
Future Generation Computer Systems 9 (1993) 235-240 235
North-Holland

The M2 hierarchical multiprocessor

Y e n - J e n O y a n g *, D a v i d J i n s u n g S h e u , C h i h - Y u a n C h e n g a n d C h e n g - Z e n Y a n g

Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan

Abstract

This paper discusses the design and development of a bus-based hierarchical multiprocessor named M 2. The primary design
goal of the M 2 is to derive a multiprocessor architecture that features much higher degree of scalability than the
shared-memory shared-bus architecture to meet the ever increasing processing power demanded by large database/
knowledgebase computing and transaction processing. If compared with other hierarchical multiprocessors, the M E is
distinctive in its memory configuration, which is aimed at avoiding severe inter-CPU interference due to page-swapping
events. If compared with a group of multiprocessors connected by a local area network, the M 2 enjoys higher scalability due
to higher bandwidth of the backplane bus.

Keywords. Hierarchical multiprocessor, scalability; shared-memory shared-bus multiprocessor; message-passing; distributed
memory.

1. introduction

In recent years, designers of high-performance
workstations and file servers have started turning
to multiprocessors for their new generation prod-
ucts. In this development, the shared-memory
shared-bus configuration prevails due to its hard-
ware simplicity and cost-effectiveness. However,
the shared-memory shared-bus configuration also
suffers a serious deficiency of very limited scala-
bility, generally up to 10 to 20 CPUs, due to
limited bandwidth of the shared bus. Since ever-
increasing processing power is in demand for
large da tabase /knowledgebase computing and
transaction processing, design of highly scalable
multiprocessors is of great significance and inter-
est to computer architects [1]. Motivated by this
observation, we started the M 2 hierarchical mul-
tiprocessor project in Spring 1991.

In the design of the M 2, several guidelines
were cautiously observed. These guidelines are:
(1) The machine is intended to run data-

base /knowledgebase and transaction process-
ing applications. Hence, the design should be
optimized for that kinds of workloads. Typical

* Corresponding author.

workloads comprise a large number of paral-
lel tasks that are either weakly coupled or
even completely independent. The parallel
tasks could come from a number of re-
questers that take action at the same time or
from a complicated job that are decomposed
into a number of pieces. Each task may fur-
ther exhibit some degree of lower level paral-
lelism.

(2) The architecture design should exploit latest
advances in VLSI and packaging technologies
so that the machine is superior in respect to
cost/effectiveness.

(3) The design should accord with the pragmatic
correspondence illustrated in Fig. 1 between
the granularity of parallel processing and the
level of resource sharing among parallel hard-
ware units.

With these three guidelines, the M 2 architecture
is designed with two levels of multiprocessing
hierarchy. At the first level of the hierarchy, the
shared-memory shared-bus structure is employed.
At the second level of the hierarchy, a physically
distributed with no remote access memory orga-
nization is employed. Through the employing of
the hierarchical structure and memory organiza-
tions, the M 2 features a much higher degree of

0376-5075/93/$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved

236 Y.J. Oyang et al.

Granularity of Level of resource
parallel processing sharing C°arse I IDisk

M e m o r y

M e d i u m

Cache

Fine Register

Fig. 1. Pragmatic correspondence between the granularity
of parallel processing and the level of resource sharing

among parallel hardware units.

scalability than the shared-memory shared-bus
architecture and a good performance/cos t ratio.

In the following part of this paper, we will
elaborate the architecture and design decisions of
the M E in Section 2. Then, in Section 3, we will

describe a prototype M 2 that we have been de-
veloping. Finally, we will conclude our discussion
in Section 4.

2. The M 2 architecture and design decisions

2.1. Overview o f the M 2 architecture

Figure 2 depicts the block diagram of the M 2
hierarchical multiprocessor. The M 2 architecture
consists of two levels of multiprocessing hierar-
chy. At the first level of the hierarchy, multiple
CPUs, each with a private cache, and a shared
cluster memory are placed on a printed-circuit
board and connected through an on-board snoop-
ing bus to form a CPU cluster. In the M 2, the
shared cluster memory in a CPU cluster serves as
the main memory to the CPUs in the cluster.
Therefore, structure-wise, there is no difference

CPU Cluster 1

/ : ! " •i I c

~ . : • ..!'d:: !:.!:.::-:.-/

. ::~.: Shared Cluster

CPU Cluster M

cPU L

J

Backplane Message-Passing Bus

Controller

I/0
Controller

Fig. 2. Block diagram of the M 2 hierarchical multiprocessor.

The M 2 hierarchical multiprocessor 237

between a M 2 CPU cluster and a conventional
shared-memory shared-bus multiprocessor.

The second level of the M 2 hierarchy is made
up of multiple CPU clusters connected through a
backplane message-passing bus. At this level of
hierarchy, memory is distributed in both physical
and logical senses. That is, the memory of a
cluster is accessible only to the cluster itself and
is not accessible to other clusters. Communica-
tion between clusters is carried out through pass-
ing messages.

In the M 2, also connected to the backplane
message-passing bus are I / O controllers. The
I / O controllers and the CPU clusters operate
under a client-server model [3]. Some I / O con-
trollers, e.g. disk controllers, are associated with a
large memory which serves as the disk/fi le cache.
In such cases, the memory in the CPU cluster
and the memory associated with the I / O con-
troller constitute a two-level disk/fi le cache. Data
consistence between the memories in the CPU
clusters and I / O controllers is maintained
through executing a directory-based coherence
protocol [4].

2.2. Architectural features and design considera-
tions

This subsection elaborates the main features
and design considerations of the M 2 architec-
ture. If compared with other hierarchical multi-
processors [5,6], the M 2 is distinctive in its mem-
ory organization at the second level of the hierar-
chy, In the M 2, a physically distributed with no
remote access memory organization is employed.
This design is aimed at avoiding severe page-
swapping-induced inter-CPU interference. The
page-swapping-induced inter-CPU interference,
as illustrated in Fig. 3, is an inheritance of mem-
ory sharing among CPUs. For a group of CPUs
that share memory, regardless of if the memory is
physically distributed or not, each CPU must be
notified with the page-swapping events occurring
in the shared memory so that the CPU would
flush the blocks that are cached in its private
caches from the page being swapped out and
update its TLB (Translation Lookaside Buffer)
contents accordingly. Since the page-swapping-in-
duced inter-CPU interference grows linearly with
the number of CPUs that share memory, it is
inappropriate to employ the shared-memory ap-

CPU 1 CPU 2

Cache ~ Flushcache Cache,
• \ blocks that

belong to
| page X and update
9 ' the TLB

accordingly.

Interconnection Network J

Sh e ~
M~p~ ory

CPU 1 requests
page X be
swapped out.

~ Flush cache
blocks that
belong to
page X and update
the TLB
accordingly.

Fig. 3. Illustration of inter-CPU interference caused by
page-swapping events.

proach beyond a certain extent. Therefore, it was
determined that a physically distributed with no
remote access memory scheme should be em-
ployed at the second level of the M 2 hierarchy.

Nevertheless, the presence of the page-swap-
ping-induced inter-CPU interference does not
imply that a shared-memory design should not be
used in any case. The shared-memory approach is
still favorable up to certain extent due to its
hardware simplicity and cost-effectiveness. This is
the reason why VLSI chip sets that implement
shared-memory shared-bus multiprocessors have
become popular lately. Aiming to take advantage
of this development, we decided to employ the
shared-memory shared-bus structure at the first
level of the M 2 hierarchy.

In the M 2, a CPU cluster is to be built on one
printed-circuit board. This is intended to effec-
tively exploit the high degree of integration ca-
pacity made available by recent advances in VLSI
and packaging technologies. As of today, a typi-
cal-size board can accommodate 2 to 4 CPUs.
With continuous advance in VLSI and packaging
technologies, a typical-size board will eventually
be able to accommodate 10 to 20 CPUs before
the limit imposed by the bandwidth of the shared
bus is reached.

One important observation on the structure of
the M 2 is that it is basically the same as a group

238 Y.J. Oyang et aL

of multiprocessors connected through a local area
network. However, the M 2 is superior in system
scalability since a backplane bus offers much
higher communication bandwidth than a local
area network. For example, a 256-bit Futurebus +
can transfer up to 3.2 gigabytes, equivalent to
25.6 gigabits, of data per second. On the other
hand, a FDDI network, as of today, can transfer
100 megabits of data per second and may be
upgraded to 200 megabits per second in the near
future, which is still orders of magnitude lower
than the bandwidth of the Futurebus + .

As far as the scalabillty of the M 2 architecture
is concerned, there are two limiting factors as
discussed in the following.
(1) The first limiting factor is the physical dimen-

sion of the message-passing backplane bus.
Nowadays, a typical message-passing back-
plane bus, e.g. the Multibus II [7] and Future-
bus [8], can accommodate 20 or so printed-
circuit boards. If each CPU cluster, which is
to be implemented on a single printed-circuit
board, contains 10 to 20 CPUs, then the total
number of CPUs that a M 2 system can ac-
commodate could be as high as 200 to 400
CPUs. Here, the assumption of incorporating
10 to 20 CPUs on one printed-circuit board
will be feasible in next several years as the
new generation of VLSI and packaging tech-
nologies offers higher integration capacity.

(2) The second limiting factor is the bandwidth
of the backplane bus. In order to determine
this effect, one must first figure out the aver-
age amount of traffic a CPU would introduce
on the backplane bus. Since the amount of
I / O traffic varies largely with the nature of
the application software, we will base our
analysis here on the data collected by Allen
Smith [10] for the benchmark set he used. If
we assume that the number of I / O transac-
tions issued by a CPU per unit of time grows
linearly with the CPU processing power [9],
then, according to the statistical data col-
lected by Smith [10], a 50-MIPS CPU would
issue about 1000 I / O transactions per sec-
ond. If we further assume that 60% to 80% of
I / O transactions hit the disk/file cache im-
plemented in the cluster memory, which is a
typical ratio according to studies on file cache
behavior [11,12], and that the disk/fi le cache
uses 16-Kb blocks, then each CPU would

introduce 3.2 to 12.8 megabytes of traffic on
the backplane bus per second. Given this
value and that a 256-bit Futurebus + can
transfer up to 3.2 gigabytes of data per sec-
ond, one can expect that the scale of a M 2
system can be up to hundreds of CPUs as far
as the limitation imposed by the bandwidth of
the backplane bus is concerned.

The discussion above concludes that the maxi-
mum scale of a M 2 system is in the order of
hundreds of CPUs, which is an order of magni-
tude larger than the typical scale of a shared-
memory shared-bus multiprocessor.

The last note on the M 2 architecture is that
there is a natural match between the M 2 archi-
tecture and the architecture of the Mach operat-
ing system [2]. In the Mach, threads within a task
are sharing-resource light-weight parallel entities.
In the M 2, the CPU cluster, with multiple CPUs
and a shared cluster memory, provides a good
execution platform for multiple-thread tasks. At
the higher level, Mach tasks, the heavy-weight

CPU Cluster 1 CPU C[ustBr N

Local Bus

A A

I L=8o,
Mul~bus II iPSB Bus

(a) System Configuration

Cypress CYM 6002K
Spare CPU Module

t

TO iPSB TO ~ r y Board

(b) The CPU Board

Fig, 4. Hardware block diagram of the prototype M 2.

The M 2 hierarchical

parallel entities, can be dispatched to M 2 CPU
clusters for parallel execution.

3. Development of a prototype M2

This section describes a prototype M 2 system
under development. The hardware design of the
system is presented in 3.1 while the operating
system issues are elaborated in 3.2.

3.1. Hardware design

Figure 4 shows the hardware block diagram of
the prototype M 2 system. In the prototype ma-
chine, the Multibus II [7] is employed as the
backplane message-passing bus and each CPU
cluster comprises 2 Sparc CPUs [14] along with a
64-megabyte cluster memory. The CPUs and the
cluster memory are actually placed on two sepa-
rate boards, the CPU board and the memory
board. The CPU board comprises the CPUs,
floating point coprocessors, cache controllers,
cache memories, D R A M controller, and mes-
sage-passing control logic. The memory board
comprises purelly D R A M chips. The CPU board
and the memory board are connected through a
local bus separate from the Multibus II.

Figure 4(b) shows the block diagram of the
CPU board. The major functional blocks on the
CPU board are designed around an on-board
64-bit MBus [15]. Placed on the upper half of the
board is the Cypress CYM6002K CPU module
[16]. The CYM6002K consists of 2 Sparc CPUs
along with their floating-point coprocessors, cache
controllers, and cache memories. Placed on the
lower half of the board is the D R A M controller
and message-passing control logic. The message-
passing control logic is mainly made up of three
microcontrollers, an Intel 82389 message passing
coprocessor (MPC) [17], an Intel 82380 D M A
controller, and an Intel 8751 microcontroller. The
detailed design of the message-passing control
logic is elaborated in the MPC User 's Manual
from Intel Corporat ion [17].

3.2. Operating system

The prototype M 2 will run the Mach operat-
ing system [2]. On the prototype M 2, Mach tasks
are dispatched to CPU clusters in their entirety.

multiprocessor 239

In other words, the threads within a task are
dispatched only to the CPUs of the cluster that
the task is dispatched to and will not spread to
other CPU clusters. The reason to adopt this
strategy is that, as mentioned earlier, the CPU
cluster provides a natural execution platform for
multiple-thread tasks. For tasks that are dis-
patched to different CPU clusters, the inter-task
communication is carried out over the backplane
message-passing facility.

4. Conclusion

In this paper, we elaborated the development
of the M 2 hierarchical multiprocessor. The de-
velopment of the M 2 is aimed at meeting the
demand of ever increasing processing power for
da tabase /knowledgebase computing and transac-
tion processing. The m 2 features:
• Scalable up to hundreds of CPUs, which is an

order of magnitude larger than the scalability
of the shared-memory shared-bus architecture.

• Effectively exploiting the high degree of inte-
gration capacity made available by recent ad-
vances in VLSI and packaging technologies.

• Matching the architecture of modern multipro-
cessor operating systems such as Mach.

References

[1] S. Thakkar et al., new directions in scalable shared-mem-
ory multiprocessor architectures, IEEE Comput. (June
1990).

[2] A. Tevanian Jr., Architecture-independent virtual mem-
ory management for parallel and distributed environ-
ments: the mach approach, Ph.D. Thesis, Dept. of Com-
puter Science, Carnegie- Mellon University, 1987.

[3] E. Levy and A. Silberschatz, Distributed file systems:
Concepts and examples, ACM Comput. Surveys 22 (4)
(Dec. 1990).

[4] D. Chaiken, C. Fields, K. Kurihara and A. Agarwal,
Directory-based cache coherence in large-scale multipro-
cessors, IEEE Comput. 23 (6) (June 1990).

[5] A.W. Wilson, Hierarchical cache/bus architecture for
shared memory multiprocessors, Proc. 14th Annual Inter-
nat. Syrup. on Computer Architecture (1987).

[6] D. Cheriton, H.A. Goosen and P.D. Boyle, Paradigm: A
highly scalable shared-memory multicomputer architec-
ture, IEEE Comput. (Feb. 1991).

[7] Intel Corporation, Multibus H Bus Architecture Specifica-
tion Handbook (Intel Corporation, 1984).

240 Y.J. Oyang et al.

[8] IEEE, IEEE Standard Backplane Bus Specification for
Multiprocessor Architectures." Future-bus, IEEE Standard
896.1 (1987).

[9] G.M. Amdahl, Storage and IO parameters and system
potential, Proc. IEEE Computer Group Conf. (1970).

[10] Disk cache - miss ratio analysis and design considera-
tions, ACM Trans. Comput. Syst. 3 (3) (Aug. 1985).

[11] J.L. Hennessy and D.A. Patterson, Computer Architec-
ture: A Quantitative Approach (Morgan Kaufmann, San
Mateo, CA, 1990).

[12] M.G. Baker, J.H. Hartman, M.D. Kupfer, K.W. Shirriff
and J.K. Ousterhout, Measurements of a distributed file
system, Proc. 13th ACM Syrup. on Operating System Prin-
ciples, Pacific Grove, CA (Oct. 1991).

[13] R.H. Katz, S.J. Eggers, D.A. Wood, C.L. Perkins and
R.G. Sheldon, Implementating a cache consistency pro-
tocol, Proc: 12th Annual Internat. Symp. on Computer
Architecture (1985).

[14] Cypress Semiconductor, Sparc RISC User's Guide
(Cypress Semiconductor, 1990).

[15] Cypress Semiconductor, Sparc MBus Interface Specifica-
tion, (cypress Semiconductor, 1991).

[16] Cypress Semiconductor, CYM6OO2KDual CPUSparcCore
Module (Cypress Semiconductor, 1991).

[17] Intel Corporation, MPC User's Manual (Intel Corpora-
tion, 1986).

Yen-Jen Oyang received the B.S. de-
gree in Information Engineering from
National Taiwan University in 1982,
the M.S. degree in Computer Science
from the California Institute of Tech-
nology in 1984, and the Ph.D. degree
in Electrical Engineering from Stan-
ford University in 1988. He is cur-
rently an Associate Professor in the
Department of Computer Science and
Information Engineering, National
Taiwan University. His research in-
terests include computer architecture
and VLSI system design.

David J. Sheu was born on Septem-
ber 11, 1967 in Taipei, Taiwan. He
received the B.S. degree in Informa-
tion and Computer Engineering from
Chung-Yuan Christian University in
1990, and the M.S. degree in Com-
puter Science and Information Engi-
neering from National Taiwan Uni-
versity in 1992. His major research
interest is multiprocessor architecture
and hardware design.

Chih-Yuan Cheng was born on Octo-
ber 19, 1968 in Taipei, Taiwan, R.O.C.
He received the B.S. degree in Com-
puter Science and Information Engi-
neering from National Taiwan Uni-
versity in 1991. He is currently in the
master program of the same depart-
ment and expected to complete his
degree in 1993. His research field is
superscalar architecture and compiler
design.

Cheng-Zen Yang is currently a Ph.D.
student at the Dept. of Computer Sci-
ence and Information Engineering of
National Taiwan University, Taipei,
Taiwan. He received the B.S. degree
in Computer Engineering from Na-
tional Chiao Tung University in 1988,
and the M.S. degree in Computer Sci-
ence and Information Engineering
from the same University in 1990. His
major research interests include dis-
tributed computing system, dis-
tributed file system and Operating
System.

