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Theoretical derivation of the plate kinematics on a non-Euclidean surface
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Abstract

Plate kinematics on the surface of the Earth has
been described successfully by the Eulerian rotation.
It is, however, difficult to specify the kinematics of the
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lithosphere subduction. Connected with the surface
plate velocity across the pivot axis, the trench, the
velocity vector field of the subducted slab had been
conventionally defined by simply rotating the surface
Eulerian kinematics with respect to the local strike
onto the dab surface. It usualy results in unrealistic
in-plane deformation within the dab surface.
Alternatively, the flow field as well as the observed
dab geometry can be shown to be natural
conseguences of attaining the kinematic field with the
minimum dissipation power. The dependence of the
deformation derived for such flow field upon the
intrinsic geometry of the non-Euclidean surface is,
however, opaque and implicit. We derive, in this
study, the fundamental compatibility equation of the
strain-rate tensor for the specific flow field to highlight
the fundamental dependency. There are two factors;
one is associated with the variation of the product of
the Gaussian curvature and the determinant of the
metric tensor, the two characteristics of the slab
geometry, along the stream lines. The other is the
local compressibility amplified by the same product.
We discuss the implications of these factors and point
out that the argument based on mapping the Gaussian
curvature variation of the subducted dab is not enough
to delineating the potential membrane deformation of
the subducted slab.

Keywords: Plate kinematics, non-Euclidean interface,
Gaussian curvature, membrane deformation

= KGEEN

The theory of Plate Tectonics is fundamentally a
kinematic description of the relative plate motion on
the surface of the Earth. Due to the nearly perfect
sphericity of the Earth that implies uniform Gaussian
curvature, the product of curvatures measured along
two orthogona cross sections dlicing norma to the
local tangential plane, it is thus considered natural to
have relative plate kinematics defined by rotation with
respect to a single Euler pole such that there are no
intraplate deformations. The most serious deviation
from this scenario occurs within the subducted dabs.
Retaining the basic two-dimensional surface
configuration, as revealed from the hypocenter
locations of intermediate as well as deep earthquakes
and the fact that the few tens of kilometers thicknessis
relatively negligible as compared to hundreds or even
thousands kilometers of lateral extent, the fundamental



geometry is utterly different. Mainly, the Gaussian
curvature not only deviates significantly away from the
measurement obtained on the surface of the Earth
(Bevis, 1986); it is aso no longer uniform throughout
the extent of the slab within the mantle. According to
the enlightening wisdom from Gauss (1828), the free
of in-plane, or membrane, deformation is possible only
if the Gaussian curvature is preserved. It has long
been a conventiona theoretical cornerstone for the
diagnoses of the presence of the in-plane deformation
either with the study of fold structures (e.g., Lide,
1994), or the characterization of the membrane
deformation within the dab surface (Bevis, 1986;
Cahill and Isacks, 1992; Nothrad et a, 1996). In
essence, all these efforts tend to localize significant
variations of Gaussian curvature in specific places and
restate the original theorem due to Gauss to argue that
there must be inevitable in-plane deformations. It is,
however, not clear how the Gaussian curvature
variation would quantitatively enforce the in-plane
deformation within the surface.

= ~Slab kinematics based on the flow field with the
minimum dissipation power

Bevis (1986) argued that the subducted slab bears
very different Gaussian curvature. This is obvious if
we compare the measurement on Earth’s surface, the
reciprocal of the square of Earth’s radius, with that
obtained for the dlab by multiplying the down-dip
curvature  with  the aong-trench  curvature.
Furthermore, inspection of the overall geometry of the
subducted dlab, as established by the gpatia
distribution of the Wadati-Benioff seismicity, also
indicates that the Gaussian curvature is in fact not
uniform anymore across the slab surface (e.g., Nothard
et a. 1996). To characterize the subduction
kinematics, one conventional practice is to generalize
the surface Eulerian kinematics by rotating the surface
Eulerian velocity vectors onto the dab surface with
respect to the local strike.  This is the obvious choice
if the subduction takes place in a two-dimensional
setup. In redlistic dtuation, the aong strike
components tend to be important. The simply rotated
flow field not only lacks of the virtue to avoid
intraplate deformation but actually results in
unredligtically high in-plane deformations.

The scenario is best illustrated with the specific
cases where the trench shape are concave oceanward
(e.g., Chiao and Creager, 2003), as oppose to the usual
convex configurations (Frank, 1968). An obvious
example is the subduction of the northwestern corner
of the Pacific plate along the Kuril, Japan, 1zu-Bonin
and the Mariana trench systems (Figure 1). The
subducted dlab wraps around the Hokkaido and the
Honshu corner that is convex toward the overriding
Eurasia plate. Intermediate and deep seismicity
associated with the dlab indicates a shallower
subduction dip underneath the Japan Sea and forms an
arch structure.  We speculate that the pronounced

arch structure is a natural consequence for avoiding
huge amount of in-plane deformation. To test on it,
we design numerical experiment that starts with
characterizing the trench shape by regression using
simple polynomial (Figure 1). A synthetic model
slab with uniform dip throughout the trench system is
implemented (Figure 2a). For that particular
geometry, we then rotate the Pacific versus Eurasia
plate kinematics defined on the surface of the Earth
onto the specified dab surface (Figure 2c). It is
noted that this simply rotated flow field tends to
converge around the oceanward concave corner
underneath the Japan Sea and results in high
along-strike compression strain rates there (Figure 2b,
2c). We further adopt a previoudy developed
optimization scheme that seeks for the optima dab
geometry as well as the flow field on that surface that
yields the least deformation rate, or the minimum
dissipation power (Chiao, 1991; Chiao and Creager;
2002; Creager and Boyd, 1991; Creager et. a., 1995),
a quantity defined by integrating the effective strain
rates, the L, norm of each components of the strain
rate tensor, throughout the extent of the dab. It is
interesting to note that the result of minimizing the
integrated in-plane deformation rate naturally requires
an arch structure that is consistent with the observed
slab geometry portrayed by the seismicity (Figure 2d).
This geometry, along with the tuning of the subduction
flow field reduces, as expected, the in-plane
deformation by more than an order of magnitude
(Figure 2e, 2f). In summary, both the arch geometry
and the adjusted flow field are means of avoiding
severe in-plane deformation rates.  Comparison
between the simply rotated, bearing large deformation
rates, flow field (Figure 3a) and the properly adjusted
flow field on the optimal slab geometry (Figure 3c)
implies that the minimum deformation rate seems to be
a reasonable criterion for the determination of the
subduction kinematics. However, it is still not clear
how does the particular, intrinsic geometry of the dab,
manifested through the variation of its Gaussian
curvature, affect the membrane deformation and
consequently, the determination of a flow field that
might avoid in-plane deformation as far as possible.

w ~ Compatibility equation for flow fields on a 2D
non-Euclidean surface

For the flow field confined within a genera
non-Euclidean,  two-dimensiona  surface, the
associated strain-rate tensor field is defined to be the
symmetric part of the covariant spatial derivative of
the flow velocity vector field. That is,

¢, =5(Du +Du),
(D
where u,i=12, the i" component of the flow
velocity vector field, is defined within a genera



curvilinear coordinate system; D, sands for

covariant derivative and ¢, is then the strain-rate

tensor. There will be exactly one compatibility
equation to ensure that the strain-rate tensor field isin
fact compatible with a consistent flow field. If we
denote the metric tensor of the general surface by g

with  elements g and the  determinant

g=9,0, -0, , Whereas the Gaussian curvature is

denoted by K, then it can be shown (see Appendix)
that the compatibility equation is of the form,

DDe,_ +D,D.e

1-1722 22711
=—-u-V(Kg) - (Kg)Vsu

To our knowledge, this general compatibility
equation for kinematics defined for a genera
two-dimensional curvilinear coordinate, especially on
a generad non-Euclidean surface, had not been
discussed inthe past. Interesting implications of it on
the subduction kinematics will be discussed in the
following.

First of all, to be completely free from any
deformation, that is to have null strain-rates, the right
hand side of Equation (2) has to vanish. The trivia
example isfor flat plane with null Gaussian curvature,
K =0, where it is straightforward to setup a
Cartesian coordinate system and the compatibility
equation is reduced to the familiar Cartesian form

- D1D2‘912 - Dz Dlglz (2)

o'e, /oy—20"e | oxoy+d°e, /ox=0. (3)

It is still possible to have flow field with non-trivial
deformation rates. However, vanishing right hand
side of Equation (3) isindeed a necessary condition to
make it to be completely free from deformation since
otherwise it would not be possible.

Another example will be the scenario of the
Plate Tectonics on Earth’s surface, whereas all
portions of arigid plate are moving in a velocity field
defined by the rotation with respect to the same Euler
pole and the product of the Gaussian curvature, K, and
the local determinant of the metric tensor, g, will be
constant aong the streamlines. With the additional
requirement of incompressibility, the right hand
forcing term of Equation (2) vanishes as the necessary
condition leading to the absence of intraplate
deformation rates. It is interesting to notice that the
usual consensus states that the rigid plate kinematics is

possible as long as the Gaussian curvature is preserved.

We believe that this is a misinterpretation of the
origina lemma of Gauss. If it were true, then afinite
portion of a plate can have arbitrary kinematics and
still preserve its rigidity since the Gaussian curvature
is stationary on the surface of the Earth. It should be
pointed out that only when the kinematics is
describable with the rotation around a single Euler
pole does the spatial variation of Kg, not just K,
vanishes and the rigid body kinematics becomes
admissible.

% ~ Discussions

The compatibility condition (Equation 2) for the
flow velocity vector field on a general non-Euclidean
surface highlights the dependency of the embedded
deformation rate tensor field upon the intrinsic
geometry of the surface. It indicates that simply
mapping the variation of the Gaussian curvature along
the subducted dab (e.g., Nothard et. al., 1996) is not
enough to specify the potentia local in-plane
deformation. The importance of the in-plane
deformation with respect to the observed seismic
activity within the slab remains to be resolved. The
compatibility condition does not explicitly constrain
the subduction flow field. It might be inevitable to
invoke the implicit principle of minimum dissipation
power for the definition of the subducting flow field.
But the compatibility condition does highlight the
dependency of the potential deformation associated
with a given flow field upon the intrinsic geometry of
the surface that the flow is embedded within,
especially when the surface is not Euclidean and bears
non-stationary Gaussian curvature.

Appendix 1. Derivation of the compatibility
condition of flow field on a non-Euclidean surface
Starting from Equation (1) in the main text,

¢, =>(Du +Du), i,j=12 on a general 2D surface,
we would have

De, =5 (DDu +DDu)

= ;(DiDlui + Dw Dlu\ - D| Dlul + DJ D'u') (Al)

=+(DDu +Deg, +R u),
since (DD, -DD)u =R, u (eg., Danielson, 1992);
where R, =g¢"R, , R, is the Riemann curvature

tensor, and g"is the contravariant metric tensor.
Similarly, we have

De =+(DDu +De +R u),

De, =DDu =DDu -DDu +DDu
(A2)
=R u+DDu,

i 1

D& =DDu =R u+DDu.

Since R, =-R, it isnow straightforward to show
that

DDe¢ +DDe -DDe¢ —DDeg

=DDe +DDe¢

-*(DDDu +DDs +DR u)

[

(A3)

-+(D,DDu +DDe¢, +DR

o

u)

iji 1

=-DR U -DR u+R o +R o,.

jij i



But DR u=Dg"R u=DR u"=DR U ; and
notice that there are only 4 nontrivial terms in the
Riemann curvature
tm&)r' R1212 = R2121 = _R1221 = _R2112 = gK '

where K is the Gaussian curvature and g is the
determinant of the metric tensor g (e.g., Danielson,
1992), so (A3) becomes

DDe +DD.e

1 1 22 2 2 1

=-DR_U-DR_U+R_ o +R o

121 12 212 11

-DD.e¢

1 2 12

-DDge¢

2 1 12

=-DR U-DR U +R o +R. o

1 1212 2 221 121 22 212 11

(A4)

=-D,(R,u)-D,(R_u’)

1212 2121

=-V-(Kgu) = —u-V(Kg) - (Kg)V - u.
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Figure 1. Subduction system around the northwestern
Pacific where the Pacific plate is subducting
underneath the Eurasia plate along the Kuril, Japan,
Izu-Bonin and the Mariana trenches. Notice that
around the Hokkaido corner and then the Honshu
corner the trench exhibits a concave oceanward shape.
Red dash lines are low order polynomial fit to the long
wavelength shape of the trench that will be used in the
following numerical experiments. Intermediate and
deep seismicity are color coded to reveal a rough
representation of the slab geometry. It is obvious that
there is an anomalousy shallow dip for dab
subducting through the Japan trench underneath the
Japan Sea, forming an arch structure across the

subducted dab.



Figure 2. (a) Slab geometry portrayed by the 100 km
depth contours. (b) In-plane strain-rate tensor field
described by the compressional axes (bold bars) and
tensional axes (thin line segments) and (c) the
subduction flow field (paths originated from the trench
and subduct down-dip) overlaid upon the magnitude
variation of the effective strain-rates (the gray scale is
determined by the logarithms of the effective
strain-rate, i.e., gray scale -14 to -15 is for effective
strain rate with magnitude between 10 and 10™° per
second). The lower panels (ab,c) are for the
synthetic slab geometry with uniform dips along the
trench and the flow field is the velocity vector field
constructed by simply rotating the surface Euler
kinematics onto the local dab surface (notice that it
converges underneath Japan sea, causing high in-plane
strain-rate).  The upper panels (d.ef) are for
presentations of the case that we held the prescribed
dips only along selected bounding profiles (dash lines
on (@) and caculate the dab geometry and the
appropriate flow field on that surface that minimizes
the integrated in-plane deformation rates. Notice
how the resulting geometry mimics the actual dab
revedled by the Wadati-Benioff seismicity, and how
the flow field has been adjusted to avoid significant
in-plane deformation rates.
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Figure 3. Subduction kinematics with green lines
indicating particle paths. (a) Surface Eulerian
kinematics rotated onto the dab surface for the
synthetic model without the arch (Figure 23). (b) The
adjusted flow field obtained by minimizing the
integrated effective strain-rates for the given fixed slab
geometry, same as (a). (c) The subducting particle
paths on the arched dlab obtained by adjusting the flow
field and the slab geometry simultaneoudly as the
minimum dissipation power is pursued.




