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Abstract 

This paper discusses the design and development of a bus-based hierarchical multiprocessor named M 2. The primary design 
goal of the M 2 is to derive a multiprocessor architecture that features much higher degree of scalability than the 
shared-memory shared-bus architecture to meet the ever increasing processing power demanded by large database/ 
knowledgebase computing and transaction processing. If compared with other hierarchical multiprocessors, the M E is 
distinctive in its memory configuration, which is aimed at avoiding severe inter-CPU interference due to page-swapping 
events. If compared with a group of multiprocessors connected by a local area network, the M 2 enjoys higher scalability due 
to higher bandwidth of the backplane bus. 
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1. introduction 

In recent years, designers of high-performance 
workstations and file servers have started turning 
to multiprocessors for their new generation prod- 
ucts. In this development,  the shared-memory 
shared-bus configuration prevails due to its hard- 
ware simplicity and cost-effectiveness. However, 
the shared-memory shared-bus configuration also 
suffers a serious deficiency of very limited scala- 
bility, generally up to 10 to 20 CPUs, due to 
limited bandwidth of the shared bus. Since ever- 
increasing processing power is in demand for 
large da tabase /knowledgebase  computing and 
transaction processing, design of highly scalable 
multiprocessors is of great significance and inter- 
est to computer  architects [1]. Motivated by this 
observation, we started the M 2 hierarchical mul- 
tiprocessor project in Spring 1991. 

In the design of the M 2, several guidelines 
were cautiously observed. These guidelines are: 
(1) The machine is intended to run data- 

base /knowledgebase  and transaction process- 
ing applications. Hence,  the design should be 
optimized for that kinds of  workloads. Typical 
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workloads comprise a large number  of paral- 
lel tasks that are either weakly coupled or 
even completely independent.  The parallel 
tasks could come from a number  of re- 
questers that take action at the same time or 
from a complicated job that are decomposed 
into a number  of pieces. Each task may fur- 
ther exhibit some degree of lower level paral- 
lelism. 

(2) The architecture design should exploit latest 
advances in VLSI and packaging technologies 
so that the machine is superior in respect to 
cost/effectiveness.  

(3) The design should accord with the pragmatic 
correspondence illustrated in Fig. 1 between 
the granularity of parallel processing and the 
level of resource sharing among parallel hard- 
ware units. 

With these three guidelines, the M 2 architecture 
is designed with two levels of multiprocessing 
hierarchy. At the first level of the hierarchy, the 
shared-memory shared-bus structure is employed. 
At the second level of the hierarchy, a physically 
distributed with no remote access memory orga- 
nization is employed. Through the employing of 
the hierarchical structure and memory organiza- 
tions, the M 2 features a much higher degree of 
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Fig. 1. Pragmatic correspondence between the granularity 
of parallel processing and the level of resource sharing 

among parallel hardware units. 

scalability than the shared-memory shared-bus 
architecture and a good performance/cos t  ratio. 

In the following part of this paper, we will 
elaborate the architecture and design decisions of 
the M E in Section 2. Then, in Section 3, we will 

describe a prototype M 2 that we have been de- 
veloping. Finally, we will conclude our discussion 
in Section 4. 

2. The M 2 architecture and design decisions 

2.1. Overview o f  the M 2 architecture 

Figure 2 depicts the block diagram of the M 2 
hierarchical multiprocessor. The M 2 architecture 
consists of two levels of multiprocessing hierar- 
chy. At the first level of the hierarchy, multiple 
CPUs, each with a private cache, and a shared 
cluster memory are placed on a printed-circuit 
board and connected through an on-board snoop- 
ing bus to form a CPU cluster. In the M 2, the 
shared cluster memory in a CPU cluster serves as 
the main memory to the CPUs in the cluster. 
Therefore,  structure-wise, there is no difference 
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Fig. 2. Block diagram of the M 2 hierarchical multiprocessor. 
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between a M 2 CPU cluster and a conventional 
shared-memory shared-bus multiprocessor. 

The second level of the M 2 hierarchy is made 
up of multiple CPU clusters connected through a 
backplane message-passing bus. At this level of 
hierarchy, memory is distributed in both physical 
and logical senses. That  is, the memory of a 
cluster is accessible only to the cluster itself and 
is not accessible to other clusters. Communica- 
tion between clusters is carried out through pass- 
ing messages. 

In the M 2, also connected to the backplane 
message-passing bus are I / O  controllers. The 
I / O  controllers and the CPU clusters operate 
under a client-server model [3]. Some I / O  con- 
trollers, e.g. disk controllers, are associated with a 
large memory which serves as the disk/fi le cache. 
In such cases, the memory in the CPU cluster 
and the memory associated with the I / O  con- 
troller constitute a two-level disk/fi le cache. Data 
consistence between the memories in the CPU 
clusters and I / O  controllers is maintained 
through executing a directory-based coherence 
protocol [4]. 

2.2. Architectural features and design considera- 
tions 

This subsection elaborates the main features 
and design considerations of the M 2 architec- 
ture. If compared with other hierarchical multi- 
processors [5,6], the M 2 is distinctive in its mem- 
ory organization at the second level of the hierar- 
chy, In the M 2, a physically distributed with no 
remote access memory organization is employed. 
This design is aimed at avoiding severe page- 
swapping-induced inter-CPU interference. The 
page-swapping-induced inter-CPU interference, 
as illustrated in Fig. 3, is an inheritance of mem- 
ory sharing among CPUs. For a group of CPUs 
that share memory, regardless of if the memory is 
physically distributed or not, each CPU must be 
notified with the page-swapping events occurring 
in the shared memory so that the CPU would 
flush the blocks that are cached in its private 
caches from the page being swapped out and 
update its TLB (Translation Lookaside Buffer) 
contents accordingly. Since the page-swapping-in- 
duced inter-CPU interference grows linearly with 
the number of CPUs that share memory, it is 
inappropriate to employ the shared-memory ap- 
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Fig. 3. Illustration of inter-CPU interference caused by 
page-swapping events. 

proach beyond a certain extent. Therefore,  it was 
determined that a physically distributed with no 
remote access memory scheme should be em- 
ployed at the second level of the M 2 hierarchy. 

Nevertheless, the presence of the page-swap- 
ping-induced inter-CPU interference does not 
imply that a shared-memory design should not be 
used in any case. The shared-memory approach is 
still favorable up to certain extent due to its 
hardware simplicity and cost-effectiveness. This is 
the reason why VLSI chip sets that implement 
shared-memory shared-bus multiprocessors have 
become popular lately. Aiming to take advantage 
of this development, we decided to employ the 
shared-memory shared-bus structure at the first 
level of the M 2 hierarchy. 

In the M 2, a CPU cluster is to be built on one 
printed-circuit board. This is intended to effec- 
tively exploit the high degree of integration ca- 
pacity made available by recent advances in VLSI 
and packaging technologies. As of today, a typi- 
cal-size board can accommodate 2 to 4 CPUs. 
With continuous advance in VLSI and packaging 
technologies, a typical-size board will eventually 
be able to accommodate 10 to 20 CPUs before 
the limit imposed by the bandwidth of the shared 
bus is reached. 

One important observation on the structure of 
the M 2 is that it is basically the same as a group 
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of multiprocessors connected through a local area 
network. However, the M 2 is superior in system 
scalability since a backplane bus offers much 
higher communication bandwidth than a local 
area network. For example, a 256-bit Futurebus + 
can transfer up to 3.2 gigabytes, equivalent to 
25.6 gigabits, of data per second. On the other 
hand, a FDDI network, as of today, can transfer 
100 megabits of data per second and may be 
upgraded to 200 megabits per second in the near 
future, which is still orders of magnitude lower 
than the bandwidth of the Futurebus + .  

As far as the scalabillty of the M 2 architecture 
is concerned, there are two limiting factors as 
discussed in the following. 
(1) The first limiting factor is the physical dimen- 

sion of the message-passing backplane bus. 
Nowadays, a typical message-passing back- 
plane bus, e.g. the Multibus II [7] and Future- 
bus [8], can accommodate 20 or so printed- 
circuit boards. If each CPU cluster, which is 
to be implemented on a single printed-circuit 
board, contains 10 to 20 CPUs, then the total 
number of CPUs that a M 2 system can ac- 
commodate could be as high as 200 to 400 
CPUs. Here, the assumption of incorporating 
10 to 20 CPUs on one printed-circuit board 
will be feasible in next several years as the 
new generation of VLSI and packaging tech- 
nologies offers higher integration capacity. 

(2) The second limiting factor is the bandwidth 
of the backplane bus. In order to determine 
this effect, one must first figure out the aver- 
age amount of traffic a CPU would introduce 
on the backplane bus. Since the amount of 
I / O  traffic varies largely with the nature of 
the application software, we will base our 
analysis here on the data collected by Allen 
Smith [10] for the benchmark set he used. If 
we assume that the number of I / O  transac- 
tions issued by a CPU per unit of time grows 
linearly with the CPU processing power [9], 
then, according to the statistical data col- 
lected by Smith [10], a 50-MIPS CPU would 
issue about 1000 I / O  transactions per sec- 
ond. If we further assume that 60% to 80% of 
I / O  transactions hit the disk/file cache im- 
plemented in the cluster memory, which is a 
typical ratio according to studies on file cache 
behavior [11,12], and that the disk/fi le cache 
uses 16-Kb blocks, then each CPU would 

introduce 3.2 to 12.8 megabytes of traffic on 
the backplane bus per second. Given this 
value and that a 256-bit Futurebus + can 
transfer up to 3.2 gigabytes of data per sec- 
ond, one can expect that the scale of a M 2 
system can be up to hundreds of CPUs as far 
as the limitation imposed by the bandwidth of 
the backplane bus is concerned. 

The discussion above concludes that the maxi- 
mum scale of a M 2 system is in the order of 
hundreds of CPUs, which is an order of magni- 
tude larger than the typical scale of a shared- 
memory shared-bus multiprocessor. 

The last note on the M 2 architecture is that 
there is a natural match between the M 2 archi- 
tecture and the architecture of the Mach operat- 
ing system [2]. In the Mach, threads within a task 
are sharing-resource light-weight parallel entities. 
In the M 2, the CPU cluster, with multiple CPUs 
and a shared cluster memory, provides a good 
execution platform for multiple-thread tasks. At 
the higher level, Mach tasks, the heavy-weight 
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Fig, 4. Hardware block diagram of the prototype M 2. 
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parallel entities, can be dispatched to M 2 CPU 
clusters for parallel execution. 

3. Development of a prototype M2 

This section describes a prototype M 2 system 
under  development.  The hardware design of the 
system is presented in 3.1 while the operating 
system issues are elaborated in 3.2. 

3.1. Hardware design 

Figure 4 shows the hardware block diagram of 
the prototype M 2 system. In the prototype ma- 
chine, the Multibus II  [7] is employed as the 
backplane message-passing bus and each CPU 
cluster comprises 2 Sparc CPUs [14] along with a 
64-megabyte cluster memory.  The CPUs and the 
cluster memory are actually placed on two sepa- 
rate boards, the CPU board and the memory 
board. The CPU board comprises the CPUs, 
floating point coprocessors, cache controllers, 
cache memories,  D R A M  controller, and mes- 
sage-passing control logic. The memory board 
comprises purelly D R A M  chips. The CPU board 
and the memory board are connected through a 
local bus separate from the Multibus II. 

Figure 4(b) shows the block diagram of the 
CPU board. The major functional blocks on the 
CPU board are designed around an on-board 
64-bit MBus [15]. Placed on the upper  half of the 
board is the Cypress CYM6002K CPU module 
[16]. The CYM6002K consists of 2 Sparc CPUs 
along with their floating-point coprocessors, cache 
controllers, and cache memories. Placed on the 
lower half of the board is the D R A M  controller 
and message-passing control logic. The message- 
passing control logic is mainly made up of three 
microcontrollers, an Intel 82389 message passing 
coprocessor (MPC) [17], an Intel 82380 D M A  
controller, and an Intel 8751 microcontroller. The 
detailed design of the message-passing control 
logic is elaborated in the MPC User 's  Manual  
from Intel Corporat ion [17]. 

3.2. Operating system 

The prototype M 2 will run the Mach operat-  
ing system [2]. On the prototype M 2, Mach tasks 
are dispatched to CPU clusters in their entirety. 
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In other words, the threads within a task are 
dispatched only to the CPUs of the cluster that 
the task is dispatched to and will not spread to 
other CPU clusters. The reason to adopt this 
strategy is that, as mentioned earlier, the CPU 
cluster provides a natural execution platform for 
multiple-thread tasks. For tasks that are dis- 
patched to different CPU clusters, the inter-task 
communication is carried out over the backplane 
message-passing facility. 

4. Conclusion 

In this paper,  we elaborated the development 
of the M 2 hierarchical multiprocessor. The de- 
velopment  of  the M 2 is aimed at meeting the 
demand of ever increasing processing power for 
da tabase /knowledgebase  computing and transac- 
tion processing. The m 2 features: 
• Scalable up to hundreds of CPUs, which is an 

order of magnitude larger than the scalability 
of the shared-memory shared-bus architecture. 

• Effectively exploiting the high degree of inte- 
gration capacity made available by recent ad- 
vances in VLSI and packaging technologies. 

• Matching the architecture of modern  multipro- 
cessor operating systems such as Mach. 
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