New Norcembranoids from the Soft Coral Sinularia lochmodes

Yen-Ju Tseng^a (曾彥儒), Atallah F. Ahmed^{a,b} (阿特拉 阿默德), Chi-Hsin Hsu^{a,c} (徐基新),

Jui-Hsin Su^a (蘇瑞欣), Chang-Feng Dai^d (戴昌鳳) and Jyh-Horng Sheu^{a,c}* (許志宏) ^aDepartment of Marine Biotechnology and Resources, National Sun Yat-sen University,

Kaohsiung 804, Taiwan, R.O.C.

^bDepartment of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt ^cAsian Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan, R.O.C. ^dInstitute of Oceanography, National Taiwan University, Taipei 106, Taiwan, R.O.C.

Two new C-4 norcembranoids sinulochmodins D (1) and E (2), along with three known norditerpenoids (3-5), have been isolated from the organic extract of a Taiwanese soft coral *Sinularia lochmodes* (Kolonko). The structures of 1 and 2 were determined on the basis of extensive spectroscopic analyses and by comparison of their spectral data with those of related metabolites.

Keywords: Norcembranoids; Soft coral; Norditerpenoids; Sinularia lochmodes.

INTRODUCTION

During the course of our search for bioactive metabolites from marine invertebrates of Taiwanese waters, several cytotoxic norditerpenoids¹⁻³ have been isolated from soft corals of the genus *Sinularia* (family Alcyoniidae). A previous chemical study on the EtOAc-soluble portion of the EtOH extract of *Sinularia lochmodes* led to the isolation and identification of a C-4 norcembranoid dimer, an isocembranoid and a yonarane norditerpenoid.⁴ Further chemical investigation on the same organism furnished two new C-4 norcembranoids, sinulochmodins D (1) and E (2) in addition to three known norditerpenoids (3-5). The structures of 1 and 2 were elucidated by spectroscopic analyses, including 2D NMR (¹H-¹H COSY, HMQC, HMBC, and NOESY), and by spectral comparisons with the related compound **6**.

RESULTS AND DISCUSSION

The tissues of the soft coral *S. lochmodes* were exhaustively extracted with EtOH. The EtOH extract was partitioned between *n*-hexane and H_2O and then between EtOAc and H_2O . The EtOAc-soluble portion was concentrated under vacuum, and then fractionated by silica gel column chromatography. The eluted fractions were puri-

fied by normal phase HPLC to afford **1-5** (see Experimental section).

Sinulochmodin D (1) was obtained as a white solid, $[\alpha]_{D}^{25}$ + 17.4° (c 1.4, CHCl₃). Its HRFABMS spectrum exhibited a molecular ion peak at m/z 377.1967 [M + H]⁺, consistent with a molecular formula C21H28O6 and eight degrees of unsaturation. The IR spectrum showed absorption bands due to the presence of an α,β -unsaturated- γ -lactone $(1755 \text{ and } 1645 \text{ cm}^{-1})$ and ketone carbonyl (1709 cm^{-1}) moieties. Moreover, FABMS exhibited an ion peak at m/z $331 [M - EtOH + H]^+$, revealing the presence of an ethoxy group in 1. This was further supported by the proton signals appearing at δ 3.40, 3.47 (each 1H, q, J = 7.0 Hz), and 1.14 (3H, t, J = 7.0 Hz) in the ¹H NMR spectrum of **1**. The ¹³C NMR spectrum of 1 showed signals of twenty-one carbon atoms (Table 1) which were identified by DEPT spectra as three methyl, seven methylene, five methine, and six quaternary carbons. The seven sp² carbon signals appearing at δ 212.4 (qC), 207.8 (qC), 174.0 (qC), 154.6 (CH), 132.6 (qC), 145.6 (qC), and 112.8 (CH₂) were attributable to the carbons of two normal ketone carbonyls, an α , β -conjugated ester carbonyl, and a 1,1-disubstituted double bond in 1, respectively. Therefore, compound 1 is an ethoxylated tricyclic norditerpenoid. Moreover, the ¹H NMR data of 1 revealed the presence of an isopropylene group (δ 4.77, 4.88, each 1H, s, and 1.71, 3H, s), a tertiary methyl bound to an oxygenated carbon (1.34, 3H, s, H₃-18), and two oxy-

* Corresponding author. Tel: +886-7-5252000 ext. 5030; Fax: +886-7-5255020; E-mail: sheu@mail.nsysu.edu.tw

	1	2		
#	${}^{1}\mathrm{H}^{a}$	${}^{13}C^{b}$	${}^{1}\mathrm{H}^{a}$	${}^{13}C^{b}$
1	2.45 dddd (11.0, 11.0, 2.5, 2.5) ^c	37.0 (CH) ^d	2.47 dddd (11.0, 11.0, 3.0, 3.0)	37.1 (CH)
2α	2.33 t (11.0)	50.5 (CH ₂)	2.36 t (11.0)	50.2 (CH ₂)
2β	2.50 dd (11.0, 2.5)		2.53 dd (11.0, 3.0)	
3		207.8 (qC)		208.1 (qC)
4α	2.55 d (14.0)	44.3 (CH ₂)	2.58 dd (14.5, 2.5)	44.0 (CH ₂)
4β	2.63 dd (14.0, 11.0)		2.64 dd (14.5, 10.5)	
5	4.49 d (11.0)	77.9 (CH)	4.45 dd (10.5, 2.5)	77.7 (CH)
6		212.4 (qC)		212.1 (qC)
7α	2.52 d (17.5)	51.2 (CH ₂)	2.53 d (17.5)	51.0 (CH ₂)
7β	2.38 d (17.5)		2.38 d (17.5)	
8		79.5 (qC)		79.3 (qC)
9α	2.23 dd (15.0, 3.5)	42.1 (CH ₂)	2.26 dd (15.0, 3.0)	41.6 (CH ₂)
9β	2.59 dd (15.0, 3.5)		2.58 dd (15.0, 3.0)	
10	5.26 br t (3.5)	79.4 (CH)	5.24 br t (3.0)	79.3 (CH)
11	7.56 s	154.6 (CH)	7.54 s	153.8 (CH)
12		132.6 (qC)		133.7 (qC)
13	4.12 dd (11.0, 3.0)	69.6 (CH)	4.54 dd (11.0, 3.0)	62.7 (CH)
14α	1.85 ddd (11.0, 11.0, 3.0)	36.3 (CH ₂)	1.95 ddd (14.0, 11.0, 3.0)	38.2 (CH ₂)
14β	2.00 ddd (11.0, 11.0, 3.0)		2.02 ddd (14.0, 11.0, 3.0)	
15		145.6 (qC)		145.6 (qC)
16	4.77 s, 4.88 s	112.8 (CH ₂)	4.77 s, 4.87 s	112.7 (CH ₂)
17	1.71 3H, s	18.7 (CH ₃)	1.71 3H, s	18.6 (CH ₃)
18	1.34 3H, s	28.0 (CH ₃)	1.36 3H, s	27.9 (CH ₃)
19		174.0 (qC)		173.0 (qC)
Ethyl	3.40 q (7.0)	64.6 (CH ₂)		
-	3.47 q (7.0)			
	1.14 t (7.0)	15.5 (CH ₃)		

Table 1. NMR spectral data for compounds 1 and 2

Spectra recorded at ^{*a*}500 MHz and ^{*b*}125 MHz in CDCl₃ at 25 °C. ^{*c*}J values in Hz in parentheses. ^{*d*}Attached protons were deduced by DEPT experiments.

methines (δ 4.49, 1H, d, J = 11.0 Hz and 5.26, 1H, br t, J = 3.5 Hz) which are diagnostic for the C-4 norcembranoids possessing 5,8-epoxy and 12,10-carbolactone moieties.¹⁻⁸ Furthermore, it was found that the NMR data of **1** (Table 1) were nearly identical with those of scabrolide C (**6**),³ isolated from *S. scabra*, except for the presence of an ethoxy group in **1** instead of the methoxy group in **6**. The gross structure of **1** together with the C-13 location of the ethoxy group were deduced from the ¹H-¹H COSY and HMBC correlations as shown in Fig. 1.

The relative stereochemistry of **1** was found to be close to that of **6** as established by the detailed analysis of NOE correlations observed in the NOESY spectrum of **1** (Fig. 1) and by comparison with those found for **6**.³ Also, the absolute structures of two related metabolites **7** and **8**, which have also been isolated previously from *S. lochmodes*,⁴ were established as shown in the representative formulas.⁴ Thus, from the biosynthetic consideration and on the basis

of the above observations, the structure of **1** was established as (1R,5R,8R,10S,13S)-13-ethoxy-1-isopropenyl-8-methyl-3,6-dioxo-5,8-epoxycyclotetradec-11-en-12,10-carbolactone.

Sinulochmodin E (2) was obtained as a white solid. Its HRFABMS spectrum exhibited a molecular ion peak at m/z 349.1650 [M + H]⁺, implying a molecular formula $C_{19}H_{24}O_6$. Its IR spectrum suggested the presence of hydroxy (3422 cm⁻¹), α , β -unsaturated- γ -lactone (1753 and 1644 cm⁻¹) and saturated ketone (1712 cm⁻¹) functionalities. The hydroxyl in 2 was further evidenced by the pseudo ion peak at m/z 331 [M – H₂O + H]⁺ in the FABMS. Analysis of the NMR data assigned 2 as another C-4 norcembranoid which showed similar ¹H and ¹³C NMR spectral data as those found in 1, except for the ethoxy group in 1. After elucidation of the gross structure of 2 utilizing the 2D NMR (¹H-¹H COSY and HMBC) spectral correlations, we found that the 13-ethoxy group in 1 was replaced by a

hydroxy group in **2**. This was further supported by the marked difference in the chemical shifts of the 13-oxymethine in **2** ($\delta_{\rm H}$ 4.54, dd, J = 11.0, 3.0 Hz; $\delta_{\rm C}$ 62.7) relative to that of **1** ($\delta_{\rm H}$ 4.12, dd, J = 11.0, 3.0 Hz; $\delta_{\rm C}$ 69.6). However, the identical splitting patterns and J values of H-13 in J. Chin. Chem. Soc., Vol. 54, No. 4, 2007 1043

both compounds indicated the 13*S* configuration of **2**. On the basis of the above findings together with a detailed interpretation of the key NOESY correlations (Fig. 1), sinulochmodin E (**2**) was identified as (1R,5R,8R,10S,13S)-13-hydroxy-1-isopropenyl-8-methyl-3,6-dioxo-5,8-epoxycyclotetradec-11-en-12,10-carbolactone.

Metabolites **3-5**, which were also isolated from *S. lochmodes*, were found to be identical to the previously reported norditerpenoids: norcembrene 5 (**3**) isolated from *S. querciformis*,⁶ sacbrolide A (**4**) isolated from *S. scabra*,³ and ineleganolide (**5**) isolated from *S. inelegans*,⁹ by comparison of the physical (mp and $[\alpha]_D$) and spectral (MS, ¹Hand ¹³C-NMR) data. However, due to the fact that these compounds were co-isolated with **1**, **2**, **7**, and **8** from the same organism, the absolute stereochemistries of these known compounds were also assumed to be the same as shown in formulas **3-5**.

EXPERIMENTAL SECTION

General Experimental Procedures

Melting points were determined using a Fisher-Johns melting point apparatus. Optical rotations were measured on a Jasco DIP-1000 digital polarimeter. IR spectra were recorded on a Hitachi I-2001 infrared spectrophotometer. FABMS were obtained with a VG Quattro GC/MS spectrometer. HRFABMS spectra were recorded on a JEOL-SX/SX 102A mass spectrometer. The NMR spectra were recorded on a Varian Unity INOVA 500 FT-NMR at 500 MHz for ¹H and 125 MHz for ¹³C, respectively, in CDCl₃ using TMS as internal standard. Silica gel (Merck, 230-400 mesh) was used for column chromatography. Precoated sil-

Fig. 1. ¹H-¹H COSY, HMBC for 1 and key NOE correlations for 1 and 2.

ica gel plates (Merck, Kieselgel 60 F_{254} , 0.2 mm) were used for analytical TLC analyses. Isolation by HPLC was performed by a Shimadzu SPD-10A instrument equipped with a normal-phase column (Lichrosorb Si-60, 7 µm, 250 × 25 mm).

Animal Material

The soft coral *S. lochmodes* was collected by hand using scuba off the coast of the southernmost tip of Taiwan at a depth of 15-20 m in July 2000 and stored in a freezer until extraction. A voucher sample was deposited at the Department of Marine Biotechnology and Resources, National Sun Yat-sen University.

Extraction and Separation

The tissues of the soft coral (1.9 kg, wet wt) were exhaustively extracted with EtOH ($2L \times 5$). The EtOH extract (64.4 g) was partitioned between *n*-hexane and H_2O_1 , then between EtOAc and H₂O. The combined EtOAcsoluble portions were evaporated under reduced pressure to yield an oily residue (2.1 g), which was subjected to CC (Si gel, EtOAc-n-hexane, 0:10 to 10:0, gradient). A fraction eluted with EtOAc-n-hexane (1:7) was purified by normal phase HPLC (EtOAc-n-hexane, 1:9) to afford 3 (3.5 mg). A fraction eluted with EtOAc-n-hexane (1:6) was isolated by normal phase HPLC (EtOAc-n-hexane, 1:7) to yield 1 (3.6 mg). A more polar fraction eluted with EtOAc-n-hexane (1:4) was separated by normal phase HPLC (EtOAc-n-hexane, 1:4) to afford 5 (2.5 mg). A subsequent fraction eluted with EtOAc-n-hexane (1:3) was further purified utilizing normal phase HPLC (EtOAc-n-hexane, 1:4) to give 4 (2.5 mg). Another more polar fraction eluted with EtOAc-nhexane (1:1) was separated by normal phase HPLC (EtOAc*n*-hexane, 1:3) to afford **2** (2.8 mg).

Sinulochmodin D (1)

White solid, mp 83-84°; $[\alpha]_{D}^{25}$ + 17.4 (*c* 1.4, CHCl₃); IR (neat) ν_{max} 2973, 2934, 1755, 1709, 1645, 1381, 1267, 1198, 1088 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz), see Table 1; FABMS *m/z* 399 (0.6, $[M + Na]^+$), 377 (1.5, $[M + H]^+$), 331 (7.3, $[M - EtOH - H]^+$), 221 (1.3), 154 (10.8), 136 (51.6), 107 (29.1); HRFABMS *m/z* 377.1967 (calcd for C₂₁H₂₉O₆, 377.1956).

Sinulochmodin E (2)

White solid, mp 104-105°; $[\alpha]_D^{25} + 2.7$ (*c* 1.1, CHCl₃); IR (neat) ν_{max} 3422, 2970, 2930, 1753, 1712, 1644, 1379, 1269, 1190, 1092 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz), see Table 1; FABMS *m/z* 349 (1.0, $[M + H]^+$), 331 (1.7, $[M - H_2O - H]^+$), 307 (4.1), 242 (7.2), 176 (9.5), 154 (100.0), 136 (98.1), 107 (38.0); HRFABMS *m/z* 349.1650 (calcd for C₁₉H₂₅O₆, 349.1644).

ACKNOWLEDGMENT

This work was supported by grants from the Ministry of Education (C030313) and the National Science Council of Taiwan, the Republic of China (Contract No. 95-2323-B-110-002) awarded to J.-H. Sheu.

Received September 14, 2006.

REFERENCES

- Ahmed, A. F.; Su, J.-H.; Kuo, Y.-H.; Sheu, J.-H. J. Nat. Prod. 2004, 67, 2079-2082.
- Ahmed, A. F.; Shiue, R.-T.; Wang, G.-H.; Dai, C.-F.; Kuo, Y.-H.; Sheu, J.-H. *Tetrahedron* 2003, 59, 7337-7344.
- Sheu, J.-H.; Ahmed, A. F.; Shiue, R.-T.; Dai, C.-F.; Kuo, Y.-H. J. Nat. Prod. 2002, 65, 1904-1908.
- Tseng, Y.-J.; Ahmed, A. F.; Dai, C.-F.; Chiang, M. Y.; Sheu, J.-H. Org. Lett. 2005, 7, 3813-3816.
- Kobayashi, M.; Appa Rao, K. M. C.; Krishna, M. M.; Anjaneyulu, V. J. Chem. Res. 1995, 188-189.
- Sato, A.; Fenical, W.; Qi-tai, Z.; Clardy, J. *Tetrahedron* 1985, 41, 4303-4308.
- Shoji, N.; Umeyama, A.; Arihara, S. J. Nat. Prod. 1993, 56, 1651-1653.
- Bowden, B. F.; Coll, J. C.; Mitchell, S. J.; Mulden, J.; Stokie, G. J. Aust. J. Chem. 1978, 31, 2049-2056.
- Duh, C.-Y.; Wang, S.-K.; Chia, M.-C.; Chiang, M. Y. Tetrahedron Lett. 1999, 40, 6033-6035.

