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Seismic travel time tomography is commonly
discretized by a truncated expansion of the pursued
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model in terms of chosen basis functions. The
robustness of the resulting Earth model as well as
whether parameterization affects the actual resolving
power of a given data set have long been seriousy
debated. = From the perspective of the model
resolution, however, there is one important aspect of
the parameterization issue of seismic tomography that
has yet to be systematically explored, that is, the
space-frequency  localization of a  chosen
parameterization. In fact, the two most common
parameterizations tend to enforce resolution in each of
their own particular domains. Namely, the
parameterization in terms of spherical harmonics with
global support tends to emphasize spectral resolution
while sacrificing the spatial resolution, whereas the
compactly supported pixels tend to behave conversely.
Some of the significant discrepancies among
tomographic models are very likey to be
manifestations of this effect, when dealing with data
set with non-uniform sampling.  With an example of
the tomographic inversion for the lateral shear wave
heterogeneity of the D” layer using S SKStravel times,
we demonstrate an alternative parameterization in
terms of the multi-resolution representation of the
pursued model function.  Unlike previous attempts of
multi-scale inversion that invoke pixels with variable
sizes, or overlay several layers of tessellation with
different grid intervals, our formulation invokes the
biorthogonal generalized Harr wavelets on the sphere.
We show that the multi-resolution representation can
be very easlly constructed from an existing
blocks-based  discretization. A natural scale
hierarchy of the pursued model structure constrained
by the resolving power of the given sampling is
embedded within the obtained solution. It provides a
natural regularization scheme based on the actual
ray-paths sampling and is thus free from a priori
prejudices intrinsic to most regularization schemes.
Unlike solutions obtained through spherical harmonics
or spherical blocks, that tend to collapse structures
onto ray-paths, our parameterization imposes
regionally varying Nyquist limits, that is, the robustly
resolvable local wavelength bands within the obtained
solution

Keywords continuous inverse problem, seismic
tomography, multiresolution analysis,
space-scale localization, spherical wavelets.



Ever since the early phase of the modern global
tomographic study, the dichotomy among approaches
that invoke different parameterizations has been
obvious (Dziewonski, 1982,1984; Clayton and Comer,
1983). With the advance of the large amount of
seismic travel time measurements available today,
tomographic images of the Earth with more and more
details have been published each year. However,
inconsistencies among these recent models with high
nominal resolutions have become a controversial issue
that demands to be resolved (e.g., Dziewonski and
Woodhouse, 1987; Morelli and Dziewonski, 1987a,b;
Tanimoto, 1990; Woodward and Masters, 1991;
Pulliam and Stark, 1993; Stark and Hengartner, 1993;
Wang and Zhou, 1993; Su et al., 1994; Morelli and
Dziewonski, 1995; Stark 1995; Masters et al., 1996;
Zhou, 1996; Grand et a., 1997; Bijwaard et al., 1998;
Boschi and Dizewonski, 1999). Among the major
factors that these discrepancies might arise from,
namely, different data sets, different numerical
algorithms of inversion, different parameterizations
and different regularization schemes, the latter two
factors have been the central disputes that attracted
considerable efforts. It is noted that although seismic
tomography is in essence a continuous inverse
problem, the data kernel based on ray theory is,
however, not band-limited. This precludes the direct
evaluation of the Gram matrix that consists of inner
products of data kernels. Discretization through
finite parameterization of the pursued model is thus
inevitable. Rendering the continuous model function
into afinite set of parameters, it is clear that any finite
parameterization invokes an implicit regularization
scheme that imposes selective weightings on different
model components. The intertwined effects from
parameterization and regularization further complicate
the interpretation and comparison among earth models
obtained by different groups. Clearly, to have a
solution with the resolving power that is compatible
with the actual sampling while avoiding either implicit
or explicit extra unjustifiable prejudices should be the
main concern of choosing a particular type of basis
functions to execute the finite parameterization. In
this study, we first review briefly some of the
problems associated with the general finite
parameterization. An aternative parameterization
based on the spherical wavelets expansion is then
introduced and invoked in a tomographic study of the
lateral shear wave heterogeneity of the D" layer.
Solutions obtained from parameterizations based on
the three different types of basis functions, namely,
spherical harmonics, spherical pixels and spherical
wavelets are compared and discussed.

The resulting shear wave velocity
perturbation is displayed and compared among
parameterizations of spherical wavelets, spherica
harmonics (degree 40) and spherical pixels (Fig. 1).
We find that unlike the spherical wavelets solution
that bears heterogeneous resolvable scales, the
spherical pixels solution tends to gradually collapse
significant  structures along the ray-paths.
Furthermore, magnitudes of long wavelength (low
scale-level) components of the spherical pixels
solution are considerably lower than the spherical
wavelets solution.

The overall gspatial patterns of the three
solutions are similar, with remarkable clustering of
the calculated plume roots (Steinberger and
O’ Connell, 1998) around the low velocity anomalies.
However, there are significant discrepancies among
these images. Note that the data set has been
carefully sorted to ensure that the sampling coverage
is as uniform as possible which explains the
consistency between the spherica harmonics
solution and the spherica pixels solution.
Otherwise, with the presence of large data gaps or
regionally redundant sampling, it is waell
acknowledged that considerable spurious artifacts
will  appear within data gaps for solutions
parameterized by globally support basis functions
(Pulliam and Stark, 1993), unless the inversion is
heavily damped (Boschi and Dziewonski, 1999).
The major difference among the three solutions,
however, is that while both the spherical harmonics
solution and the spherical pixels solution tend to
collapse structures along the ray-paths, the grouping
of loca structures into longer wavelengths in the
spherical wavelets solution is different.

Other than the overall spatial pattern, the
level-wise contributions on the variance reduction,
the root-mean-square model norm of the three
solutions as well as the power spectrum when
projected onto the spherical harmonics expansion are
aso compared. We notice that it is possible to
project the spherical harmonics solution onto a
representation in terms of spherical pixels and thus
perform the level-wise decomposition. Inspecting
the variance reduction of the spherical harmonics
solution, projected and decomposed, from the root
level and gradually incorporating higher scale-level
details, it is found that contributions from the
scale-level 5 actually deteriorate the data fitting.
This is caused by the fact that the spherical
harmonics parameterization was carried only up to
the 40" degree, with the degrees of freedom less than
the level 5 refinement of the spherical pixels
discretization.  The projection of the spherical
harmonics solution onto the spherical pixels
representation invokes components higher than the
truncation level (degree 40) that is usually assumed
negligible when constructing the final solution.
Except for this complication, it is also noted that
there are significant contributions on the variance



reduction from fine structures in the scale-level 5 for
both the spherical harmonics and the spherical pixels
solution. In fact, if the discretization had been
carried to even higher scale levels, this trend will still
persist such that eventually all structures are
collapsed onto the ray-paths. This is, however, not
the case for the spherical wavelets solution, where
the model contributions to comprehend the data
essentially peaks at the scale-level 4, suggesting that
a global maximum resolvable wavelength is no
shorter than the characteristic wavelength of this
scale-level.

Parameterization in terms of basis functions
with global support tends to focus on frequency
resolution and sacrifices spatial  resolution.
Parameterization in terms of basis functions with
local support, on the other hand, does the opposite.
Invoking curvature type and other smoothing
regularization by way of quelling the data kernel
with a finitely supported smoothing function might
bring the two extremes closer together since a finite
width will be imposed on the rays. However, a
priori  bandwidth has to be determined.
Furthermore, this bandwidth is not flexible with
respect to data sampling that varies regionally. The
wavelet parameterization demonstrated in this study
is data adaptive. The spatially varying bandwidth,
that is robustly resolvable by the given data, is
automatically adapted by the local hierarchy
portrayed by the multi-resolution representation of
the pursued model variation. The example of
SSKS travel time tomography utilizing the
multi-scale parameterization has been shown to be
very easily implemented. Based on an existing
parameterization in terms of spherical pixels,
straightforward reconfiguration of the Gram matrix
yields robust solution that is less prone to the
apparent pattern of the ray distribution but till
faithfully reflect the sampling density.
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