

Eq.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98

p=15 Eq. 2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Eq.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Eq. 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90

Eq.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92

p=20 Eq.2 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
Eq.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Eq. 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.68

Eq.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.74

p=25 Eq.2 0.96 0.95 0.94 0.94 0.94 0.94 0.94 0.93 0.94
Eq.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.77

Eq. 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.27

Eq.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.35

p=30 Eq. 2 0.93 0.92 0.92 0.91 0.91 0.90 0.90 0.90 0.90
Eq.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -0.61

Eq. 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 -0.29

Eq.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -0.10

p=35 Eq.2 0.90 0.89 0.88 0.88 0.87 0.87 0.87 0.86
Eq.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -0.77

Eq. 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -0.43

Eq.5 1.00 1.00 1.00 1.00 1.00 1.00 0.99 -0.40

p=40 Eq.2 0.88 0.87 0.86 0.85 0.84 0.84 0.84 0.83
Eq.3 1.00 1.00 1.00 1.00 1.00 1.00 0.93 -0.70

Eq. 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -0.26

Eq.5 1.00 1.00 1.00 1.00 1.00 1.00 0.99 -0.55

p=45 Eq.2 0.86 0.85 0.83 0.83 0.82 0.81 0.81 0.80
Eq.3 1.00 1.00 1.00 1.00 1.00 0.89 -0.52 -0.49

Eq. 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -0.03

Eq.5 1.00 1.00 1.00 1.00 1.00 1.00 0.99 -0.63

p=50 Eq. 2 0.84 0.83 0.81 0.81 0.80 0.79 0.79 0.78
Eq.3 -0.30 0.84 1.00 1.00 0.70 -0.47 -0.43 -0.31

Eq. 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.28

Eq.5 1.00 1.00 1.00 1.00 1.00 1.00 0.99 -0.68

Note. p = number of variables; Eq. 2 = Allen & Hubbard (1986); Eq. 3 = Lautenschlager et al. (1989); Eq. 4 = Longman et

al. (1989); Eq. 5 = Keeling (2000).
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Figure 1. Mean absolute differences of eigen-
values from Allen & Hubbard (1986)

Mean Absolute Differences between
Mean Eigenvalues from Random Data and
Regression Equations. Figures were presented
to facilitate the comparison among regression e-
quations. The mean absolute differences be-
tween eigenvalues estimated from Equation 2 of
Allen and Hubbard (1986) and the mean eigen-
values computed from random data correlation
matrices were illustrated in Figure 1. The mean
absolute differences increased as number of
variables and sample size increased, except for
the case of five variables. The differences ap-
proached 0.80 when 50 variables were analyzed.

The N, p combinations investigated in the
study were all within the permissible range of
applying Equation 3 from Lautenschlager et al.
(1989). Although in most cases in the present a-
halyses the differences were less than 0.50, the
performance of the equation was unstable. As il-
lustrated in Figure 2, when number of variables
was 40 or above and the sample size was outside
the range of 100 and 300, the mean absolute dif-
ference could increase dramatically. In other
words, the estimated eigenvalues from Equation
3 might deviate from the mean eigenvalues from
random data substantially even with admissible
N and p conditions.

The mean absolute differences of Equation
4 from Longman et al. (1989) were illustrated in
Figure 3. The sample size of 1000 exceeded the
permitted range of applying Equation 4 and

2000

1500

Mean absolute differences

0.000
50 7 100 150 200 300 400 300 1000

Sample size
Figure 2. Mean absolute differences of eigen-
values from Lautenschlager et al.(1989).

raised the mean absolute differences. However,
the mean absolute differences were no more
than 0.20 even when N was 1000, and the rest
were all below 0.05, indicating an excellent per-
formance of the equation proposed by Longman
et al. Equation 5 from Keeling (2000) had the
same applicable range of N and p as Equation 4.
As shown in Figure 4, the associated mean abso-
lute differences increased up to around 0.30
when sample size was 1000, and were less than
0.05 for other cases except for number of vari-
ables of 20. Judging from mean absolute differ-
ences, the regression equations from Longman
et al. and Keeling performed the best, yielding
estimated eigenvalues very close to the eigen-
values from random data matrices. Using these
two equations for parallel analysis should yield
a better estimate of mean eigenvalues of random
data correlation matrices.

Discussion

The present research compared the perfor-
mance of four regression equations in estimating
mean eigenvalues of random data correlation
matrices. These eigenvalues are needed in de-
ciding the number of factors by parallel analysis
(Horn, 1965). Because parallel analysis has been
shown to suggest appropriate number of factors
in factor analysis (Wang, 2001; Zwick &
Velicer, 1986), the results of this study would
help researchers who want to apply regression e-
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Figure 3. Mean absolute differences of eigenval-

ues from Longman et al. (1989).

quations in parallel analysis to select the appro-
priate equations.

The eigenvalues from all four equations
correlated highly with the eigenvalues computed
from random data correlation matrices, suggest-
ing a similar trend of two sets of eigenvalues.
The mean absolute differences between the esti-
mated mean eigenvalues and the ones obtained
form random data correlation matrices suggest-
ed that the equation proposed by Longman et al.
(1989) performed the best, followed closely by
the equation given by Keeling (2000). The per-
formance of the equation offered by Lauten-
schlager et al. (1989) worked fine if the unstable
N and p combinations were excluded. The
method proposed by Allen and Hubbard (1986)
performed the worst. Because the absolute sizes
of eigenvalues of random data correlation matri-
ces are used in parallel analysis to decide the
number of factors, the mean absolute differ-
ences should be a more appropriate criterion
than the correlations in judging the performance
of the equations. Considering both criteria si-
multaneously, we recommend the regression e-
quation from Longman et al. to be used in future
estimation of mean eigenvalues of random data
correlation matrices. The regression equation
from Keeling (2000) can be used if no need for
reference to special tables is preferred.

All of the four regression equations overes-
timated the eigenvalues when sample size
reached 1000, with the equation by Lauten-

0.350
0300
0250
0200
0.150

0.100

Mean absolute differences

0050 ¢

0000 - : :
50 75 100 150 200 300 400 500 1000
Sample size

Figure 4. Mean absolute differences of eigen-
values from Keeling (2000).

schlager et al. (1989) exhibiting the greatest de-
viation. A close examination of the results from
this equation indicated that when a sample size
increases, even the first few estimated eigenval-
ues show large amount of deviation. The sample
size of 1000 lied outside the permissible condi-
tions for the equations by Longman et al. (1989)
and Keeling (2000) and led to unsatisfactory re-
sults. Many psychological studies that applied
factor analysis in scale development and validity
research employed samples with number of par-
ticipants exceeding 500 (Wang & Weng, 2002).
The best regression equation proposed by Long-
man et al. could be further modified to extend
its scope of applications in the future.
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