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SUMMARY

In this paper, a nonlinear indirect adaptive sensorless speed and #ux tracking controller for induction
motors is proposed. In the controller, only the stator currents are assumed to be measurable. Flux observers
and rotor speed estimator are designed to relax the need to #ux and speed measurement. Besides, two
estimators are also designed to overcome drifting problem of the rotor resistance and unknown load torque.
Rigorous stability analysis based on Lyapunov theory is also performed to guarantee that the controller
designed here is stable. Computer simulations and experiments are done to demonstrate the performance of
our design. Copyright ( 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Motivation and related researches

The induction motor is a coupled system with highly non-linear dynamics. In its "ve states, only
stator currents are measurable in sensorless control problem making it di$cult to be solved by
the engineers. Besides, drift of system parameter drifting is also another problem to cope with.
Due to the highly non-linear dynamics, the control of induction motors becomes a popular
problem for investigating the relevant non-linear theory and adaptive control over the past
decade. In the early years, all system states are assumed to be measurable and parameters are
assumed to be known. Under these assumptions, techniques such as classical "eld orientation [1]
and input}output linearization [2, 3] are utilized to design the controller. Especially, the
controller in Reference [3] was adaptive with respect to both the load and the rotor resistances.
Since in these schemes the #ux sensors are required, this makes it impractical for implementation.
Therefore, #ux observers are then designed to relax the need of #ux measurement [4, 5]. These
#ux observers are designed under the assumption that the rotor resistance is known. Generally,
the value of the rotor resistance may drift due to the heating of the rotor, and observers proposed
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above are sensitive to such resistance value. Therefore, e!orts have been made to design
estimators of the rotor resistance and/or other system parameters [6, 7]. Following these
researches, further e!orts were then to design controllers and #ux observers which are adaptive
with respect to both system parameters and/or the load [8}11].

All the schemes above require speed measurement. However, the speed measuring device is
rather costly relative to the price of an induction motor in general. Besides, the measured signals
are usually noisy and di$cult to deal with. Therefore, controllers that do not require speed
measurement are obviously preferable for practical implementation. The problem which designs
a speed controller of induction motors without rotational transducers then becomes widely
interesting and is usually referred to as sensorless control problem. The "rst paper regarding
sensorless control problem can be traced back to 1981. In that paper, the vector control technique
is utilized. After that many research results on sensorless vector control have been proposed
[12, 13], in which analyses are mainly based on the steady-state behaviour and only rough proofs
are supplied. On the other hand, in References [14, 15], many researches on sensorless control
were discussed and compared, including vector control and other modern control theory, such as
robust and model reference adaptive system (MRAS). Here, we follow this trend to design a fully
non-linear adaptive sensorless speed controller for induction motors based on #ux observer.

1.2. Organization of this paper

In this paper, an introduction of induction motors and related researches are discussed in Section 1.
In Section 2, the mathematical model of an induction motor will be presented. The main part of
this paper is Section 3 in which observers and controller are designed and proved in detail. The
computer simulations and experimental results are presented in Section 4. Finally, we will make
some conclusions in Section 5.

2. PRELIMINARIES AND PROBLEM FORMULATION

In this chapter, we introduce the induction motor model and our control problem.

2.1. Motor model

If the induction motor never goes into the saturation region, and the air-gap MMF is sinusoidal,
then it can be characterized by the following dynamic equations [16]:
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where ¸
0
, b

1
, b

2
, b

3
are constants de"ned in the nomenclature. The mathematical model listed

above is referred to the well-known stator "xed reference frame. The "ve equations derived above
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can fully describe the dynamics of the electrical part of the motor-load system. Meanwhile, we can
derive the dynamics of the mechanical part through some analysis based on Newton's law

JuR
3
#Du

3
#¹

L
"¹

%
(2)

where J'0 is the rotor inertia, D'0 is the damping coe$cient and ¹
L

is the load torque. After
successfully deriving the dynamics of the whole system, we begin to introduce our control
problems and objects.

2.2. Problem formulation

In this paper, we try to design a speed controller for induction motors, which does not rely on any
shaft sensor outputs and only measures the stator currents. All the parameters of the motor
except the rotor resistance and the load torque are assumed to be known. The only knowledge
about the rotor resistance we have is its nominal value. Given this information about the motor,
for any speed and #ux commands which are second-order continuously di!erentiable bounded
functions, this controller should be able to drive the motor to track the commands.

3. INDUCTION MOTOR CONTROL

Before a thorough investigation on the observers and controllers, several assumptions will be
presented below to make the problem more precise.

Assumption

(A1) All parameters of the motor are known, except the rotor resistance R
3
.

(A2) The stator currents are measurable.
(A3) The load torque ¹

L
is an unknown constant.

(A4) The desired rotor speed should be a bounded smooth function with known "rst and
second-order time derivatives.

Assumption (A1) comes from the uncertainty of the rotor resistance. Its value may vary up to
100 percent during the operation due to the change in the temperature and/or working condition.
Assumption (A2) is a realistic consideration in the actual application of the induction motors. The
reason why we only measure the stator currents is stated in the introduction of this thesis. Finally,
assumptions (A3) and (A4) are also quite realistic in practical applications.

Control objective: Given the desired rotor speed trajectory u
3$

(t), our control goal is to design
control laws such that the rotor speed u

3
and the rotor #ux ( can track their respective desired

trajectories asymptotically in time with all internal signals being bounded, subject to assumptions
(A1)}(A4).

3.1. Observer design

In order to measure the rotor #uxes, sensors have to be inserted into the air gap. This requires
re-designing or re-assembling of the motor. Obviously, this contradicts to the advantages of the
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induction motors, i.e. low cost and easy fabrication. Therefore, here we design observers to
observe the rotor #ux and relax the need to #ux sensors. Besides, as mentioned in the introduction
of this paper, the rotor speed is not measured, either. This leads us to construct a speed observer
as well. In addition to the rotor #ux observers and the rotor speed observer, we build observers to
observe the stator currents despite they being are readily measurable signals. These additional
current observers provide us extra information useful for designing our non-linear adaptive
subsequently. We then have "ve observers in total in our system to reconstruct the "ve system
states. Moreover, since variation of the rotor resistance may cause undesirable deterioration of
performance, a rotor resistance estimator is built as well. These observers and estimators will be
discussed in the following contents.

The system model is shown in Section 2. We set R
3
"R

3/
#h

1
, u

3
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3$
#h

2
where h

1
stands

for (unknown) di!erence between the actual resistance value and its nominal value, and h
2

denotes the speed tracking error. For easy reference, we de"ne the notations for the observed
values and the observation errors as II
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where the symbol ) denotes that it is an observed value and the

symbol & denotes an observation error. According to the structure of the dynamics in (1), the
observers are proposed as in Reference [8]:
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where RK
3
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3n
#hK

1
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3
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2
and the constant k

0
'0 is a control gain. Finally, the speed

observer and the rotor resistance estimator, which are not shown here, will be presented toward
the end of this section based on Lyapunov stability analysis.

3.2. Analysis of the observer

With the observers designed above, in this section we will proceed to analyse their stability. First,
we derive the observation error dynamics by subtracting (3) from (1) to yield
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After a careful review of the above equations, an interesting property of these observation errors
can be found, i.e. there are a lot of common terms in the error dynamics of the stator currents and
in those of the rotor #uxes, but they are with opposite signs. In fact, this phenomenon also
appears in the system model (1). In order to utilize this property to cancel the unmeasurable
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terms, we design two auxiliary observation errors [8]:
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Another interesting characteristic is studied here. Although the auxiliary observation errors, ZI
a

and ZI
b
, are not measurable (because they are composed of II and tI , and tI is not measurable), their

"rst-order time derivatives are measurable. This special characteristic comes from the cancella-
tion of the common terms mentioned above.

Two additional error signals g
a

and g
b
are then de"ned as follows:
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where f
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and f
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are auxiliary control signals. Again, g
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are unmeasurable errors but with

measurable "rst-order time derivatives. It will be clear later that the use of these two signals will
bring help to cope with the coupling terms of the unmeasurable signals, such as u
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by (5) and (6), which can be further rearranged into
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Substituting (8) into the "rst two equations of (4), we get the error dynamics about current
observation as
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After investigation on the error dynamics of the stator current observer, we now turn to study of
the error dynamics of the rotor #ux observer. It is noteworthy that the rotor #ux error dynamics
will not be analysed directly, but instead the analysis on ZI

a
and ZI

b
will be made.

Let v
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So far, we have derived the error dynamics of the observed stator current and the auxiliary errors.
Now, we are ready to perform the Lyapunov stability analysis to examine the stability condition
of these observers. First, we de"ne a Lyapunov function candidate as
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Taking the time derivative of <
0

along the system trajectories, we obtain
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Note that ))
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and ))
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are combination of all measurable errors, observed values and
auxiliary control signals, and hence are known functions. Here, to complete the "nal analysis an
additional assumption is required.
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where gL
a
and gL

b
are estimated values of g

a
and g

b
, respectively, satisfying
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Clearly, the upper bound on <Q on the right-hand side (RHS) of Equation (15) still does not have
de"nite negative sign. To cope with that, we incorporate the variable structure design (VSD) into
our controller. Let us "rst assume
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where sgn( ) ) is the sign function de"ned as
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given by the "rst equation in (17). Denoting by hK

11
(t) the modi"cation of hK

1
(t) given by the

projection algorithm, hK
11

(t) is chosen such that

[(R
3n
#h

1
)!(R

3n
#hK

1
(t))]2*[(R

3n
#h

1
)!(R

3n
#hK

11
(t))]2 (18)

which guarantees that the value of <
0
does not increase when hK

1
is replaced by hK

11
given by the

projection algorithm. Since R
3
"R

3n
#h

1
is positive, a simple projection algorithm which

guarantees that (18) is satis"ed is obtained by reinitializing the estimate hK
1
(t)

hK
1
(t)"hK

11
(t)"

!R
3n

2
#e if hK

1
(t))R

3n

with e'0 a positive constant such that

e)2 (R
3n
#h

1
)"2R

3

Let us for the time being assume that (I
a
, I

b
) are bounded in "nite time, i.e. (I

a
, I

b
3¸

=e
), then from

Appendix A, (t
a
, t

b
, u

3
) are also bounded in "nite time. Since (t

a
, t

b
, I

a
, I

"
, u

3
) are bounded, if

RK
3
"R

3n
#hK

1
*R

3n
/2'0, it follows that tK

a
and tK

b
are also bounded according to (3), and

therefore ZI
a
and ZI

b
are bounded from (5). This implies that f

a
and f

b
are bounded and that v

1
, v

2
,

v
3

and v
4

are bounded as well. According to (9), II Q
a
and II Q

b
are bounded. On the other hand, IIQ

a
and
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IIQ
b
are ¸

2
signals, since

P
t

0

(II 2
a
(q)#II 2

b
(q)) dq"

k
0

¸
0

(< (t)!<(0))

)

k
0

¸
0

<(0), ∀t*0

By Barbalat's lemma, it follows that

lim
t?=

II
a
(t)"0, lim

t?=
II
b
(t)"0, (19)

We can rewrite (9) and (14) in matrix from as

IIQ"AII#=T(t)X#B (t)

XQ "!"=(t)II#"CII (20)

in which II"[II
a
, II

b
]T, X"[RI

3
, uJ

3
, g

a
, g

b
], ""diag[1/kg, 1/kg, 1/k

R
, 1/ku] and

A"C
!

k
0

¸
0

0

0 !

k
0

¸
0
D

=T(t)"C
)

11
¸
0

)
21
¸

0

R
3

¸
3
¸

0

b
2
uL

3
¸

3
¸
0

)
12
¸
0

)
22
¸

0

!

b
2
uL

3
¸

3
¸
0

RK
3

¸
3
¸
0
D

B(t)"C
v
5

v
6
D

CT"C
gJ
a

¸
3
¸
0

gJ
b

¸
3
¸

0

0 0

gJ
b

¸
3
¸
0

gJ
a

¸
3
¸

0

0 0D (21)

To analyse the asymptotic condition of system (20), we introduce the following important
working lemma.

¸emma 1.

If there exist two positive constants ¹ and e such that

P
t`T

t

= (q)=T(q)*eI'0, ∀t*0 (22)
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then the equilibrium state X"0, II"0 of the following system:

IIQ"A (t) II#=T(t)X

XQ "!=(t)II (23)

are uniformly asymptotically stable.

The proof is shown in Appendix B.
We can get II asymptotically tending to zero from (19), and the matrix B (t) in (20) is bounded.

Motivated by Lemma 1, when II is small, we supply small control signals (v
5
, v

6
) in matrix B (t), but

if II tend close to zero, we set v
5
, v

6
zero. As a result, we can make Equations (20) and (23) virtually

the same. Then, the equilibrium point (II"0, X"0) remains asymptotically stable for such kind
of hybrid set-up according to Lemma 1, namely RI

3
, uJ

3
, g

a
, g

b
, II

a
and II

b
tend asymptotically to zero.

By now, let us rewrite the last two terms in Equation (4).

C
tKQ
a

tKQ
b
D"C

!R
3
/¸

3
b
2
u

3
/¸

3

!b
2
u

3
/¸

3
!R

3
/¸

3
D C

t
a

t
b
D#RI

3 C
(MI

a
!tK

a
)/¸

3
(MI

b
!tK

b
)/¸

3
D#b

2
u8

3 C
!t)

b
t)
a
D#C

v
3

v
4
D

where v
3
, v

4
are the functions of II

a
, II

b
as shown in (11). Since I

a
and I

b
are assumed bounded in

"nite time and the fact that tK
a
and tK

b
are bounded (to be clear in the following remark), we can

conclude that tI
a
and tI

b
also tend asymptotically to zero. In conclusions, Equation (3) with (v

1
, v

2
,

v
3
, v

4
, v

5
, v

6
) given in (7), (11), and (16) and hK

1
, hK

2
, g

a
and g

b
updated according to (17) and (14)

constitute a convergent adaptive observer provided that (22) is satis"ed.

Remark

According to (3), we can rewrite the dynamics of the observed #ux in the form

C
tKQ
a

tKQ
b
D"C

!RK
3

b
2
uL

3

!b
2
uL

3
!RK

3
D C

tK
a

tK
b
D#C

MRK
3

0

0

MRK
3
D C

I
a

I
b
D#C

v
3

v
4
D

Because (I
a
, I

b
, v

3
, v

4
) are bounded, we only need to check the convergence of the form as follows:

C
tKQ
a

tKQ
b
D"C

!RK
3

b
2
uL

3

!b
2
uL

3
!RK

3
D C

tK
a

tK
b
D

Consider that

<tK "1
2

(tK 2
a
#tK 2

b
)

then

<Q tK "tK
a
tKQ

a
#tK

b
tKQ
b

"!RK
3
(tK 2

a
#tKQ 2

b
))0
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which implies the exponential stability condition of the homogeneous system and hence the
bounded input bounded state (BIBS) property of the forced (non-homogeneous) system.

3.3. Controller design

In the previous section, observers and parameter estimator are designed and their stability
properties are analysed based on Lyapunov stability theory. We then use the observed or
estimated values in designing a proper controller as if they were true values. In this section, we
propose a state feedback control for induction motor system which is adaptive with respect to the
unknown constant load torque ¹

L
, assuming all states (I

a
, I

b
, t

a
, t

b
) are measurable and the rotor

resistance (R
3
) is a known constant. The controller objective is to guarantee asymptotical zero

convergence of rotor speed tracking error and rotor #ux tracking error. The dynamics model of
the induction motor is expressed as (1). And, we de"ne the speed tacking error, #ux tacking error
and load torque estimation error as eu"u

3
!u

3$
, e("t2

a
#t2

d
!(2

d
, e

T
"¹

L
!¹K

L
where

(2
$
"t2

a$
#t2

b$
, (2"t2

!
#t2

"
, u

3$
and (

$
are the reference signals and ¹K

L
is a time-varying

estimation of ¹
L
.

With the tracking errors and load torque estimation error de"ned above, their dynamics can be
derived from (1) as

JeR u"k
T
(t

a
I
b
!t

b
I
a
)!Du

3
!¹

L
!JuR

3$

¸
3
eR ("!2R

3
(2#2MR

3
(t

a
I
a
#t

b
I
b
)!2¸

3
(0 2

$
(24)

By designing the input signal I
a
and I

b
, we "rst consider a Lyapunov function candidate de"ned

as

<
1
"1

2
(r
1
Je2u#r

2
¸
3
e2t#r

3
e2
T
)

where gains r
1
, r

2
and r

3
are positive.

Taking the time derivative of <
1
, we then get its time derivative according to (24) as

<Q
1
"r

1
eu (k

T
(t

a
I
b
!t

b
I
a
)!Du

3
!¹

L
!JuR

3$
)

#r
2
e( (!2R

3
(2#2MR

3
(t

a
I
a
#t

b
I
b
)!2¸

3
(0 2

$
)#r

3
e
T
eR
T

(25)

If we let I
a
and I

b
be chosen such that

k
T
(t

a
I
b
!t

b
I
a
)!Du

3
!JuR

3
!JuR

3$
"!Kueu#¹K

L

!2R
3
(2#2MR

3
(t

a
I
a
#t

b
I
b
)!2¸

3
(0 2

$
"!K(e( (26)

with Ku'0 and K('0. From (26), the choice of the currents I
a

and I
b

are equivalent to the
following:

I
a
"

1

(2
()

1
t

a
!)

2
t
b
)

I
b
"

1

(2
()

2
t

a
#)

1
t
b
) (27)
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where

)
1
"

2R
3
(2#2¸

3
(0 2

$
!K(e(

2MR
3

)
2
"

Du
3d
#JuR

3$
!(Ku!D) eu#¹K

L
k
T

(28)

But, the currents are not directly available as control inputs. They are related to the actual
controls (stator voltages) by the "rst two equations in (1). To design the actual control inputs <

a
and <

b
, we thus let currents in (27) to be the desired currents.

I
a$
"

1

(2
()

1
t
a
!)

2
t

b
)

I
b$
"

1

(2
()

2
t
a
!)

1
t

b
) (29)

De"ne the current errors, namely, the di!erences between the actual currents and their desired
values, as follows:

e
a
"I

a
!I

a$

e
b
"I

b
!I

b$

Then, the error dynamics involving (eu, e(, e
a
, e

b
) can be summerized as follows:

JeR u"k
T
(t

a
e
b
!t

b
e
a
)!Kueu!e

T

¸
3
eR ("2MR

3
(t

a
e
a
#t

b
e
b
)!K(e(

¸
0
eR
a
"!MR

3
I
a
!b

1
I
a
#R

3
t
a
#b

2
u

3
t
b
#b

3
<
a
!¸

0
IQ
a$

¸
0
eR
b
"!MR

3
I
b
!b

1
I
b
!b

2
u

3
t
!
#R

3
t
b
#b

3
<
b
!¸

0
IQ
b$

(30)

The derivatives of the reference currents computed from (29) are found as

IQ
a$
")

3
!

¸
0
t
b
(Ku!D)

(2k
T
J

e
T

IQ
b$
")

4
#

¸
0
t
a
(Ku!D)

(2 k
T
J

e
T

(31)
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where

)
3
"¸

0 AA
d

dt

t
a

(2B )
1
#

t
a

(2
)0

1B!¸
0AA

d

dt

t
b

(2B )
2
!

t
b

(2
)

5B
)

4
"¸

0 AA
d

dt

t
a

(2B )
2
#

t
a

(2
)

5B#¸
0AA

d

dt

t
b

(2B )
1
#

t
b

(2
)0

1B (32)

in which

d

dt A
t
a

(2B"
tQ
a
(!2t

a
(0

(3

d

dt A
t
b

(2B"
tQ
b
(!2t

b
(0

(3

)0
1
"

4R
3
((0 #2¸

3
(0

$
(0

$
#2¸

3
(

$
(G

$
!K(eR (

2MR
3

)0
2
"

(Ku!D)

k
T
J

e
T
!)

5
(33)

with

)
5
"

!DuR
3$
!JuK

3$
#[(Ku!D)/J] (k

T
(t

a
e
b
!t

b
e
a
)!Kueu)!¹K Q

L
k
T

Only the expression of )0
2
depends on the unknown signal e

T
, but others are all made up of known

signal. Finally, we chose the control input terms <
a
and <

b
as

<
a
"

1

b
3

(MR
3
I
a
#b

1
I
a
!R

3
t
a
!b

2
u

3
t
b
#)

3
!K

a
e
a
#u

a
)

<
b
"

1

b
3

(MR
3
I
b
#b

1
I
b
!R

3
t
b
#b

2
u

3
t
a
#)

4
!K

b
e
b
#u

b
) (34)

where K
a
, K

b
*0, and u

a
and u

b
are to be designed later. Given such design arrangement, the

error dynamics of I
a
and I

b
become

¸
0
eR
a
"!K

a
e
a
#u

a
#

¸
0
t
b
(Ku!D)

(2k
T
J

e
T

¸
0
eR
b
"!K

b
e
b
#u

b
!

¸
0
t
a
(Ku!D)

(2k
T
J

e
T

(35)

ACS=588=Malli=VVC=BG

122 Y.-C. LIN, L.-C. FU AND C.-Y. TSAI

Int. J. Adapt. Control Signal Process. 2000; 14:109}140Copyright ( 2000 John Wiley & Sons, Ltd.



3.4. Analysis of the controller

Note that the dynamics of the state tracking error (e
a
, e

b
, e(, eu) have been explicitly derived in (30)

and (35), where the desired signals (
$

and u
3$
, are a priori known, and the desired currents are

speci"ed in (29). Then, under these circumstance, we can proceed to check the performance of the
controller.

The analysis is also based on the Lyapunov stability theory. First, we de"ne a Lyapunov
function candidate for the controller as

<"1
2

(r
1
Je2u#r

2
¸
3
e2(#r

3
e2
T
#r

4
¸
0
(e2

a
#e2

b
)#ee

T
eu) (36)

for some positive constants r
1
, r

2
, r

3
and r

4
and for some su$ciently small 3('0) such that the

quadratic function

<
2
(eu, e

T
)"1

2
(r
1
Je2u#r

3
e2
T
#ee

T
eu)

is positive de"nite. So, the Lyapunov candidate function < is indeed positive de"nite. Using the
state tracking error dynamics (30) and (35), we can obtain the time derivative of < as

<Q "!r
1
Kue2u!r

2
K(e2(!r

4
K

a
e2
a
!r

4
K

b
e2
b

#e
TAr1!eu#r

4
e
a
(Ku!D)

¸
0
t
b

(2k
T
J

!r
4
e
b
(Ku!D)

¸
0
t
a

(2k
T
J
#r

3
eR
T
#eeR uB

#e
a
(!r

1
euk

T
t
b
#2r

2
e(MR

3
t
a
#r

4
u
a
)

#e
b
(r
1
eu k

T
t
b
#2r

2
e(MR

3
t

b
#r

4
u
b
)#eeR

T
eu (37)

In order to make<Q )0, what is left to be decided is eR
T
and<

a
, <

b
. After a careful choice, we follow

the payload estimation algorithm for eR
T

as

¹KQ
L
"!eR

T

"

1

r
3
A!r

1
eu#r

4
e
a

¸
0
t
b
(Ku!D)

(2k
T
J

!r
4
e
b

¸
0
t

a
(Ku!D)

(2k
T
J B

#

e
J

(k
T
(t

a
e
b
!t

b
e
a
)!Kueu) (38)
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which updates <Q into a slightly di!erent form as

<Q "!r
1
Kue2u!r

2
K(e2(!r

4
K

a
e2
a
!r

4
K

b
e2
b
!

e
J

e2
T
#

e
r
3
A
eKu
J

#r
1B e2u

#e
a Cr4u

a
!r

1
euk

T
t

b
#2r

2
e(MR

3
t
a
!

er
4
eu

r
3

¸
0
t

b
(Ku!D)

(2k
T
J

#

eeu
r
3
J

ek
T
t

bD
#e

b Cr4u
b
#r

1
euk

T
t
a
#2r

2
e(MR

3
t

b
#

er
4
eu

r
3

¸
0
t
a
(Ku!D)

(2k
T
J

!

er
4
eu

r
3
J

ek
T
t
aD

(39)

By examining the structure of (39) and completing the stability analysis, we now design the
auxiliary control terms u

a
and u

b
inside the control input terms in (34) to cancel the sign-inde"nite

terms in (39). If u
a
and u

b
are chosen as

u
a
"

1

r
4
Ar1euk

T
t
b
!2r

2
e(MR

3
t
a
#r

4

eeu
r
3

¸
0
t

b
(Ku!D)

(2k
T
J B!

eeu
r
3
J

ek
T
t
b

u
b
"

1

r
4
A!r

1
euk

T
t
a
!2r

2
e(MR

3
t

b
!r

4

eeu
r
3

¸
0
t

b
(Ku!D)

(2k
T
J B#

eeu
r
3
J

ek
T
t
a

(40)

Then the control laws given by (34) and (40) together with the payload update law given by (38)
will readily imply

<Q "!Ar1Ku!
e
r
3

eKu
J

#

er
1

r
3
B e2u!r

2
K(e2(!r

4
K

a
e2
a
!r

4
K

b
e2
b
!

e
J

e2
T

(41)

Let e be su$ciently small such that

Ar1Ku!
e
r
3

eKu
J

#

er
1

r
3
B'0

then there exists K
v
'0 such that (41) implies the following:

<Q )!K
v
E [e

w
, e(, e

a
, e

b
, e

T
]T E2

Consequently, we know the signals (eu, e(, e
a
, e

b
, e

T
) in the closed-loop system approach to zero

exponentially in time t via Lyapunov exponential stability theory.
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3.5. Stability of the overall system

According to the above observer and control design, the following theorems will formally state all
the detailed design procedure seen so far. Also, the consequences of the developed mechanism are
clearly summarized and all the proofs can in fact be referenced from the previous sections.

¹heorem 1

Consider an induction motor whose dynamics is governed by (1) under assumptions (A1)}(A5)
If the stator current observers and the rotor #ux observers are designed as

¸
0
IKQ
a
"k

0
II
a
!(MRK

3
#b

1
) I

a
#RK

3
tK

a
#b

2
uL

3
tK
b
#b

3
<
a
#v

1

¸
0
IKQ
b
"k

0
II
b
!(MRK

3
#b

1
) I

b
!b

2
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3
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a
#RK

3
tK

b
#b

3
<
b
#v

2

¸
3
tKQ
a
"!RK

3
tK

a
!MRK

3
I
a
!b

2
uL

3
tK
b
#v

3

¸
3
tKQ
b
"!RK

3
tK

b
#MRK

3
I
b
#b

2
uL

3
tK
a
#v

4

where

RK
3
"R

3n
#hK

1

uL
3
"u

3$
#hK

2

then the observed speed and #uxes of the rotor uL
3
will be driven to approach to actual speed u

3
and #uxes (t

a
, t

b
), and the estimated rotor resistance will be also driven to approach to actual

rotor resistance by the following primary law:

v
1
"!

RK
3

¸
3

(¸
0
II
a
!f

a
)!

b
2
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3
¸

3

(¸
0
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b
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(¸
0
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b
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b
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b
2
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3
¸

3

(¸
0
II
a
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a
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0
II
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¸
0
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3
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2
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3
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b
)

v
4
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0
II
b
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3
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2
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)

And the auxiliary control law is as follows:

gR
a
"!

1

kg A
RK

3
¸
3
¸
0

II
a
!

b
2
uL

3
¸
3
¸
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II
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3
¸
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with kg'0, and the adaptation laws are designed as

hKQ
1
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¸
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for some constants

ku, k
R
, e'0

If we use t
a
, t

b
, u

3
, and R

3
estimated values provided by adaptive observer in Theorem 1, we

obtain the adaptive feedback control theorem as follows:

¹heorem 2

Consider an induction motor whose dynamics are governed by (1) under assumptions
(A1)}(A5). If the rotor #ux observers and the rotor resistance estimator are designed as in
Theorem 1, then the mechanical angular speed of the rotor uL

r
and the rotor #uxes () will be

driven to approach to a bounded smooth speed command u
3$

and #uxes command (
$

with
unknown load torque by the following primary control law:
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)

<
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b
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b
#u

b
)

for some positive constants Ku, K(, K
a

and K
b
, where )

3
and )

4
are de"ned as in (32), the

auxiliary control inputs are designed as follows:
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with some positive constants r
1
, r

2
, r

3
and r

4
, and the payload adaptation law as

¹K0
L
"

1

r
3
A!r

1
eL u#r

4
eL
a

¸
0
tK
b
(Ku!D)

() 2k
T
J

!r
4
eL
b

¸
0
tK

a
(Ku!D)

() 2k
T
J B#

e
J

(k
T
(t)

a
eL
b
!tK

b
eL
a
)!KueL u))

Note that eL u"uL
3
!u

3$
, eL ("() !(

$
, eL

a
"IK

a
!I

a$
, eL

b
"IK

b
!I

b$
, () 2"tK 2

a
#tK 2

b
, i.e. all the

variables which are not measurable are all replaced by their observed values or estimates.

Remark

Referring to the error dynamics (30), (38) with proposed control (34), we can express the
closed-loop system dynamics in a very concise manner as

XQ "F (X, y) (42)

where X"[eu, e(, e
T
, e

a
, e

b
]T, and y"[R

3
, t

a
, t

b
, u

3
], and X converges to zero exponentially.

However, since y is not known a priori, the realistic controller shown in Theorem 2 adopts the
estimate of y, namely, yL so that the closed-loop system (42) becomes

XQ "F (X, yL )

and EF(X, yL )!F (X, y) E)k
l
EX E EyJ E, where yJ "yL !y is always bounded from analysis of the

observer. Therefore, by the following rearrangement

XQ "F (X, y)#(F (X, yL )!F (X, y))

and the fact that X satis"es exponential convergence in (42), one can easily verify that X remains
to satisfy exponential stability provided E yJ E is small enough.

Through the observer and controller design procedure, we have the actual currents approach
to the desired ones, i.e. I

a
PI

a$
, I

b
PI

b$
. Because the desired #ux ((

$
) and the desired speed (u

3$
)

are bounded trajectory, the desired currents are bounded. So, it can be veri"ed through
arguments of contradiction that the actual currents (I

a
, I

b
) are indeed bounded at any time.

4. SIMULATION AND EXPERIMENTAL RESULTS

4.1. Simulation results

In this section, computer simulations of the controller designed above are done by SIM-
NONTMPCW 2.0. The induction motor is set initially at rest with load torque
(¹

L
"6#2 * sin (0.5t)) and is required to follow the various desired speed and #ux trajectories

with uncertainty in rotor resistance. The desired #ux trajectory is described by the function
((

$
"0.5 (1!e!t) Wb), and the nominal value of rotor resistance is 0.53 ). We assume that the
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Figure 1. u
3$
"8.8496 sin (0.5t) rad~1/s with 6#2 sin(t)Nt )m load.

variation of the rotor resistance is up to 50 percent. The simulation results are shown in Figures 1
and 2. In each "gure, part (a) shows the trajectories of the desired and the actual speed, whereas
part (b) demonstrates the speed tracking error between the desired and actual speed. In a similar
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Figure 2. u
3$
"!128.496 sin (0.5t) rad~1/s with 6#2 sin(t)Nt )m load.

way, parts (c) and (d) show the trajectories of the desired and the actual #ux and their error value,
respectively. In addition, parts (e) and (f ) respectively, depict the two phase stator currents and
input voltages. Finally, part (g) and part (h) demonstrate the real and the estimated values of load
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Figure 3. Benchmark test with 6#2 * sin(t) Nt )m load.

torque and the rotor resistance, respectively. From the simulation results, we can see that the
controller can control both the rotor speed and the rotor #uxes simultaneously without measur-
ing the rotor #ux and rotor speed signals.

In Figures 1 and 2, one can "nd that the tracking error and the estimation error do grow a
little bit larger when the peak speed is higher. The reason is that the speed tracking error
h
2
"(u

3
!u

3$
) is actually not changing slowly.
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Table I. Speci"cations and parameters of the motor.

Speci"cation Parameter

Poles 4 R
4

0.83 )
Rated current 8.6 A R

3
0.53 )

Rated voltage 220 V ¸
4

86.01 mH
Rated frequency 60 Hz ¸

3
86.01 mH

Rated Speed 1720 RPM M 82.59 mH
Rated power 2.2 kW J 0.033 kg m2

D 0.00825 N ms

4.2. Simulations with benchmark specixcation

We also perform computer simulations for the benchmark example. The rotor speed is required
to change between those values: u

/0.
, 0.1 u

/0.
, 0.25 u

/0.
, 1.5u

/0.
during t"[0, 10] sec, where

u
/0.

"700 rev min~1. The rotor #ux is required to change from Et E
/0.

to 0.5 Et E
/0.

when the
rotor speed is 1.5 u

/0.
, where Et E

/0.
"0.5 Wb.

The modi"ed benchmark assumption is shown below:

(B1) Measurable signals are the stator currents (I
a
, I

b
).

(B2) Load torque ¹
L

is constant, though unknown.
(B3) All parameters are known, except the rotor resistance R

3
.

(B4) Stator and rotor currents and stator voltages are constrained by 12 A and 300 V.
(B5) The system begins with all zero initial conditions.

The speed tracking of the rotor speed and rotor #ux for the benchmark test are shown in parts
(c) and (d) of Figure 3. The parameter adaptation is shown in parts (g) and (h). The adaptation is
achieved under the restriction of the stator currents and the stator input voltages from assump-
tion (B4) of the benchmark test, which is also shown in parts (e) and (f ) of Figure 3.

4.3. Experimental results

Experiments are done with a three horse power induction motor which is manufactured by
TECO Co. Ltd. Taiwan. Parameters of the motor are listed in Table I.

The 3-HP induction motor used here is mounted with a 2000 pulse rev~1 encoder. The
controller is implemented by C language on a PentiumTM based PC. And the motor driver is
implemented by MOSFET whose gate signals are generated by a 10 kHz SPWM with 2)2 ls
dead-time. The currents are measured by two NANATM hall sensors. In order to check the
performance, we have conducted three experiments with various kinds of sinusoidal speed
commands as shown in Figure 4}6.

From the three "gures, one can see that the speed tracking objective is achieved with di!erent
kinds of precision. In Figure 4, since the peak value is low and hence our previous assumption
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Figure 4. u
3$
"80 sin(t) RPM with no load.

(A5) is more easily satis"ed, the tracking error is quite moderate. But, in Figures 5 and 6, the
tracking error is clearly larger but acceptable because the peak speed is higher. But it is
noteworthy that Figure 6 demonstrates that the controller developed here indeed can serve as
a speed servo, i.e. it is able to drive the motor to follow any kind of smooth speed command.

5. CONCLUSION

In this paper, we have presented a partial-state feedback adaptive sensorless speed and #ux
tracking controller for induction motors with "fth-order non-linear dynamic model which is
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Figure 5. u
3$
"1200 sin (0.5t) RPM with no load.

actuated by a voltage source. We use an indirect adaptive control algorithm. First, we design an
observer to get the actual values of #uxes, speed and rotor resistance. Then we design controller
to achieve speed and #ux tracking. The main contribution of the controller is that asymptotic
tracking of rotor speed and rotor #uxes are achieved without the measurement of both the
rotor #uxes and the rotor speed. Moreover, the variations of the rotor resistance and load
torque are also taken into account. That is, only with the measurement of stator currents,
this controller drives the induction motor to track given twice di!erentiable bounded speed and
#ux commands.
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Figure 6. u
3$
"Hybrid function with no load.

APPENDIX A

Here, we derive an upper bound for the observation error of the rotor speed. First, from the
mechanical part of the motor}load system

uR
3
#

D

J
u

3
"

k
T
J

(t
a
I
b
!t

b
I
a
)!

¹
L

J

e(D/J)u5
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#
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eD/Ju
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J
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(t

a
I
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then
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Since

¹
L

D
(e!(D/J)t

!1))0, ∀t*0

and the torque can be expressed in the vector form

(t
a
I
b
!t

b
I
a
)"UJI

where the matrices are de"ned as

U"[t
a
, t

b
]

J"C
0

!1

1

0D
I"C

I
a

I
b
D

we can obtain the upper bound of the rotor speed as

Du
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t
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D (t
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) (A1)

where the subscript t denotes a truncated function which is de"ned as

f
k
(t)"G

f (t) 0)t)k

0 t'k
∀k*0
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In the above, we see that the upper bound on the rotor speed is determined by the norm of
rotor #uxes and the norm of stator currents. However, the rotor #ux is unmeasurable, and
therefore we try to "nd its upper bound associated with the currents. From the mathematical
model of the motor in (1), we can write the dynamics of the rotor #ux in the form
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Following the procedure as that in the derivation for the upper bound on the rotor speed, the
upper bound on <t is
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Since <t is the norm of the rotor #ux, then we can "nd that
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Then from (A1) and (A2), we can associate the upper bound of the rotor speed with the norm of
the stator currents as
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Since the upper bound on the rotor speed is found, the upper bound on the observation error of
the rotor speed can be found as
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APPENDIX B

¹heorem A1 [17]

The second di!erential equation has the form

xR
1
(t)"A(t)x

1
(t)#uT(t)x

2
(t)

(B1)
xR
2
(t)"!u(t)x

1
(t)

where x
1
: [0, R)PRm, x

2
: [0, R)PRn, A (t) and u(t) are, respectively, n]n and n]m matrices

of bounded piecewise-continuous functions, and A (t)#AT (t) is uniformly negative de"nite, that
is, A(t)#AT(t))!Q(0. Let x"[xT

1
, xT

2
]T. The equibrium point x"0 in Equation (B) is
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uniformly asymptotically stable if, and only if, positive constants ¹
0
, d

0
and e

0
exist with a t

2
3[t,

t#¹
0
] such that for any unit vector w3Rm,
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0
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(B2)

When E uR (t) E is uniformly bounded, the condition in Equation (B2) in Theorem 1 can be relaxed
as given in Corollary 1.

Corollary A2

If u(t) is smooth, uR (t) is uniformly bounded, and u(t) satis"es the condition
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of Equation (B1) is u.a.s.
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since Ex
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we have from Equation (B3)
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which is a contradiction of the assumption regarding Ex
1
(t) E.
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Integrating <Q (x) over an interval [t
1
, t

1
#¹]L[t
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], we obtain that
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where j
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is the minimum eigenvalue of Q. Further, by integrating the "rst equation in
Equation (B1) over [t
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Choosing t
1
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0
, from Equation (B4), it follows that
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Since j
Q~.*/

)2, c3 (0, 1) and ¹d (c!¹d)2)4c3/27, it follows that c3 (0, 8c3/27) and hence
x"0 in Equation (B1) is u.a.s.

NOMENCLATURE

M<
a
, <

b
N stator voltages in the stationary reference frame

MI
a
, I

b
N stator currents in the stationary reference frame

Mt
a
, t

b
N rotor #uxes in the stationary reference frame

u
3

mechanical angular speed of the rotor
R

4
stator resistance

R
3

rotor resistance
¸
4

stator self-inductance
¸
r

Rotor self-inductance
M mutual inductance
p number of pole-pairs
J rotor inertia
D damping coe$cient
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¹
L

load torque

k
T torque constant A"

3pM
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