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一、中文摘要

近代地體板塊理論之所以能夠精確而簡明的描
述相對板塊運動肇因於地球表面近似於理想球面
之基本幾何架構。理想球面具有均勻不變的高斯曲
度，因此容許藉助免於形變之理想旋轉流場來描述
板塊運動。但是相對板塊運動進行的舞台並不侷限
於地球表面。例如根據瓦班氏地震帶，我们知道海
洋岩石圈在隱沒進入地幔過程之中維持的形態就
是非歐氏二維空間(即具有隨位置變化的高斯曲
度)。由於免於形變的剛體旋轉式流場在非歐氏二
維空間之中已不可能，是以在這些發生於廣義曲面
上的地體活動如何建構其運動流場是理論上必須
理解的重要課題。而伴隨著特定流場所衍生的形變
在空間分佈的形態、大小與特色以及其可能展現之
地球物理觀測(例如地震活動)均是急待瞭解的研
究對象。針對這些重要課題，我們在過去的努力主
要在於推演在廣義非歐曲面上形變率張量的數值
估算方法，以及根據形變率張量計算，對於特定曲
面幾何之最佳流場(亦即形變最小流場)的預測。我
們將發展的數值計算方法應用在對於特定隱沒帶
幾何之流場建構以致於該隱沒過程中特定質點的
傳輸途徑以及可能伴隨之形變估算，提供適當解釋
不同隱沒帶若干難以理解觀測現象的理論基礎。最
近的應用尚包括嘗試合理解釋九二一集集地震沿
車籠埔斷層面上滑移向量的特殊側向變化形態。這
些相關研究之能夠提供過去未見的新視野與思考
固然令人鼓舞，但是數值計算之研究策略卻相對拙
於辨明特定曲面上，內在幾何架構(主要極可能可
以高斯曲度之側向變化來化約)與無可避免之形變
分布形態在分析上的基本理論關係。此一基礎理論
關係必須借助廣義曲面座標中二階張量之協變微
分推導。我們打算從應變率張量之可積分條件在廣
義曲面中的可能形式下手。 根據近來的思考，此
一條件使得控管黏滯流體在廣義曲面上運動的動
力平衡中，應力張量在空間的變化項中反應一個額
外的由曲度控制的應變項。我們希望完成此一關乎
正確理解及預測地體運動之基礎理論推導。

關鍵詞：板塊運動,非歐氏界面,高斯曲度,膜面形變

Abstract

Plate kinematics on the surface of the Earth has
been described successfully by the Eulerian rotation.
It is, however, difficult to specify the kinematics of the

lithosphere subduction. Connected with the surface
plate velocity across the pivot axis, the trench, the
velocity vector field of the subducted slab had been
conventionally defined by simply rotating the surface
Eulerian kinematics with respect to the local strike
onto the slab surface. It usually results in unrealistic
in-plane deformation within the slab surface.
Alternatively, the flow field as well as the observed
slab geometry can be shown to be natural
consequences of attaining the kinematic field with the
minimum dissipation power. The dependence of the
deformation derived for such flow field upon the
intrinsic geometry of the non-Euclidean surface is,
however, opaque and implicit. We derive, in this
study, the fundamental compatibility equation of the
strain-rate tensor for the specific flow field to highlight
the fundamental dependency. There are two factors;
one is associated with the variation of the product of
the Gaussian curvature and the determinant of the
metric tensor, the two characteristics of the slab
geometry, along the stream lines. The other is the
local compressibility amplified by the same product.
We discuss the implications of these factors and point
out that the argument based on mapping the Gaussian
curvature variation of the subducted slab is not enough
to delineating the potential membrane deformation of
the subducted slab.

Keywords: Plate kinematics, non-Euclidean interface,
Gaussian curvature, membrane deformation

二、緣由與目的

The theory of Plate Tectonics is fundamentally a
kinematic description of the relative plate motion on
the surface of the Earth. Due to the nearly perfect
sphericity of the Earth that implies uniform Gaussian
curvature, the product of curvatures measured along
two orthogonal cross sections slicing normal to the
local tangential plane, it is thus considered natural to
have relative plate kinematics defined by rotation with
respect to a single Euler pole such that there are no
intraplate deformations. The most serious deviation
from this scenario occurs within the subducted slabs.
Retaining the basic two-dimensional surface
configuration, as revealed from the hypocenter
locations of intermediate as well as deep earthquakes
and the fact that the few tens of kilometers thickness is
relatively negligible as compared to hundreds or even
thousands kilometers of lateral extent, the fundamental



2

geometry is utterly different. Mainly, the Gaussian
curvature not only deviates significantly away from the
measurement obtained on the surface of the Earth
(Bevis, 1986); it is also no longer uniform throughout
the extent of the slab within the mantle. According to
the enlightening wisdom from Gauss (1828), the free
of in-plane, or membrane, deformation is possible only
if the Gaussian curvature is preserved. It has long
been a conventional theoretical cornerstone for the
diagnoses of the presence of the in-plane deformation
either with the study of fold structures (e.g., Lisle,
1994), or the characterization of the membrane
deformation within the slab surface (Bevis, 1986;
Cahill and Isacks, 1992; Nothrad et al, 1996). In
essence, all these efforts tend to localize significant
variations of Gaussian curvature in specific places and
restate the original theorem due to Gauss to argue that
there must be inevitable in-plane deformations. It is,
however, not clear how the Gaussian curvature
variation would quantitatively enforce the in-plane
deformation within the surface.

三、Slab kinematics based on the flow field with the
minimum dissipation power

Bevis (1986) argued that the subducted slab bears
very different Gaussian curvature. This is obvious if
we compare the measurement on Earth’s surface, the 
reciprocal of the square of Earth’s radius, with that 
obtained for the slab by multiplying the down-dip
curvature with the along-trench curvature.
Furthermore, inspection of the overall geometry of the
subducted slab, as established by the spatial
distribution of the Wadati-Benioff seismicity, also
indicates that the Gaussian curvature is in fact not
uniform anymore across the slab surface (e.g., Nothard
et al., 1996). To characterize the subduction
kinematics, one conventional practice is to generalize
the surface Eulerian kinematics by rotating the surface
Eulerian velocity vectors onto the slab surface with
respect to the local strike. This is the obvious choice
if the subduction takes place in a two-dimensional
setup. In realistic situation, the along strike
components tend to be important. The simply rotated
flow field not only lacks of the virtue to avoid
intraplate deformation but actually results in
unrealistically high in-plane deformations.

The scenario is best illustrated with the specific
cases where the trench shape are concave oceanward
(e.g., Chiao and Creager, 2003), as oppose to the usual
convex configurations (Frank, 1968). An obvious
example is the subduction of the northwestern corner
of the Pacific plate along the Kuril, Japan, Izu-Bonin
and the Mariana trench systems (Figure 1). The
subducted slab wraps around the Hokkaido and the
Honshu corner that is convex toward the overriding
Eurasia plate. Intermediate and deep seismicity
associated with the slab indicates a shallower
subduction dip underneath the Japan Sea and forms an
arch structure. We speculate that the pronounced

arch structure is a natural consequence for avoiding
huge amount of in-plane deformation. To test on it,
we design numerical experiment that starts with
characterizing the trench shape by regression using
simple polynomial (Figure 1). A synthetic model
slab with uniform dip throughout the trench system is
implemented (Figure 2a). For that particular
geometry, we then rotate the Pacific versus Eurasia
plate kinematics defined on the surface of the Earth
onto the specified slab surface (Figure 2c). It is
noted that this simply rotated flow field tends to
converge around the oceanward concave corner
underneath the Japan Sea and results in high
along-strike compression strain rates there (Figure 2b,
2c). We further adopt a previously developed
optimization scheme that seeks for the optimal slab
geometry as well as the flow field on that surface that
yields the least deformation rate, or the minimum
dissipation power (Chiao, 1991; Chiao and Creager;
2002; Creager and Boyd, 1991; Creager et. al., 1995),
a quantity defined by integrating the effective strain
rates, the L2 norm of each components of the strain
rate tensor, throughout the extent of the slab. It is
interesting to note that the result of minimizing the
integrated in-plane deformation rate naturally requires
an arch structure that is consistent with the observed
slab geometry portrayed by the seismicity (Figure 2d).
This geometry, along with the tuning of the subduction
flow field reduces, as expected, the in-plane
deformation by more than an order of magnitude
(Figure 2e, 2f). In summary, both the arch geometry
and the adjusted flow field are means of avoiding
severe in-plane deformation rates. Comparison
between the simply rotated, bearing large deformation
rates, flow field (Figure 3a) and the properly adjusted
flow field on the optimal slab geometry (Figure 3c)
implies that the minimum deformation rate seems to be
a reasonable criterion for the determination of the
subduction kinematics. However, it is still not clear
how does the particular, intrinsic geometry of the slab,
manifested through the variation of its Gaussian
curvature, affect the membrane deformation and
consequently, the determination of a flow field that
might avoid in-plane deformation as far as possible.

四、Compatibility equation for flow fields on a 2D
non-Euclidean surface

For the flow field confined within a general
non-Euclidean, two-dimensional surface, the
associated strain-rate tensor field is defined to be the
symmetric part of the covariant spatial derivative of
the flow velocity vector field. That is,

1
2

( )
ij i j j i

D u D u  ,

(1)
where , 1, 2

i
u i  , the ith component of the flow

velocity vector field, is defined within a general
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curvilinear coordinate system;
i

D stands for

covariant derivative and
ij
 is then the strain-rate

tensor. There will be exactly one compatibility
equation to ensure that the strain-rate tensor field is in
fact compatible with a consistent flow field. If we
denote the metric tensor of the general surface by g
with elements

ij
g and the determinant

2

11 22 12
g g g g  , whereas the Gaussian curvature is

denoted by K, then it can be shown (see Appendix)
that the compatibility equation is of the form,

1 1 22 2 2 11 1 2 12 2 1 12

( g) ( g)

D D D D D D D D

K K

     

    u u
. (2)

To our knowledge, this general compatibility
equation for kinematics defined for a general
two-dimensional curvilinear coordinate, especially on
a general non-Euclidean surface, had not been
discussed in the past. Interesting implications of it on
the subduction kinematics will be discussed in the
following.

First of all, to be completely free from any
deformation, that is to have null strain-rates, the right
hand side of Equation (2) has to vanish. The trivial
example is for flat plane with null Gaussian curvature,

0K  , where it is straightforward to setup a
Cartesian coordinate system and the compatibility
equation is reduced to the familiar Cartesian form

2 2 2/ 2 / / 0xx xy yye y e x y e x     . (3)

It is still possible to have flow field with non-trivial
deformation rates. However, vanishing right hand
side of Equation (3) is indeed a necessary condition to
make it to be completely free from deformation since
otherwise it would not be possible.

Another example will be the scenario of the
Plate Tectonics on Earth’s surface,whereas all
portions of a rigid plate are moving in a velocity field
defined by the rotation with respect to the same Euler
pole and the product of the Gaussian curvature, K, and
the local determinant of the metric tensor, g, will be
constant along the streamlines. With the additional
requirement of incompressibility, the right hand
forcing term of Equation (2) vanishes as the necessary
condition leading to the absence of intraplate
deformation rates. It is interesting to notice that the
usual consensus states that the rigid plate kinematics is
possible as long as the Gaussian curvature is preserved.
We believe that this is a misinterpretation of the
original lemma of Gauss. If it were true, then a finite
portion of a plate can have arbitrary kinematics and
still preserve its rigidity since the Gaussian curvature
is stationary on the surface of the Earth. It should be
pointed out that only when the kinematics is
describable with the rotation around a single Euler
pole does the spatial variation of Kg, not just K,
vanishes and the rigid body kinematics becomes
admissible.

五、Discussions

The compatibility condition (Equation 2) for the
flow velocity vector field on a general non-Euclidean
surface highlights the dependency of the embedded
deformation rate tensor field upon the intrinsic
geometry of the surface. It indicates that simply
mapping the variation of the Gaussian curvature along
the subducted slab (e.g., Nothard et. al., 1996) is not
enough to specify the potential local in-plane
deformation. The importance of the in-plane
deformation with respect to the observed seismic
activity within the slab remains to be resolved. The
compatibility condition does not explicitly constrain
the subduction flow field. It might be inevitable to
invoke the implicit principle of minimum dissipation
power for the definition of the subducting flow field.
But the compatibility condition does highlight the
dependency of the potential deformation associated
with a given flow field upon the intrinsic geometry of
the surface that the flow is embedded within,
especially when the surface is not Euclidean and bears
non-stationary Gaussian curvature.

Appendix 1. Derivation of the compatibility
condition of flow field on a non-Euclidean surface

Starting from Equation (1) in the main text,
1

2
( )

ij i j j i
D u D u   , i,j=1,2 on a general 2D surface,

we would have

1

2

1

2

1

2

( )

( )

( ),

i ij i i j i j i

i i j i j i j i i j i i

l

i i j j ii iji l

D D D u D D u

D D u D D u D D u D D u

D D u D R u





 

   

  

(A1)

since ( ) l

i j j i k kji l
D D D D u R u  (e.g., Danielson, 1992);

where l lm

kji mkji
R g R ,

lkji
R is the Riemann curvature

tensor, and lmg is the contravariant metric tensor.
Similarly, we have

1

2
( ),

,

.

l

j ij j j i i jj jij l

i jj i j j i j j j i j j i j

l

jji l j i j

l

j ii j i i iij l i j i

D D D u D R u

D D D u D D u D D u D D u

R u D D u

D D D u R u D D u

 





  

   

 

  

(A2)

Since l l

ijk ikjR R , it is now straightforward to show

that

1

2

1

2

( )

( )

.

i i jj j j ii i j ij j i ij

i i jj j j ii

l

i j j i i i jj i jij l

l

j i i j j j ii j iji l

l l l l

i jij l j iji l iji lj jij li

D D D D D D D D

D D D D

D D D u D D D R u

D D D u D D D R u

D R u D R u R R

   

 





 

  

 

  

  

   

(A3)
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But l lm m l

i jij l i mjij l i mjij i ljij
D R u D g R u D R u D R u   ; and

notice that there are only 4 nontrivial terms in the
Riemann curvature
tensor:

1212 2121 1221 2112
R R R R gK    ,

where K is the Gaussian curvature and g is the
determinant of the metric tensor g (e.g., Danielson,
1992), so (A3) becomes

1 1 22 2 2 11 1 2 12 2 1 12

1 212 2 121 121 2 212 1

1 2 2 1

1 1212 2 2121 121 22 212 11

1 2

1 1212 2 2121
( ) ( )

( g ) ( g) ( g)

l l l l

l l l l

D D D D D D D D

D R u D R u R R

D R u D R u R R

D R u D R u

K K K

   

 

 

  

   

   

 

    u u u.

(A4)
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Figure 1. Subduction system around the northwestern
Pacific where the Pacific plate is subducting
underneath the Eurasia plate along the Kuril, Japan,
Izu-Bonin and the Mariana trenches. Notice that
around the Hokkaido corner and then the Honshu
corner the trench exhibits a concave oceanward shape.
Red dash lines are low order polynomial fit to the long
wavelength shape of the trench that will be used in the
following numerical experiments. Intermediate and
deep seismicity are color coded to reveal a rough
representation of the slab geometry. It is obvious that
there is an anomalously shallow dip for slab
subducting through the Japan trench underneath the
Japan Sea, forming an arch structure across the
subducted slab.
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Figure 2. (a) Slab geometry portrayed by the 100 km
depth contours. (b) In-plane strain-rate tensor field
described by the compressional axes (bold bars) and
tensional axes (thin line segments) and (c) the
subduction flow field (paths originated from the trench
and subduct down-dip) overlaid upon the magnitude
variation of the effective strain-rates (the gray scale is
determined by the logarithms of the effective
strain-rate, i.e., gray scale -14 to -15 is for effective
strain rate with magnitude between 10-14 and 10-15 per
second). The lower panels (a,b,c) are for the
synthetic slab geometry with uniform dips along the
trench and the flow field is the velocity vector field
constructed by simply rotating the surface Euler
kinematics onto the local slab surface (notice that it
converges underneath Japan sea, causing high in-plane
strain-rate). The upper panels (d,e,f) are for
presentations of the case that we held the prescribed
dips only along selected bounding profiles (dash lines
on (a)) and calculate the slab geometry and the
appropriate flow field on that surface that minimizes
the integrated in-plane deformation rates. Notice
how the resulting geometry mimics the actual slab
revealed by the Wadati-Benioff seismicity, and how
the flow field has been adjusted to avoid significant
in-plane deformation rates.

Figure 3. Subduction kinematics with green lines
indicating particle paths. (a) Surface Eulerian
kinematics rotated onto the slab surface for the
synthetic model without the arch (Figure 2a). (b) The
adjusted flow field obtained by minimizing the
integrated effective strain-rates for the given fixed slab
geometry, same as (a). (c) The subducting particle
paths on the arched slab obtained by adjusting the flow
field and the slab geometry simultaneously as the
minimum dissipation power is pursued.


