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ABSTRACT

To account for the uneven sampling of current measurements collected by acoustic Doppler current profilers
(ADCPs), a robust, three-dimensional interpolation scheme based on the multiresolution representation of the regional
mean and tidal current fields is proposed. Instead of reconstructing the tidal field by getting bin-averaged time
series that rely on heavy sampling or invoking radial basis function expansions, such as using the biharmonic
splines with subjectively selected knots, the resolving capability of the proposed scheme relies fundamentally
on the scale hierarchy of the resolvable local information constrained by the data. It is demonstrated that the
proposed scheme flexibly incorporates the merits of the two conventional techniques. It enforces the resolution
of model information while accommodating the local sampling density. Since it is based on a knots network
defined by regular grids, attempts at experimentally and subjectively constructing the proper number and locations
of controlling nodes are avoided. Constructing multiresolution representation of the current fields in terms of
the three-dimensional wavelet basis is implemented by the computationally effective discrete wavelet transform
of coefficients of the interpolation equations. Applications of the proposed multiresolution scheme on artificial
as well as field datasets of the ADCP measurements demonstrate that it is a promising approach.

1. Introduction

The acoustic Doppler current profiler (ADCP) has
become an indispensable tool for ocean current mea-
surements in recent years. However, uneven sampling
in both space and time has rendered the systematic pro-
cessing of ADCP measurements difficult and diminished
its potential impact on the effective mapping of ocean
currents. Fortunately, the dominant transient variations
of currents are usually composed of tidal variations with
known periods. Separating the transient signal and in-
terpreting the spatial pattern of the regional current field
based on the ADCP measurements thus rely on robustly
reconstructing the spatially continuous variations rep-
resenting the tidal fields. One method is to build a baro-
tropic or even a baroclinic numerical model of the tides
for the specific study region as the reference model for
detiding the ADCP data (Foreman and Freeland 1991).
Assimilation of the ADCP data into the barotropic mod-
el (Dowd and Thompson 1996; Bogden and O’Donnell
1998) makes use of the information from the field data
yet demands extensive a priori knowledge of the local
tidal fields under study.
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Alternatively, the second school of techniques de-
veloped for detiding the ADCP data attributes the tran-
sient variation to known periods of the regional tides
and these techniques are essentially different schemes
of spatial interpolation. This may include straightfor-
ward segmenting of the ship track into horizontal bins
and constructing the time series, by ignoring spatial var-
iation, within a bin-for-bin harmonic analysis (Simpson
et al. 1990). Sites without adequate sampling of the
transient variation to construct the time series have to
be interpolated from nearby bins with available infor-
mation (Geyer and Signell 1990). Candela et al. (1990,
1992), on the other hand, invoke polynomials and the
biharmonic splines as interpolating functions to expand
the spatial variations of the tidal fields. Although these
expansions have been implemented to depict lateral var-
iation utilizing the depth-averaged current measure-
ments, Münchow (2000) generalized the technique to
the three-dimensional space in a current velocity survey
in coastal waters. Since these exploited interpolating
functions are of fixed spatial forms, the derivation of
the optimal number and locations of where these a priori
functions should be located within the study region be-
comes extremely critical. The locations are usually se-
lected subjectively.

Sampling density of the ADCP data in both space
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and time is usually highly heterogeneous. It is thus un-
realistic to expect that the scale spectrum of the resolv-
able components will be uniform throughout the study
region. This important aspect of the interpolation and
detiding of the ADCP data has not been explored and
is one of the major motivations for the present study.
We believe that the well-developed multiresolution rep-
resentation of a function (Mallat 1989a,b) has merits
for devising a data-adaptive interpolation scheme with-
out tedious efforts of pinning the controlling nodes. We
will briefly review the methods of interpolating the
ADCP data and develop an alternative scheme of the
multiresolution parameterization based on the three-di-
mensional wavelet basis functions.

2. Method

a. Bin averaging and radial basis function expansion

Based on the presumption that the dominant transient
variations of coastal currents are composed of tidal var-
iations with known periods, each of the components of
the current velocity vector field measured by the ADCP
is represented by

M

u(r , t ) 5 u (r ) 1 [b (r ) cos(v t )Oi i 0 i j i j i
j51

1 c (r ) sin(v t )] 1 « . (1)j i j i i

That is, for the ith data ui 5 u(r i, ti), r i 5 (xi, yi, zi)T

and ti are the position and time the measurement is
made; «i is the measurement noise or any component
not accounted for by the mean field u0 and the M in-
voked periods of tidal component bj, cj. It is clear that
an implicit assumption embedded within (1) is that all
of the transient variation is attributable to the tidal com-
ponents. This might be true for a survey across a short
duration of time, but it will be invalidated when at-
tempting to combine historical datasets that might last
over years. Under those circumstances, it is possible to
add in extra terms to u0, such as low-order polynomials
of time, to compensate for the long period transient
component in the mean field. However, the additional
degrees of freedom would certainly downgrade the fit-
ting unless heavy sampling is available. Once the types
(K1, M2, . . .) and the number (M) of periods are de-
termined based on a priori information from other ob-
servations or experiences obtained from previous re-
gional studies, the task is then to reconstruct the intrin-
sically continuous field u0, bj, cj ( j 5 1, . . . , M) based
on the finite dataset ui (i 5 1, . . . , N), which is usually
distributed both sparsely and unevenly. One method is
to sort data points into regular horizontal bins along
ship tracks and construct time series for a particular bin
assuming spatial variations are negligible within the bin.
Harmonic analysis by least squares fitting to the ob-
tained time series for each bin is then performed to
separate the mean field and the tidal fields. In general,
high sampling density is required to ensure that there

are enough constraints, with adequate time coverage,
within a particular bin for resolving the tidal compo-
nents. Furthermore, there is a potential problem with
space–time aliasing. Namely, if the width of a particular
bin is chosen to be too narrow, there may not be enough
sampling for a successful harmonic analysis to recover
the tidal components robustly. On the other hand, a bin
that is too wide might bear significant lateral variations
that will be mapped into a transient variation of the tidal
components obtained from a naı̈ve harmonic analysis.

Another technique to detide the ADCP data (Candela
et al. 1990, 1992) takes an approach that can be cate-
gorized as the radial basis function (RBF) expansion.
A RBF expansion (e.g., Kirby 2001) of a continuous
spatial function f (r) is approximated by a finite set of
degrees of freedom, wk:

K

f̃ (r) 5 w f(r, r ), (2)O k k
k51

where rk denotes the particular knot location associated
with the kth RBF f(r, rk). In the case of representing
the ADCP data with the chosen RBF, the current velocity
field, (1), is of the form

u(r, t) 5 a f(r, r )O k k
k51

M

1 b cos(v t)w(r, r )O O jk9 j k9[j51 k9

1 g sin(v t)c(r, r ) . (3)O jk 0 j k0 ]k0

Although the number of knots, k, k9, k 0, and the RBFs,
f, w, c, can be different for the mean field and the tidal
components, a considerably simplified expression can
be cast as

K M

u(r, t) 5 a 1 [b cos(v t) 1 g sin(v t)]O Ok jk j jk j5 6k51 j51

3 f( |r 2 r | ). (4)k

Notice that the spatial dependence of the RBF is usually
defined in terms of the distance, | r 2 rk | , away from
the knot location, rk. Expression (4) is fitted to the
ADCP measurements in the least squares sense to de-
termine the K(2M 1 1) coefficients ak, b j k, g j k. That
is, we seek coefficients that minimize the misfit NSi51

( 2 )2, where is one of the N current velocityobs pre obsu u ui i i

observations and is the velocity predicted by (4) atpreu i

the time and place is observed. Although there areobsui

various types of admissible RBFs (Kirby 2001, Table
7.1), f in (4), that perform differently, the biharmonic
splines (Sandwell 1987) and polynomial functions have
been very popular for the interpolation of ADCP data
(e.g., Candela et al. 1990, 1992; Foreman and Freeland
1991; Münchow 2000). These RBFs can be categorized
as being of a global type (Kirby 2001), since in con-
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straining the coefficients, ak, b jk, g j k of (4), data ob-
served far away from a particular knot do not have
decaying influences as compared to the nearby obser-
vations. It is interesting that other RBFs, such as a
Gaussian function that behaves locally, have seldom
been considered in interpolating the ADCP data. It is
reported that the performance of these particular inter-
polating functions depends critically on the number and
locations of the controlling nodes (or knots), that is, K
and rk in (4). The main reason for this is that due to
the transient variation, the ADCP observations at any
instant are usually distributed highly unevenly through-
out the study region, even though the ship tracks are
usually carefully planned for a typical survey. Both of
the number K and the locations rk have to be carefully
designed for any chosen RBFs such that rich informa-
tion in the well-sampled area is not wasted whereas
unstable complexities, not robustly constrained by the
data, will not be introduced into the constructed fields
for a poorly constrained area. As a consequence, the
process of selecting nodes is usually achieved empiri-
cally through tedious experiments, which depend on the
subjective decisions of the practitioner (e.g., Münchow
2000).

b. Regular gridding

Instead of pinning a specially designed knots net-
work, it is straightforward to construct a regular three-
dimensional tessellation with grid intervals Dx, Dy, Dz.
That is, the 3D computation domain of lx 3 ly 3 lz is
subdivided into K 5 Kx 3 Ky 3 Kz pixels (or cubic
cells), with Kx 3 Dx 5 lx, etc. Based on the regular
grid and a chosen RBF, coefficients of (4) can be
grouped into the following K-dimensional vectors: a,
b j, g j with elements a lmn, where l 5 1, . . . , Kx, m 5
1, . . . , Ky, n 5 1, . . . , Kz, for the mean field u0(r); and
b j lmn, g j lmn for each of the invoked harmonics, bj(r),
cj(r), j 5 1, . . . , M, as in Eq. (1). Equation (4) can be
reduced to

M

u 5 a · a 1 [b · b 1 c · g ] or (5)Oi i i j j i j j
j51

u 5 G m ,i i j j

 a 

b1  g1 T T T T Tm 5 , G 5 [a b c b c · · ·] , (6)   i i i1 i1 i2 i2b2

g2  
_  

where ui 5 u(ri, ti) is the ith ADCP measurement ob-
served at time ti and location ri, and transposes of col-
umn vectors 5 [f( | r i 2 r1 | ) f( | r i 2 r2 | ) · · · f( | r i

Tai

2 rK | )], 5 [f( | r i 2 r1 | ) cos(wjti) f( | r i 2 r2 | )Tbij

cos(wjti) · · · f( | r i 2 rK | ) cos(wjti)] 5 cos(wjti) , andTai

5 sin(wjti) are elements of the G matrix constrain-T Tc aij i

ing the model parameter vector m. As mentioned earlier,
popular RBFs for the interpolation of the ADCP data
such as the polynomials and the biharmonic splines tend
to behave globally. One advantage of invoking a local-
type RBF such as a Gaussian function is that the G
matrix in (6) will be very sparse, since influences from
faraway knots decay rapidly with increasing distances
for a particular observation. It is well known that a
sparse matrix is numerically much easier to solve than
a full matrix (e.g., Paige and Saunders 1982; Press et
al. 1992). Physically, it also makes sense to have the
interpolation of the current speed behave locally; that
is, the interpolation at a particular site should not depend
on constraints very far away. An example of such a
local-type RBF can be a boxcar function:

1, |x 2 x | # Dx/2,k |y 2 y | # Dy/2,kf( |r 2 r | ) 5 (7)k |z 2 z | # Dz/2k
0, otherwise,

where r 5 (x y z)T and rk 5 (xk yk zk)T. Equations (5)
and (6) then take the form

M

u 5 d d d a 1 [b cos(v t )Oi pl qm rn lmn jlmn j i5 j51

1 g sin(v t )] , (8)j lmn j i 6
where \xi 2 pDx\ # Dx/2, \yi 2 qDy\ # Dy/2, \zi 2
rDz\ # Dz/2.

To obtain model parameter vector m by solving Eq.
(8) in the least squares sense will be very similar to
executing the bin averaging within a cell that has ad-
equate observations. In general, the G matrix in (6) is
very likely to be singular, since fields of the undersam-
pled pixels are not resolvable. Numerically, we have to
regularize the potentially ill-posed system (e.g., Tik-
honov and Goncharsky 1987), or invoke the damped
least squares method (DLS; e.g., Lines and Treitel 1983)
rather than the straightforward least squares fitting. This
is done by minimizing a weighted sum of the misfit and
the model norm, \uobs 2 uobs\ 1 l\m\, rather than the
misfit only. In the above expression, \·\ denotes the L2

norm of a vector and the damping factor l controls the
relative rigor of the regularization (or damping). The
value l is usually determined by the variance-reduction
versus model-variance trade-off analysis. Briefly, the
variance reduction is defined to indicate the capability
of an obtained model (m) to reconstruct the observed
data (d). It can be calculated by

2\Gm 2 d\
y 5 1 2 3 100%. (9)r 21 2\d\

On the other hand, the model variance is a measure of
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FIG. 1. Pyramid algorithm (Mallat 1989a) that performs a fast wave-
let transform or the multiresolution decomposition of a discrete signal
x. Here, L, H are low-pass and high-pass filters corresponding to a
particular chosen wavelet basis function. Convolution of the smooth
signal si at the ith level with L and H generates the smooth signal
si21 and the detail di21 at the next lower and coarser level while the
characteristic scale length is doubled.

the uncertainty of a model obtained from noisy data; it
is computed (Paige and Saunders 1982) by

K(2M11)

2s 5 sOm l
l51

2 2 2 21Ts 5 \d 2 Gm\ s , s 5 diag[(G G 1 l I) ].l ll ll

(10)

It is noted that heavier damping set up by a large value
of l usually leads to a robust model (lower sm), but
sacrifices the data fitting (lower yr) at the same time.
We will show in the applications below how the trade-
off between model robustness and data fitting helps to
determine an appropriate l and an optimal model.

The regularized solution of (8) is numerically stable
but yields negligible amplitude for undersampled pixels.
One method of improving this situation is to simply
enlarge the extends of these undersampled pixels such
that enough constraints can be accumulated. This will
be analogous to techniques used in variable cell param-
eterizations, which have been implemented in modern
seismic tomography (Bijwarrd et al. 1998; Gualtiero and
Vesnaver 1999), or imposing regularization criteria of
model smoothness instead of model norm (e.g., Mey-
erholtz et al. 1989). The latter approach is effectively
analogous to letting the RBFs, f( | r 2 rk | ) invoked in
the ADCP interpolation, have lengthened influences
across neighboring pixels so that constraints farther
away can be taken advantage of. This can be achieved,
for example, by having wider characteristic correlation
lengths sx, sy, sz in a Gaussian-type RBF of the form
A exp^20.5{[(x 2 xk)2]/ 1 [(y 2 yk)2]/ 1 [(z 22 2s sx y

zk)2]/ }&. In both of these two approaches, an efficient2s z

scheme of scanning through the spatially heterogeneous
distribution of the ADCP observations at a particular
time has to be implemented. The intension is to differ-
entiate the well-sampled and the poorly sampled areas
and then modify either the geometric configurations of
the grids or the RBFs of those poorly sampled areas.
Without such a scheme, these modifications would be
carried out subjectively, just like the conventional knots
planning. Furthermore, variations across time embedded
in the ADCP measurements complicate the process and
potentially render the operation of grouping nearby pix-
els impractical.

To briefly summarize, we have built a 3D knots net-
work based upon regular grid intervals for the ADCP
interpolation instead of subjectively pinning knots with-
in the study region. It is obvious that some of the knots
are very likely to be without appropriate data con-
straints. Consequently, the resulting matrix equation has
to be regularized. For a regular grid, a least squares
solution of the ADCP interpolation obtained by the
model norm regularization is analogous to the conven-
tional bin-averaging results. On the other hand, regu-
larization criteria based on the model smoothness leads
to results similar to these for least squares solutions for

an RBF expansion with long correlation length. We will
introduce our proposed multiresolution approach in the
following section and demonstrate that it flexibly in-
corporates the merits of these two conventional tech-
niques. These three different approaches will be further
compared for applications on real and synthetic datasets.

c. Multiresolution representation

A tessellation created with regular grids avoids sub-
jective decisions made on the locations of the control-
ling knots. However, as just discussed in the previous
section, intrinsically heterogeneous sampling of the
ADCP data downplays this advantage unless a data-
adaptive reorganizing scheme is at hand. This scheme
should enable the resolution of details of the current
fields for a densely sampled area, but also conserva-
tively preserve the robust resolution of large-scale struc-
tures for regions with fewer available constraints. In the
following, we will first introduce, very briefly, a simple
example of the discrete wavelet transform (DWT) and
show that the corresponding concept of multiresolution
representation proposed by Mallat (1989a,b) helps to
devise such a scheme (see also Chiao and Kuo 2001;
Chiao and Liang 2003).

Without loss of generality, we take a general 1D time
series as an example to help summarize the essence of
the DWT. The most straightforward generalization to
higher dimensions can be achieved by direct tensor
products (Press et al. 1992; Mallat 1998). For the 1D
time series x 5 (x1, x2, . . . xi, . . . xN)T sampled at very
Dt, the DWT (e.g., Bruce and Gao 1996; Mallat 1998)
can be undertaken by the numerically efficient pyramid
algorithm (Mallat 1989b), which decomposes the time
series into a low-passed signal and a high-passed detail
successively at each level with increasing scale lengths
(Fig. 1). Specifically, if we choose to construct the high-
pass filter by the simple Haar wavelet basis, then starting
from the original signal x with scale length Dt, desig-
nated to be at the highest scale level (nl) or the leaves
level, we can generate the low-passed signal snl21 and
the high-passed signal dnl21 at the lower scale level (nl
2 1) by
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FIG. 2. Trade-off curves of the multiresolution interpolation of (top)
the y component, which is in the alongshore direction, and (bottom)
the u component, which is normal to the coast in the off-shore area
near the outlet of the Tamshui River. The vertical axis is marked by
percentage of variance reduction [Eq. (9)], which is an integrated
measure of the data fitting. Values on the horizontal axis, in logarithm,
stand for model variance defined by (10), which is a global measure
of the model uncertainty, manifested from the data noise, of the
reconstructed flow fields.

s 5 [s 5 (x 1 x )/2, . . . ,nl21 nl21,1 2 1

s 5 (x 1 x )/2]nl22nl21,2 N N21

d 5 [d 5 (x 2 x )/2, . . . ,nl21 nl21,1 2 1

d 5 (x 2 x )/2]. (11)nl22nl21,2 N N21

In other words, the low-pass filtering for this partic-
ular wavelet basis is simply taking the algebraic average
of every neighboring pair. This operation generates the
signal snl21 as a realization of the original time series at
a lower scale level (nl 2 1) with a lengthened scale of

2Dt. To be able to restore the original signal x, we also
have the high-passed detail signal dnl21 at the same scale
level. The original N degrees of freedom is thus split
equally into both the smooth signal snl21 and the detail
dnl21 at a lower scale level. The signal can be further
decomposed successively into snl22 and dnl22 at an even
lower scale level (nl 2 2) and a larger scale until the
lowest level, also known as the root level, is reached
where s1 and d1 are generated. The result of the accom-
plished transform of x yields

y 5 W(x),

s d d d1 1 2 i
| | | |

| | | | | | | |

y 5 (s , d , d , d , . . . , d , . . . , d ,i211,1 1,1 2,1 2,2 i,1 i,2

dnl
|

| |
Td , . . . , d ) , (12)nl21nl,1 nl,2

where x is the original realization with the characteristic
scale Dt; s1 is the signal realized at scale length NDt
and d i is the detail signals at a scale length in between
Dt and NDt. That is, y consists of the basic smooth
signal s1 at the root level that has the long characteristic
scale NDt, and all the details at successively shorter
scales. The reason that this is a multiresolution repre-
sentation is due to the fact that we can always construct
the signal realized at all different scales. For example,
combining s1 and d1 reconstructs s2, and successively
blending in details at shorter scale generates s i, which
would eventually rebuild the original signal fully at the
highest resolution. This reconstruction is essentially the
inverse of the wavelet transform:

21x 5 W (y). (13)

More general wavelet bases other than the Haar wave-
let have been widely utilized to build the low-pass and
the high-pass filters (e.g., Mallat 1998). These wavelet
bases are mutually orthogonal across different scale lev-
els whereas the low-pass basis and the high-pass basis
at the same level are also orthogonal to each other. How-
ever, the latter requirement has been relaxed in order to
have a symmetric basis without skewed filtering (Cohen
et al. 1992). It leads to the development of the family
of biorthogonal wavelets (Cohen et al. 1992; Mallat
1998). A wavelet transform utilizing the biorthogonal
wavelet bases has two complementary bases sets at each
scale level. One set is named the primary basis and the
other is the dual basis. The low-pass basis and high-
pass basis at the same scale level from each of the same
bases set are not mutually orthogonal. However, bases
from the primary set are always orthogonal to bases
from the dual set. It is customary to denote the wavelet
transform utilizing the primary wavelet basis by W(x),
and the wavelet transform utilizing the dual basis by
W*(x) (e.g., Bruce and Gao 1996). Due to the biorth-
ogonality, any inner product between two signals x1 and
x2 will have
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FIG. 3. (a) Map view of the spatial sampling of the ADCP measurements. The thin frame
demarcates the interpolation region. (b) Multiresolutionally interpolated mean flow of a vertical
layer centered at a depth around 25 m. (c) Tidal ellipses of M2 of the same layer. (d) Tidal
ellipses of K1 of the same layer.

x · x 5 W*(x ) · W(x ) 5 W(x ) · W*(x ). (14)1 2 1 2 1 2

In the formulation (5), we solve (6) to obtain coef-
ficients a of the mean field, as well as other tidal com-
ponents b j, g j, on pixels defined by regular grids. In-
stead of solving for a directly, it is plausible to solve
a matrix equation constraining the multiresolution rep-
resentation W(a). The advantage of doing this is that
there is a natural scale hierarchy embedded within W(a)
due to the multiresolution representation. This enables
resolving large-scale structures robustly, when solving
the matrix equation constraining W(a), and gradually
moves up the hierarchy for short-scale details depending
on the local sampling. The underlying reason is that
large-scale components are always constrained by more
observations. To formulate the matrix equation for
W(a), we take advantage of (14) and rewrite (5) as
u 5 W*(a ) · W(a)i i

M

1 [W*(b ) · W(b ) 1 W*(c ) · W(g )]. (15)O i j j i j j
j51

Thus, instead of reformulating the interpolation equa-
tion using the wavelet bases, a direct wavelet transform
of each row of the G matrix in (6), such as W*(Gi),
would compose the new matrix constraining W(m). The
solution can then always be inverse transformed to ob-
tain the mean field as well as the tidal components, at
different scale levels, hidden in the ADCP data. In short,
since neither the time step nor the spatial sampling in-
terval of the ADCP data is uniform, it is not possible
to perform the usual DWT on the ADCP data directly.
Instead, we take advantage of (15) and solve the re-
configured G matrix with rows W*(Gi) to obtain W(m),
the wavelet transformed mean and tidal fields.

3. Applications to field data and test example

a. Field data

The Tamshui River is a major river system in northern
Taiwan. Its outlet into the Taiwan Strait has been an
important focus of research in recent years. We executed
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FIG. 4. Vertical variation of the mean current speed of the results obtained utilizing the
proposed multiresolution parameterization: (a) the surface layer (from 0 to 15 m) and (b) the
bottom layer (from 45 to 60 m). Also shown are the speed contours of the surface mean current
obtained from a different method: (c) pixel-based DLS solution of fitting Eq. (8) to the observed
data. This is in essence similar to the conventional bin-averaging scheme that lacks the capability
of spatial interpolation. (d) RBF expansion invoking the Gaussian-type RBF with the correlation
lengths defined to cross over neighboring pixels that are within three grid intervals in the three
spatial directions, respectively.

a combined survey using three different ADCPs during
1–3 July 2001 to study the spatial patterns of the current
field in this area. The entire survey covers only 36 h,
about 3 semidiurnal or 1.5 diurnal periods. The hull-
mounted 75-kHz RDI ADCP provides robust sampling
with relatively low vertical resolution whereas mea-
surements made by a Sontek 500-kHz side-mounted
and an RDI 600-kHz towed instrument reveal high ver-
tical resolution but appear to yield noisier measure-
ments. The towing catamaran is designed to operate
stably in wavy water with a towing speed of 6 kt. The
bin depth is set to 1–4 m and the average time interval
is 1–4 min. The collected data are screened to remove
outliers. The criteria are set such that the acceptable
data are characterized by a percentage valid reading

above 85%, error velocity and vertical velocity of less
than 15 cm s21, ship speed at 50 ; 300 cm s21, and a
change in heading of less than 28 min21. Comparison
among measurements obtained from the three different
ADCPs suggests that the vertical averaged flows at a
site measured by the three different profilers are almost
identical. For example, the cross-correlation coefficients
between the towed ADCP and the hull-mounted ADCP
are 0.98 and 0.97 for the u and y components, whereas
the corresponding root-mean-square errors are 10 and
8 cm s21, respectively. The calibrated data amount to a
set of 17 000 velocity measurements. The interpolation
carried out on the field data to map the coastal currents
reveals some very interesting features.

As discussed earlier, three-dimensional tessellation is
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FIG. 5. Evolution of the tidal flow (both of the M2 and K1 combined) across a period of
T 5 12.42 h. (top-left panel) The snapshot is first arbitrarily set at the initial time of the survey,
and subsequently displayed at t/T 5 l/2, l, 3l/2.

first constructed upon the surveyed coast area near the
outlet of the Tamshui River by 32 3 64 3 4 cells. The
size of the cell is about 420 m in both directions normal
to and along the coastline, whereas the layer thickness
is about 15 m in the vertical direction. The data equa-
tions describing each measurement, (5), are reconfigured
according to (15) such that the solution will be the mul-
tiresolution representation of the mean and tidal flows.
Several inversions with different damping factors are
executed to construct the trade-off curve (Fig. 2). The
optimal solution (circled in Fig. 2) is obtained by tuning
the damping factor along the trade-off curve such that
a solution achieves satisfactory fitting to the observed
data without embracing high model variance or uncon-
strained model complexity. Although there is actually
more than one solution within the circled corner on the
trade-off curve (Fig. 2), the fact that the differences in
the current structure revealed from all these solutions
are negligible will suffice for our purposes. As indicated
in Fig. 2, the variance reductions saturate at about 70%
for the x direction (normal to the coast) and around 90%
for the y direction (along the coastline), respectively. It
is obvious that any solution obtained with a damping
value lighter than the optimal solution will not achieve
significant improvements on the data fitting, but the
model variance might increase by several orders of mag-
nitude. On the other hand, heavier damping will further

decrease the model variance, but the side effect is that
the variance reduction also plunges down rapidly.

The map view pattern of the interpolated mean flow
as well as the tidal ellipses for both the M2 and the K1
tides of one of the four layers (at the depth range of
15;30 m) are shown in Fig. 3. It is clear that the dom-
inant transportation is in the along-coast direction. Sig-
nificant vertical variations across the depth direction are
implied from the interpolated result (Figs. 4a,b). Fur-
thermore, the interpolated surface mean flow is com-
pared with results obtained through bin averaging (Fig.
4c) and the RBF expansion (Fig. 4d). There is an ob-
vious resemblance between the results from the RBF
expansion (Fig. 4d) and from the multiresolution inter-
polation (Fig. 4a). However, it is also obvious that the
RBF results are characterized by a uniform smoothness,
which is a manifestation of the imposed correlation
length of the chosen RBF. On the other hand, there is
no specific, a priori choice imposed along with the mul-
tiresolution approach, and it acquires the final, seem-
ingly smooth, result by accommodating through the re-
solvable scale hierarchy determined by the local sam-
pling. To avoid leaving out useful information, one pos-
sible strategy of undertaking the fitting by the RBF
expansion is to start with a sparse grid using an RBF
with long correlation length (e.g., long sx, sy, sz for a
Gaussian function in 3D space). This is then followed
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FIG. 6. Distribution of fitting residuals through time (a), (c) irrespective of the spatial locations
and (b), (d) across the study region. The upper row [(a), (b)] is for the alongshore y component,
whereas the lower row [(c), (d)] is for the across-shore u component.

by gradually shortening the grid intervals and the cor-
relation lengths of the RBF until the obtained current
model does not gain significant additional details. This
approach will be analogous to the multigrid algorithm
in numerical modeling (e.g., Wesseling 1991). Our mul-
tiscale parameterization, however, handles the partition-
ing among different scales simultaneously due to the
multiresolution representation of the current field.

The time evolution of the surface tidal flow is also
depicted in Fig. 5. To examine the data fitting, the re-
siduals across the survey duration (Figs. 6a,c) as well
as those distributed within the survey area (Figs. 6b,d)
are also displayed. The root-mean-square fitting resid-
uals for both directions are 7 and 6 cm s21, respectively.
Although there have not been detailed studies under-
taken in the same area, there are two recent tide models
built for the Taiwan Strait including our surveyed area
that can be used for comparison. Since our complete
study region appears to be one single point within both
the barotropic model of Jan et al. (2001), and the his-
torically averaged low-resolution model of Wang et al.

(2003), we take the spatial median of each of the ver-
tically averaged current fields of our results and compare
them to predictions made by these models. The com-
parison indicates that our median tidal flow is consistent
with the tidal flow, with a 81.6 cm s21 major axis and
8.51 cm s21 minor axis, interpolated by Wang et al.
(2003) at this area, which is also compatible with the
prediction made by the barotropic model of Jan et al.
(2001). The median speed of our mean flow, however,
is slightly higher, 24 cm s21, as compared to the 16 cm
s21 speed predicted by Wang et al. (2003). Furthermore,
the relative amplitude spectrum of the mean and the M2
and K1 tides is also compared to the harmonics obtained
from a sea level observation within our study region
and appears to be consistent.

b. Test example

To further appraise the performance of the multireso-
lution detiding scheme, it is desirable to test the method
on an artificial dataset with known spatial and transient
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FIG. 7. Interpolated results of the test example. (a)–(c) Plots of the artificial flow field (without the implanted noise),
which comprises a smooth mean flow with the linear across-shore speed variation and a simple M2 pattern. (d)–(f) Fitted
results obtained with the multiresolution parameterization. (g)–(i) Results from the RBF expansion.

structures so that the results can be compared. The ar-
tificial data adopt the identical sampling portrayed by
the field data (Fig. 3a), whereas the synthesized current
consists in a simple along-coast mean field with linear
across-shore speed variation and an M2 tide, also with
noticeable spatial variation (Figs. 7a,b). There is also
random noise of about 10% of the peak value of the
imposed amplitude of the flow field added to the arti-

ficial data. Specifically, as the peak speed of the mean
flow and the M2 tide are both set at 50 cm s21, their
spatial means amount to 25 and 15 cm s21, respectively.
Observation errors are then simulated by adding random
numbers within the range of 10 cm s21 to the obser-
vations. Since the sampling is the same with the field
data, there is no need to perform the trade-off analysis
again to determine the damping factor, because the rigor
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FIG. 8. Similar to Fig. 7 except that the speed contours are presented instead of the velocity vectors and
the tidal ellipses.

of the applied damping depends mainly on the sampling.
The fitted result indicates an acceptable description of
the mean field (Fig. 7d) as compared to the assumed
reference field (Fig. 7a). The pattern of the M2 tide is
also approximately reconstructed (cf. Fig. 7e with Fig.
7b). It is clear that while variations in the well-sampled
area are recovered rather well, only large-scale com-

ponents are recovered within regions relatively far away
from ship tracks. However, there is also an apparent K1
component within the fitted result (Fig. 7f) that should
be absent, since no K1 component is imposed within
the artificial data. The obtained K1 component is spec-
ulated to be a manifestation of the imperfect sampling
as well as the significant level of implanted noise. In a
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supplementary experiment, we find that the amplitude
of the obtained K1 component increases significantly
with an even higher implanted noise level. Furthermore,
it should also be remembered that it is, in general, dif-
ficult to actually detide a dataset that lasts for only
36 h, unless we have a priori knowledge that the tidal
spectrum is strongly dominated by the M2 field. The
results obtained via the RBF expansion, instead of the
proposed multiresolution parameterization, are similar
but seem to be noisier (Figs. 7g–i). To further clarify
the comparisons just described, we also examined the
amplitude of the current from the imposed structure
(Figs. 8a–c), the results from fitting with the multireso-
lution parameterization (Figs. 8d–f), and the results from
the RBF expansion (Figs. 8g–i). It is apparent that the
ghost K1 components embedded within both the fitting
results (Figs. 8f,i) are only slightly above the implanted
noise level, mostly well below 15 cm s21. Furthermore,
it is also clearly implicated from these reconstructed
patterns of amplitude that the sampling of our survey
(Fig. 3a) is capable of recovering only the relatively
large-scale structures in general.

4. Discussion and concluding remarks

Systematic interpolation and detiding of ADCP data
is an important challenge for effective and efficient map-
ping of the coastal currents. Due to the highly uneven
sampling, the resolvable current structures are not likely
to have a spatially uniform scale spectrum. To extract
structures of different scales at different locations ac-
cording to the available data constraints should be a
major concern. In this respect, the proposed multiresolu-
tion detiding scheme is a natural data-adaptive scheme
that keeps the complete structure of the space-scale hi-
erarchy in the parameterization. The resolvable scales
that vary spatially are sorted by the rigor of regulari-
zation that sets a threshold on the robustness of the
obtained model parameters. In essence, it automatically
adjusts the adequate scale bandwidths that have enough
samples suitable to be processed by the harmonic anal-
ysis, such that the local mean field and tidal fields can
be separated at different scales. In contrast, the bin-
averaging scheme has only a fixed characteristic scale
set up by the grid intervals. Interpolation schemes in-
voking biharmonic splines or other RBF types of in-
terpolation functions have a priori scale bandwidths that
are inherited from the particular chosen functions and
are irrespective of the data constraints. In this sense, the
multiresolution scheme incorporates merits of these two
previously popular techniques, which operate at spa-
tially different scales depending upon the local data con-
straints. It is implemented by the straightforward wave-
let transform of the constraining equations in the three-
dimensional space and is numerically efficient.
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