Novel Polyhydroxysteroids from the Formosan Soft Coral Sarcophyton glaucum

Guey-Horng Wang^{a,b}(王貴弘), Jui-Hsin Su^a(蘇瑞欣), Chien-Ting Chen^a(陳建廷), Chang-Yih Duh^a(杜昌益), Chang-Feng Dai^c(戴昌鳳) and Jyh-Horng Sheu^a*(許志宏) ^aDepartment of Marine Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R.O.C. ^bCenter for General Education, Hsing-Kuo University, Tainan 709, Taiwan, R.O.C. ^cInstitute of Oceanography, National Taiwan University, Taipei 106, Taiwan, R.O.C.

Two novel polyhydroxysteroids, (24S)-24-methylcholestane-3 β ,5 α ,6 β ,25 ξ ,26-pentol 26-*n*-decanoate (1), (24S)-24-methylcholestane-3 β ,5 α ,6 β ,25 ξ ,26-pentol 25,26-diacetate (2), and three known sterols (3-5), have been isolated from a Formosan soft coral *Sarcophyton glaucum*. The molecular structures of these compounds were determined by spectral methods. The cytotoxicity of these compounds toward various cancer cell lines has also been determined.

Keywords: Sarcophyton glaucum; Soft coral; Polyhydroxysteroids; Cytotoxicity.

INTRODUCTION

We have previously reported various types of bioactive metabolites from Formosan marine organisms including soft corals,¹ gorgonians,² and marine algae.³ In our continuing search of bioactive natural products from marine organisms, a Formosan soft coral *Sarcophyton glaucum* Quoy & Gaimard was examined. Our investigation on the ethyl acetate extract of *S. glaucum* have led to the isolation of two novel steroids (1-2), which were characterized by extensive spectral analyses and by comparison of the spectral data with known compounds. Along with these two new metabolites, three known

steroids (3-5) were also isolated. Cytotoxicity of these polyoxygenated steroids was described, too.

RESULTS AND DISCUSSION

Sterol **1** was obtained as a white gum. Its HREIMS established the molecular formula $C_{38}H_{68}O_6$ and thus requiring five degrees of unsaturation. The IR spectrum of **1** showed absorptions of ester carbonyls (v_{max} 1731 cm⁻¹) and hydroxyl groups (v_{max} 3400 cm⁻¹). The EIMS of **1** showed peaks at m/z 620 [M]⁺, 566 [M - 3 H₂O]⁺, 493 [M - C₉H₁₉]⁺, and 465 [M -

* Corresponding author. Tel: +886-7-5252000 ext. 5030; fax: +886-7-5255020; e-mail: sheu@mail.nsysu.edu.tw

 COC_9H_{19} ⁺, suggesting the presence of hydroxy and decanoyl groups in **1**. The ¹³C NMR spectrum (Table 1) of **1** showed signals of five sp³ oxygenated carbons, including one methylene at δ 69.8, two methines at δ 67.6 and 76.7, and two quaternary carbons at δ 74.2 and 76.7, and also exhibited the signal of an ester carbonyl carbon at δ 174.0. By the assistance of an HMQC experiment, it was found that the signals appearing at δ 3.54 (1H, brs) and 4.09 (1H, m) were due to the presence of two oxymethines. One triplet appearing at δ 2.08 (1H, J = 11.6 Hz) was assigned to H-4 β , and two methyl protons at δ 0.67 (3H, s), 1.18 (3H, s) were due to H₃-18 and H₃-19 of a sterol, respectively. These peaks were considered to be the characteristic ¹H NMR signals of the 3β , 5α , 6β -trihydroxysteroids.⁴⁻⁷ Two oxymethylene protons with AB spin coupling at δ 4.00 (1H, d, J = 11.3 Hz) and 4.10 (1H, d, J =11.3 Hz) were due to an acylated methylene. The acyl group was assigned as an *n*-decanoyl group by inspection of the ${}^{1}H$ and ¹³C NMR spectral data. A comparison of NMR data of 1 with those of 6^4 suggested that 1 contains an acyl group at C-26 and the remaining tertiary hydroxyl has to be placed at C-25. The framework of 1 was further confirmed by an HMBC experiment (Fig. 1) which showed the following key correlations: H₃-18 to C-12, C-13, C-14, and C-17; H₃-19 to C-1, C-5, C-9, and C-10; H-6a to C-7; H₃-21 to C-17, C-20, and C-22; H_2 -26 and H_2 -30 to the ester carbonyl carbon, H_3 -27 to C-24, C-25, and C-26; and H₃-28 to C-23. On the basis of the above observations, the structure of 1 was established unambiguously as (24S)-24-methylcholestane-3 β , 5 α , 6 β , 25 ξ , 26pentol 26-n-decanoate, and all three known metabolites 3-5, isolated from the present investigation (later discussed), were found to possess 24S configuration in their structures.

Compound **2** was isolated as a white gum. Its HREIMS exhibited a molecular ion peak at m/z 550.3867, corresponding to a molecular formula of C₃₂H₅₄O₇, associated with six degrees of unsaturation. The EIMS of **1** showed peaks at m/z 550 [M]⁺, 472 [M - HOAc - H₂O]⁺, 454 [M - HOAc - 2 H₂O]⁺,

Fig. 1. Selective HMBC key correlations of steroid 1.

Wang et al.

Table 1. ¹³C and Selective ¹H NMR Spectral Data for Steroids 1 and 2

	1		2	
C/H	${}^{1}\mathrm{H}^{\mathrm{a}}$	¹³ C ^b	¹ H ^c	¹³ C ^d
1		32.3 t ^f		32.4 t
2		30.8 t		30.8 t
3	4.09 (m)	67.6 d	4.14 (m)	67.6 d
4β	$2.08 (t, 11.6)^{e}$	40.9 t	2.10 (t, 13.0)	40.7 t
5		76.7 s		76.7 s
6	3.54 (brs)	76.7 d	3.54 (brs)	76.7 d
7		34.6 t		34.5 t
8		30.1 d		30.2 d
9		45.8 d		45.8 d
10		38.3 s		38.3 s
11		21.1 t		21.1 t
12		39.9 t		39.9 t
13		42.7 s		42.7 s
14		55.8 d		55.9 d
15		24.1 t		24.1 t
16		28.1 t		28.1 t
17		55.8 d		55.8 d
18	0.67 (s)	12.1 q	0.68 (s)	12.1 q
19	1.18 (s)	16.9 q	1.19 (s)	16.9 q
20		36.2 d		36.1 d
21	0.91 (d, 6.8)	18.9 q	0.91 (d, 6.5)	18.9 q
22		34.5 t		34.5 t
23		27.9 t		27.5 t
24		41.1 d		38.4 d
25		74.2 s		85.4 s
26	4.00 (d, 11.3)	69.8 t	4.42 (d, 12.0)	65.7 t
	4.10 (d, 11.3)	0,000	4.48 (d, 12.0)	
27	1.11 (s)	20.7 q	1.19 (s)	18.1 q
28	0.94 (d, 6.8)	13.8 q	0.94 (d, 6.5)	14.0 q
29		174.0 s		
30	2.35 (t, 7.5)	34.3 t		
31		34.2 t		
32~36		29.2~29.7 t		
37		31.9 t		
38	0.88 (t, 6.9)	14.1 q		
25-acetate			2.09()	10.1
			2.08 (S)	18.1 q
26				1/0.3 S
			2.01 (a)	180 c
сп ₃			2.01 (8)	18.9 q
				1/0.0 S

^a Spectra recorded at 400 MHz in CDCl₃. ^b Spectra recorded at 100 MHz in CDCl₃. ^c Spectra recorded at 500 MHz in CDCl₃. ^d Spectra recorded at 125 MHz in CDCl₃. ^e Multiplicities and *J* values (in Hz) in parenthese. ^f Multiplicities deduced by DEPT and indicated by usual symbols. Chemical shifts are downfield in ppm from TMS.

430 $[M - 2 \text{ HOAc}]^+$, and 412 $[M - 2 \text{ HOAc} - \text{H}_2\text{O}]^+$, suggesting the presence of at least two acetoxyl groups and two hydroxyl groups in compound **2**. Its ¹H NMR (Table 1) spec-

tral data revealed the presence of seven methyl groups, including two singlets at δ 0.68 (H₃-18) and 1.19 (H₃-19), two doublets at δ 0.91 (3H, J = 6.5 Hz), and 0.92 (3H, J = 6.0 Hz), which were assigned to H₃-21 and H₃-28, and also two acetyl methyls at δ 2.01 (3H, s) and 2.08 (3H, s). Two signals at δ 3.54 (1H, brs) and 4.14 (1H, m) were due to protons of the hydroxyl-bearing methines, H-6 and H-3, respectively. A triplet appearing at δ 2.10 (1H, J = 13.0 Hz) was attributed to H-4 β of **2**. Two oxymethylene signals appearing at β 4.42 (1H, d, J = 12.0 Hz) and 4.48 (1H, d, J = 12.0 Hz) were due to H₂-26. The 13 C NMR spectral data of 2 (Table 1) showed signals of 32 carbons, including seven methyls, eleven methylenes, eight methines, and six quarternary carbons. Among them, five were oxygenated carbons, which include two methines (δ 67.6, and 76.7), two quarternary carbons (δ 76.7, and 85.4), and one oxymethylene (δ 65.7). These data were found to be very similar to those of 3β , 5α , 6β , 25ξ -tetrahydroxysteroid (1), suggesting that 2 could be the acetyl derivative of 1. The side chain of sterol 2 was further clarified by comparison of its ¹H and ¹³C NMR data with those of a known sterol 7.⁵ Thus, the structure of **2** was established as (24S)-24-methylcholestane-3β,5α,6β,25ξ,26-pentol 25,26-diacetate.

Along with the above two new polyhydroxysteroids, three known sterols, (24S)-24-methylcholestane-3 β ,5 α ,6 β ,25 ξ -tetrol 25-monoacetate (**3**),⁵⁻⁸ (24*S*)-24-methylcholestane-3 β ,5 α ,6 β ,25 ξ -tetrol (**4**),⁵⁻⁸ and (24*S*)-24- methylcholestane-1 β ,3 β ,5 α ,6 β ,25 ξ -pentol 25-monoacetate (**5**),⁶⁻⁸ also have been isolated in this investigation. The structures of **3-5** were identified by comparison of their spectral (IR, MS, and NMR) data with those published previously.

The cancer cells growth inhibitory properties of sterols 1-5 were evaluated using P-388 (mouse lymphocytic leukemia), A549 (human lung carcinoma), and HT-29 (human colon carcinioma) cell lines. Sterol **3** was found to exhibit significant inhibitory activity against HT-29 (ED₅₀ 0.6 µg/mL), but showed moderate cytotoxicity against the growth of P-388 (ED₅₀ 12.6 µg/mL), and A549 (ED₅₀ 6.6 µg/mL) cells. Sterol **6** exhibited moderate cytotoxicity against A549 (ED₅₀ 8.0 µg/mL), and HT-29 (ED₅₀ 10.3 µg/mL) cells, whereas sterols **1**, **2**, and **4** were found to be inactive (ED_{50's} > 20 µg/ mL) toward the above cancer cell lines.

EXPERIMENTAL SECTION

General Experimental Procedures

Melting points were determined using a Fisher-Johns

melting points apparatus and were uncorrected. Optical rotations were measured on a Jasco DIP-1000 digital polarimeter. IR spectra were recorded on a Hitachi I-2001 infrared spectrophotometer. The NMR spectra were recorded on a Bruker AMX-400 FT-NMR at 400 MHz for ¹H and 100 MHz for ¹³C or on a Varian Unity INOVA 500 FT-NMR at 500 MHz for ¹H and 125 MHz for ¹³C, respectively, in CDCl₃ using TMS as internal standard. EIMS and FABMS were obtained with a VG Quattro GC/MS spectrometer. Si gel 60 (Merck, 230-400 mesh) was used for column chromatography. Precoated silica gel plates (Merck, Kieselgel 60 F-254, 0.20 mm) were used for analytical TLC.

Organism

Sarcophyton glaucum was collected by hand via SCUBA on the coast of Green Island, Taiwan in July, 1998, at a depth of 8 to 15 m, and stored in a freezer until extraction. A voucher sample was deposited at the Department of Marine Resources, National Sun Yat-Sen University.

Extraction and Separation

The marine soft coral, Sarcophyton glaucum (860 g, dry wt.) was exhaustively extracted with EtOAc. The combined EtOAc extract was then filtered and concentrated under vacuum to provide a brownish semisolid residue (20.6 g). The above residue was triturated with hexanes to give the hexanes-soluble and insoluble layers. Cytotoxicity testing revealed that only the hexanes-insoluble layer (14.2 g) exhibited cytotoxicity against the growth of P-388 cells with an ED_{50} of 14.3 µg/mL. This layer was then separated by column chromatography on Si gel. Elution was performed with EtOAc-hexanes (stepwise, 0-100% EtOAc) to yield 20 fractions. Fraction 6 eluted with 50% EtOAc was further chromatographed on Si gel using EtOAc-hexanes gradient to yield 1 (2.1 mg) and impure 2. The impure sterol 2 was further chromatographed on Si gel using EtOAc-CH₂Cl₂(1:1) to yield pure 2 (2.0 mg). Fraction 7 eluted with 50% EtOAc was further chromatographed on Si gel using EtOAc-CH₂Cl₂ (1:20) to yield 4 (2.1 mg) and 5 (2.0 mg). Fraction 8 eluted with 70% EtOAc was further chromatographed on Si gel using MeOH-CH₂Cl₂ (1:15) to yield 3 (8.5 mg).

(24*S*)-24-methylcholestane- 3β , 5α , 6β , 25ξ ,26-pentol 26-*n*-decanoate (1)

White gum; $[\alpha]_D^{30}$ -11.2° (*c* 0.1, CHCl₃); IR (neat) ν_{max} 3400, 1731 cm⁻¹; ¹H and ¹³C NMR data in Table 1; EIMS *m/z* (rel. int %) 620 (0.1, $[M]^+$), 566 (0.5), 493 (0.6), 465 (0.4); HREIMS *m/z* 620.5020 (calcd for C₃₈H₆₈O₆, 620.5018).

(24*S*)-24-methylcholestane- 3β , 5α , 6β , 25ξ ,26-pentol 25,26-diacetate (2)

White gum; $[\alpha]_{D}^{30}$ -3.0° (*c* 0.1, CHCl₃); IR (neat) ν_{max} 3400, 1733 cm⁻¹; ¹H and ¹³C NMR data in Table 1; EIMS *m/z* (rel. int %) 550 (0.2, [M]⁺), 472 (0.2), 454 (0.3), 430 (1.2), 412 (0.5), 285 (2.4); HREIMS *m/z* 550.3867 (calcd for C₃₂H₅₄O₇, 550.3871).

(24S)-24-methylcholestane- 3β , 5α , 6β , 25ξ -tetrol 25-mono-acetate (3)

White powder; $[\alpha]_D^{30}$ -19.0° (*c* 0.1, CHCl₃); mp 247 °C; IR (neat) ν_{max} 3400, 1730 cm⁻¹; EIMS *m/z* (rel. int %) 474 (0.04, $[M - H_2O]^+$), 456, 438 (0.1), 432 (2.7), 414 (5.1), 396 (2.6), 287 (2.6). ¹H and ¹³C NMR spectral data were found to be in full agreement with those reported.^{5,6}

(24S)-24-methylcholestane- 3β , 5α , 6β , 25ξ -tetrol (4)

White powder; $[\alpha]_D^{30}$ -18.7° (*c* 0.1, CHCl₃); mp 252-253 °C; IR (neat) v_{max} 3400 cm⁻¹; EIMS *m/z* (rel. int %) 432 (3.4, [M - H₂O]⁺), 414 (6.4), 399 (2.6), 396 (3.0), 287 (3.8). ¹H and ¹³C NMR spectral data were found to be in full agreement with those reported.⁵

(24*S*)-24-methylcholestane- 1β , 3β , 5α , 6β , 25ξ -pentol 25-monoacetate (5)

White powder; $[\alpha]_D^{30}$ -85.7° (*c* 0.1, CHCl₃); mp 263-265 °C; IR (neat) v_{max} 3440, 1730 cm⁻¹; EIMS *m/z* (rel. int %) 508 (0.1, [M - H₂O]⁺), 430 (0.3), 412 (1.0), 285 (3.4). ¹H and ¹³C NMR spectral data were found to be in full agreement with those reported.⁷

Cytotoxicity Testing

P-388 cells were kindly provided by Prof. J. M. Pezzuto, University of Illinois at Chicago; A549 and HT-29 cells were purchased from the American Type Culture Collection. The cytotoxic activities of tested compounds against the above three cancer cells were assayed with a modification of the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric method. Cytotoxicity assays were carried out according to a procedure described previously.⁹

ACKNOWLEDGMENT

This work was supported by a grant from the National Science Council of the Republic of China (contract No. NSC-90-2113-M-110-023) awarded to J.-H. Sheu.

Received March 14, 2003.

REFERENCES

- (a) Sheu, J.-H.; Wang, G.-H.; Sung, P.-J.; Duh, C.-Y.; Chiang, M. Y. *Tetrahedron*, 2001, 57, 7639. (b) Wang, G.-H.; Sheu, J.-H.; Chiang, M. Y.; Lee, T.-J. *Tetrahedron Lett.* 2001, 42, 2333. (c) Sheu, J.-H.; Chang, K.-C.; Duh, C.-Y. J. Nat., Prod. 2000, 63, 149. (d) Sheu, J.-H.; Chang, K.-C.; Sung, P.-J.; Duh, C.-Y.; Shen, Y.-C. J. Chin. Chem. Soc. 1999, 46, 253. (e) Sheu, J.-H.; Yeh, T.-H. J. Chin. Chem. Soc. 1991, 38, 397.
- Sung, P.-J.; Su, J.-H.; Duh, C.-Y.; Chiang, M. Y.; Sheu, J.-H. J. Nat. Prod. 2001, 64, 318, and previous reports in this series.
- (a) Sheu. J.-H.; Wang, G.-H.; Sung, P.-J.; Duh, C.-Y.; Shen, Y.-C. J. Nat. Prod. 1999, 63, 224. (b) Sheu, J.-H.; Wang, G.-H.; Sung, P.-J.; Chiu, Y.-H.; Duh, C.-Y. Planta Med. 1997, 63, 571. (c) Sheu, J.-H.; Huang, S.-Y.; Wang, G.-H.; Duh. C.-Y. J. Nat. Prod. 1997, 60, 900.
- Kobayashi, M.; Mitsuhashi, H. Chem. Pharm. Bull. 1983, 31, 4127.
- Raju, B. L.; Subbaraju, G. V.; Reddy, M. C.; Rao, D. V.; Rao, C. B.; Raju, V. S. *J. Nat. Prod.* **1992**, *55*, 904.
- Dong, H.; Gou, Y.-L.; Kini, R. M.; Xu, H.-X.; Chen, S.-X.; Teo, S. M.; Paul, P.-H. *Chem. Pharm. Bull.* 2000, 48, 1087.
- Kobayashi, M.; Hayashi, T.; Hayashi, K.; Tanabe, M.; Nakagawa, T.; Mitsuhashi, H. *Chem. Pharm. Bull.* 1983, 31, 1848.
- Anjaneyulu, A. S. R.; Gowri, P. M.; Venugopal, M. J. R.; Sarada, P.; Murthy, M. V. R. K.; Rao, G. V.; Murthy, P. S. N.; Rao, C. V.; Kumar, G. *J. Indian Chem. Soc.* **1999**, *76*, 651.
- 9. Sheu, J.-H.; Liaw, C.-C.; Duh, C.-Y. J. Nat. Prod. 1995, 58, 1521.

