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INTRODUCTION

Heterotrophic bacterioplankton are the major organ-
isms responsible for the decomposition of dissolved
organic carbon (DOC; Fuhrman 1992 and citations
therein), which constitutes >90% of the organic carbon
pool in the ocean. Bacterial production and specific
growth rates play a key role in determining what is ac-
tually left over or available for DOC export (Carlson et al.
1994, Carlson & Ducklow 1995, Hansell & Carlson 1998).
On an areal basis, the continental shelf comprises <10%
of the world ocean. These ecosystems, however, could
have a very important effect on global carbon cycling
(Mantoura et al. 1991, Wong et al. 2000), due to large

standing stocks of organic carbon as well as high rates of
primary production. However, the actual role of these
systems as sinks or sources of CO2 is not clear (Smith &
Hollibaugh 1993, Wong et al. 2000). A clear under-
standing of which environmental factors regulate bac-
terial growth and thus carbon consumption under a va-
riety of conditions may provide insight into this issue.

It is well known that, when other factors are not lim-
iting, the effects of temperature (T) on many biological
processes can be modeled (Day et al. 1989) using an
Arrhenius expression: y = aebT or lny = lna + bT, where
lna and b represent intercept and slope respectively.
For example, the Q10 (the increase of rate parameter
for each 10°C rise in temperature) values of phyto-
plankton optimal growth rate range between 1.88 and
2.30 (Eppley 1972). Bacteria are considered to have
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higher Q10 values than algae (Shiah et al. 1999, 2000
and citations therein). Recent studies (White et al.
1991, Shiah et al. 1999 and citations therein) have
shown that seasonal bacterial specific growth rates
followed the Arrhenius equation in neritic ecosystems
with Q10 values > 3.0. By analyzing the correlations
between bacterial rate parameters and other field vari-
ables, Shiah et al. (1999, 2000) suggested that bacterial
growth on the inner shelf of the East China Sea (ECS)
is not limited by substrate supply but by temperature
during cold seasons, while on the outer shelf, the situ-
ation is reversed. They also suggested that the Q10 for
bacterial specific growth rates seemed comparable
over a range of temporal and spatial scales. To ascer-

tain how general these phenomena might be in the
shelf ecosystem, 2 large area field surveys and 3 exper-
iments with dissolved free amino acid mixture enrich-
ment were conducted in the continental shelf of the
ECS in winter and spring.

MATERIAL AND METHODS

Study site. Data were collected from the 2 cruises
conducted on the continental shelf of the ECS north of
Taiwan (Fig. 1) during December of 1997 (32 sampling
stations) and early March of 1998 (34 sampling sta-
tions). Seawater was collected from a SeaBird CTD-
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Fig. 1. Contours for surface values of (a,b) temperature, (c,d) salinity, (e,f) nitrate concentrations and (g,h) chlorophyll concentra-
tions showing sampling stations in the East China Sea of winter 1997 (a, c, e and g) and spring 1998 (b, d, f and h). Solid circles
in (b) indicate stations where substrate enrichment experiments were performed. Bold lines in (a–d) indicate the 20°C isotherms 

and the 32.0 psu isohalines respectively. Dashed lines indicate bottom depth in meters
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General Oceanic Rosette assembly with 20 l Go-Flo
bottles. Light intensity was measured with a light
meter (QSP200L; Biospherical). The depth of the
euphotic zone was defined as 1% of the surface
light level, and the bottom of the mixed layer was
defined as the depth where the temperature was
0.5°C lower than at the surface (Levitus 1982).

Bacterial production, abundance and specific
growth rates. Bacterial production and abundance
were measured by 3H-thymidine incorporation
(Fuhrman & Azam 1982) and acridine orange epiflu-
orescence microscopy (Hobbie et al. 1977) respec-
tively (for details, see Shiah et al. 1999). For each
station, duplicate samples were taken from 7 to 11
depths within the mixed layer (Zm) or the euphotic
zone (Ze). With respect to substrate supply, the inte-

grated bacterial abundance (and production) was
obtained by integrating (trapezoidal method) over
Zm or Ze, depending on which one was deeper at the
given station. Bacterial thymidine incorporation rate
per cell (bacterial specific growth rate, Bµ) was cal-
culated by dividing the integrated bacterial produc-
tion (IBP) by the integrated bacterial abundance
(IBA). For the calculation of the Q10 values, IBP and
Bµ derived from different sampling stations were
natural-log transformed and a linear regression
analysis was performed to calculate the slope (b) of
lnIBP (and lnBµ) versus sea-surface temperature
(SST); the Q10 values were then calculated as Q10 =
104.3437b. 

Substrate enrichment experiments. Experiments
were performed on the spring cruise at the 3 sta-
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tions (Fig. 1b) that represented the inner-, mid- and
outer-shelf waters (Table 1). At each station, whole
surface water samples were pre-incubated at in situ
(Table 1) and 2 to 3 other temperatures (see Fig. 4) in
sixteen, 2.0 l opaque polycarbonate bottles for 1 h,
which was sufficient to allow adjustment to the new
temperature. Then, a dissolved free amino acid mix-
ture (DFAA; 15 amino acids, final conc. = 0.5 µM; Shiah
& Ducklow 1994a) was added to 8 bottles (duplicates
for each temperature treatment); the remaining bottles
were used as controls. Bacterial production and cell
abundance were sampled every 3 h for the first 12 h
and then sampled every 6 h until the end of the exper-
iment. The end of the lag period was defined as the
time when bacterial production values in the DFAA
treatments were significantly (p < 0.01, difference usu-
ally >20%) higher than those in the controls.

Primary production. Primary production was mea-
sured by the 14C assimilation method (Parsons et al.
1984). In brief, 1 dark and 2 light 250 ml clean polycar-
bonate bottles (Nalgen) were filled with water samples
taken from the euphotic zone. After inoculation with
H14CO3

– (final conc. = 10 µCi ml–1), samples were incu-
bated for 2 to 4 h in artificial light. Water temperature
was maintained with running seawater. To simulate
different light intensities, bottles were wrapped with
neutral density filters permitting 85, 50, 25, 10 and 1%
of the light to pass through. Following retrieval, the
water samples were immediately filtered through
Whatman GF/F 25 mm filters under low light and low
pressure (<100 mm Hg). The filters were placed in
scintillation vials, and 0.5 ml of 0.5 N HCl was added to
remove residual H14CO3

–. Radioactivity was counted in
a liquid scintillation counter (Packard 1600) after the
addition of 10 ml scintillation cocktail (Ultima Gold,
Packard) into the vials.

Chlorophyll a and nitrate concentrations. Chloro-
phyll a and nitrate concentrations were measured

following the methods of Parsons et al. (1984). Water
samples for nutrient analyses were frozen im-
mediately with liquid nitrogen in clean 100 ml
polypropylene bottles. Nitrate was analyzed with a
flow injection analyzer (Gong et al. 2000) and was
reduced to nitrite with a cadmium wire, which was
activated with a copper sulfate solution. For chloro-
phyll a, 1 to 2 l of seawater were filtered through
Whatman GF/F 25 mm filters, which were then
immediately stored at –20°C. Back at the laboratory,
the filters were ground in 10 ml 90% acetone fol-
lowed by extraction in a 4°C shaking incubator for
2 h. After centrifugation at 1000 (~200 × g) rpm for
5 min, the concentrations of chlorophyll a in the
supernatant were measured on a Turner fluorometer
(model 10-AU-005).

RESULTS

Hydrography

The study area was characterized by strong gradi-
ents of temperature (Fig. 1a,b; 11 to 26°C), salinity
(Fig. 1c,d; 27.20 to 34.78 psu), nutrients (Fig. 1e,f; sur-
face nitrate, <0.2 to 26.5 µM) and high phytoplankton
standing crops (Fig. 1g,h; surface chlorophyll ≈ 0.2 to
2.1 mg m–3). Three water masses (Gong et al. 2000
and citations therein) could be identified in the ECS
shelf (Table 1). They were the China Coastal Waters
(the CCW; cold, eutrophic to mesotrophic with low
salinity), the Kuroshio Waters (the KW; warm and
oligotrophic with high salinity) and the mid-shelf
Mixed Waters (the MW; a mixture of the CCW and
KW). Note that during spring, about half of the study
area was covered by low salinity (<32 psu; Fig. 1d)
waters, which indicated a strong influence from
freshwater discharges. For both cruises, the mixed

layer (Zm) depth inside the mid-shelf
was deeper than or similar to those of
the euphotic zone (Ze). Depths of Ze

were usually <20 m in the CCW and
~50 m in the MW. In the outer shelf
area (the KW), Ze extended down to
~100 m with a Zm of ~60 m. 

SST was used in our analysis for 2
reasons. SST reflected the spatial loca-
tion of sampling stations (Fig. 1a,b),
that is, the SST increased offshore.
In addition, SST was identical to the
average mixed layer temperature.
Note that in areas adjacent to the
Yantze River, the temperatures in
spring 1998 were 2 to 3°C lower than
in winter 1997 (Fig. 1b). 
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Variable Units China Coastal Mid-shelf Kuroshio
Waters Mixed Waters Waters

Temperature °C 11 20 25
Salinity psu 32.20 34.29 34.78
Nitrate µM 11.0 0.4 0.25
Chlorophyll mg m–3 0.87 0.52 0.39
Bacterial TdR
incorporation rate pM h–1 1.67 2.07 1.17
Bacterial
abundance × 109 cell l–1 0.79 0.28 0.25
Bacterial × 10–21 mol TdR
turnover rates cell–1 h–1 0.06 0.21 0.13

Table 1. In situ values of measured variables for samples used in substrate
enrichment experiments in spring 1998
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Spatial patterns of bacterial measurements

Depth-integrated bacterial production (IBP) during
winter (37 to 91 × 10–9 mol TdR m–2 h–1) and spring (44
to 104 × 10–9 mol TdR m–2 h–1) was low in cold (5 to
10°C; inner shelf) and warm (>22°C; outer shelf) water
areas (Fig. 2a). Below the 20°C isotherm (areas inside
the mid-shelf; Fig. 1b), IBP was higher in spring than in
winter. On the outer-shelf, IBP of both cruises de-
creased with increasing temperature and was posi-
tively correlated with the euphotic zone integrated pri-
mary production (IPP) in the outer-shelf areas (Fig. 3;
r = 0.85, n = 13, p < 0.001). This suggested that substrate
supply could be more crucial in controlling bacterial

growth outside the mid-shelf. For the areas with a tem-
perature <20°C, IBP was correlated with temperature
(Table 2) but not with IPP (Fig. 3; p > 0.05, n = 46),
which indicated that local substrate supply might not
be the major controlling factor in regulating the spatial
variability of IBP inside the mid-shelf (see also the re-
sults of the DFAA enrichment experiments).

In winter, depth-integrated bacterial abundance
(IBA; 9 to 15 × 1012 cells m–2) showed no pattern with
SST (Fig. 2b), salinity or IPP (data not shown). In con-
trast, spring IBA (10 to 33 × 1012 cells m–2) varied more
than 3-fold, with higher values observed on the inner-
shelf. It decreased offshore with increasing SST (r =
–0.88, n = 33, p < 0.01) and salinity (r = –0.67, n = 33,
p < 0.01), and then remained more or less constant out-
side the mid-shelf. No significant relationship was
observed between IBA and IPP inside the mid-shelf
during spring; however, IBA was positively correlated
with IPP (r = 0.63, n = 13, p < 0.001) on the outer-shelf. 
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Fig. 2. Depth-integrated (a) bacterial production (IBP) and
(b) abundance (IBA) and (c) specific growth rates (Bµ) along the
temperature gradient in winter 1997 (d) and spring 1998 (n)

Fig. 3. Depth-integrated bacterial production (IBP) versus
depth-integrated primary production (IPP). Outer-shelf data
(T > 21°C, S > 34.500 psu) are shown for winter 1997 (+) and
spring 1998 (m). The relationship is IBP = 49 + 0.032 (± 0.006) 

× IPP (R2 = 0.72, n = 13, p < 0.001)

Cruise Variable Intercept Slope (±SE) Q10 Sample size R2

Winter lnIBP +2.57a b0.10b (±0.02) 2.46 20 0.65
1997 lnBµ –0.48a 0.12 (±0.01) 3.41 20 0.83

Spring lnIBP +3.69a b0.05b (±0.01) 1.68 23 0.67
1998 lnBµ –0.45a 0.12 (±0.01) 3.32 23 0.86
a,bDifferent from each other at p = 0.05 level by analysis of covariance

Table 2. Intercepts, slopes and Q10 values for natural-log transformed depth-integrated bacterial production (lnIBP) and bacter-
ial turnover rates (lnBµ) versus temperature for the <20°C data collected from the 2 cold-season cruises. All equations are signif-

icant at the p = 0.01 level
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Bacterial specific growth rates (Bµ = IBP/IBA; 2.0 to
8.3 × 10–21 mol TdR cell–1 h–1) of the 2 cruises showed
similar patterns with SST (Fig. 2c). Values of Bµ were
low (2 to 3 × 10–21 mol TdR cell–1 h–1) on the inner-
shelf, they peaked at the mid-shelf (7 to 8 × 10–21 mol
TdR cell–1 h–1) along the 20°C isotherm, and then
they decreased to values ca 3 to 4 × 10–21 mol TdR
cell–1 h–1 in the outer-shelf area. For both cruises, no
significant relationship was observed between Bµ
and IPP inside the mid-shelf. However, Bµ was posi-
tively correlated with IPP (r = 0.60, n = 13, p < 0.001)
on the outer-shelf.

The relationships between IBP and SST for the
<20°C data were significant (Table 2). However, the
Q10 value for the spring IBP (Q10 = 1.68) was only 68%
of that of the winter IBP (Q10 = 2.46). This could be
ascribed to the different IBA during winter and spring
(Fig. 2b; see ‘Discussion and conclusions’). In contrast,
the Q10 values of Bµ for the winter (Q10 = 3.41) and
spring (Q10 = 3.32) were quite consistent. 

Substrate enrichment experiments

Fig. 4 shows that when incubated at in situ tempera-
tures (Table 1) the addition of DFAA does not enhance
Bµ (or bacterial production) within 21 h in the samples
taken from the inner-shelf. On the other hand, Bµ of
the samples taken from the mid- and outer-shelf in-
creased rapidly (<3 to 5 h) after the addition of DFAA.
Note also that changing incubation temperature had a
very similar effect on Bµ in all 3 experiments; the lag
periods required for bacteria to respond to DFAA
enrichment were negatively correlated with incuba-
tion temperatures (p < 0.01). 

DISCUSSION AND CONCLUSIONS

Several previous studies explicitly addressing spa-
tial (Shiah et al. 1999, 2000), temporal (Shiah & Duck-
low 1994b, 1995) and cross-system (White et al. 1991)
variation of Bµ showed that the Q10 for Bµ varied
within a narrow range of 3.13 to 3.42 in neritic
ecosystems. All this evidence suggests that tempera-
ture dependency of Bµ might be comparable across
different temporal and spatial scales. A significant
correlation of Bµ with temperature indicates that dur-
ing the cold seasons temperature, instead of substrate
supply, probably was the major limiting factor for Bµ
inside the mid-shelf. In the outer-shelf region, the sit-
uation might be reversed. Values of IPP (r = –0.88, n
= 13, p < 0.05), IBP and Bµ decreased with increasing
temperature outside the mid-shelf (Fig. 2a,c), and this
implies that as the system becomes more oligotrophic
(Fig. 1e,f), substrate control of bacterial growth be-
comes more significant (Figs. 3 & 4; White et al. 1991,
Shiah et al. 1999).

Different IBA values observed within the inner-shelf
on the 2 cruises might be related to the different mag-
nitude of interactions (mixing) between the KW and
the CCW in the ECS shelf. During winter, the intrusion
of the oligotrophic KW (Gong et al. 1996) into the ECS
shelf and the low discharge rate of the Yantze River
(Fig. 1c) might result in low IBA. During spring, the
KW withdrew from the shelf and river discharge rates
started to increase as indicated by a larger plume of
cold, low salinity water along the coast of mainland
China during spring 1998 (Fig. 1b,d), this might lead to
more riverine bacteria in the inner-shelf area. Different
strengths of removal processes (bacterivory and viral
lysis) during these 2 cruises might also have resulted in
distinct IBA. However, no conclusion could be made
due to the lack of protozoan and viral data. Interest-
ingly, although the values of spring IBP and IBA
observed in the inner shelf (Fig. 2a,b; <14°C) were at
least 2 times higher than those of the winter, Bµ of the
2 cruises behaved almost exactly the same with chang-
ing temperature (Fig. 2c). This once again indicates
that the temperature response of Bµ seems to be con-
stant over the seasons. 

The substrate enrichment experiments (Fig. 4) and
the relationship of IPP versus IBP (Fig. 3) support the
deduction of the transition of temperature control
inside the mid-shelf to substrate control outside the
mid-shelf. These findings also support the conclusion
of several previous studies (Hollibaugh 1979, Wiebe et
al. 1992, 1993), which suggested that the substrate
effects on bacterial growth were temperature depen-
dent. In addition, strong temperature regulation on
Bµ occurred only when substrate supply was high
(Berman et al. 1994, Shiah & Ducklow 1994a).
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Fig. 4. Temperature effects on the lag period required for bac-
teria to respond to an enrichment of dissolved free amino
acids. (d) Inner-shelf waters; (e) mid-shelf mixed waters 

(3 treatments only); and (h) outer-shelf waters
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Satellite remote sensing has become very promising
in estimating primary productivity, although quite a
few obstacles are still to be overcome. One intriguing
question concerns whether SST, derived from either
satellite or cruise measurement, can be used to esti-
mate bacterial production for coastal environments
within a limited temperature range and seasons. The
distinct temperature response of IBP of the 2 cruises
(Table 2) rules out the possibility of using SST to esti-
mate IBP directly. However, the constancy of the Q10

value of Bµ may allow us to model IBP based on the
measurements of SST and IBA, which can be quickly
acquired by flow cytometry (Sieracki & Viles 1990, Li
et al. 1993). The Bµ versus temperature (lnBµ = –0.42 +
0.122 ± [0.02] × SST, n = 22, R2 = 0.78, p < 0.01) rela-
tionship derived previously (Shiah et al. 1999) for the
southern ECS was adopted to simulate IBP in this
study. The modeled IBP and the measured IBP agree
very well (Fig. 5), with slope and R2 values of 0.87 ±
0.08 and 73%, respectively. The total difference {[(∑
measured IBP –∑ modeled IBP)/∑ measured IBP] ×
100%} between them was 19%.

There are 2 major limitations to this approach. It can
be applied only to areas of the mid-shelf during cold
seasons, and measurements of bacterial biomass or
abundance are still required. However, for some mod-
elers who do not have access to and some scientists
who are not familiar with the use of (or not allowed to
use) radioisotopes (i.e. 3H-thymidine and 3H-leucine)
to estimate bacterial production, this approach may
offer an alternative means of deriving IBP with an
accuracy no less than ca 80% (Fig. 5).

Overall, this study systematically demonstrated a
well-known but not fully developed theory which indi-
cates that the temperature dependency of bacterial
specific growth rates in high productivity ecosystems is
comparable over different temporal and spatial scales
during seasons (and areas) in which substrate supply is
not limiting. With bacterial biomass data and reliable
relationships of Bµ with temperature, the depth-inte-
grated bacterial production can be quickly and easily
calculated, although limitations to this application are
noted. 
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