
Robot Navigation through Obstacles of General Shapes
Using a Center-Line Oriented Algorithm

Chun-Hung Lin and Li-Chen Fu

Department of Computer Science & Information Engineering
National Taiwan University, Taipei, Taiwan, R.O.C.

ABSTRACT

In this paper, the problem of navigating a mobile robot
around baniers in an-unexplored terrain is studied All the obsta-
cles within the terrain are not limited to be of polygonal shapes
nor to be convex. A model map is used to memorize the
configuration of the environment observed so far and is updated
while the robot is being navigated. With "safety" as a more impor-
tant factor to the solution of the problem, an algorithm which
tends to find a "center-line path" among obstacles is proposed.
The case where the sensor has only limited effective range is also
considered. Detailed proof is provided to assure the collision-free
and goalconvergent properties of the algorithm.

1. Introduction
Path planning and navigarion are two of the most vital

issues in robotics regarding autonomous mobile robots. The
former can be thought of as moving a mobile robot through a ter-
rain populated with obstacles which are known a priori. There
have been considerable research work on this aspect. The earliest
one may be traced back to [17], and after that came in the work
[2-3][8][12-13][22] [24][26]. With the obstacle model available
ahead of the real maneuvering of the mobile robot, fmding an
optimal path is usually attempted and may be quite achievable.
The latter is, however, a problem where some kind of "learning"
of its environment has to be performed due to the lack of prior
knowledge of the obstacle model while navigating the mobile
robot through a terrain as before. So the problem can be thought
of as the combination of terrain acquisition [21] and path plan-
ning [ZO]. The task of learning can be accomplished via a use of
sensors, such as, visual sensors, laser range-finders, proximity sen-
sors, etc. Since the circumstance here is generally much more
adverse than that in the former case, fmding just one path leading
the robot from the source to the goal through obstacles is usually
pursued. Several results have been reported in this regard, for
example, [I] [4-7][10-1 1][14-20][23] [25][27-281.

The algorithm pursued in this paper is mainly motivated by
the work of [19] and is a generalization of [ll]. But, the approach
here is different from [19] in that a center-line oriented path is
generated whereas the path found there consists of vertex-to-vertex
segments and portions of obstacle edges. The former is generally
considered to be safer ([22]) than the latter regarding to the risk of
possible collision due to the uncertainty in the sensor devices and
positioning mechanisms of the robot. Also, more general obstacles
can be handled in the former than in the latter which solves typi-
cally the case with polygonal obstacles. Moreover, considerable
time may be spent in traversing along edges of obstacles since a
"guarded motion is usually considered slow in real application.
The algorithm to be proposed here focuses on the planning level
rather than the low level sensing issues, which heavily depends on
the modem technology.

T

This paper is organized as follows: in section 2, a navigation
problem in a two dimensional domain is formulated; in section 3,
a center-line oriented navigation algorithm is presented along with
a rigorous proof assuring its obstacle-avoidance and goal-
convergence; in section 4, to illustrate the performance of the
algorithm, some computer simulation examples are provided; in
section 5 , some modification is given on the algorithm in view of
the limited distance measurability of the sensor device and
nonzero volume of the robot; in section 6, generalization of the
case of polygonal obstacles to the case where obstacles can be of
arbitrarily shapes is made; a discussion on the difference between
the current work with that of [21] is given in section 7; finally, a
conclusion is reached in section 8.

2. Problem Statement
The generic nature of the problem for navigating a mobile

robot around barriers is the lack of prior model of the terrain
which is to be explored. Some sort of recovering of the model has
to be done while the robot is heading toward the goal. This update
of the model map can be accomplished through the use of several
types of sensors [6][9][14][18][25][27]. Imperfect sensor readings
due to limited distance measurability may, however, exist, but for
the time being we will first relax this practical limitation and
reconsider the nonideal case later. In the algorithm we assume the
robot volumeless, i.e. the robot is assumed to be only a point.
However, the similar technique can be applied to any nonzero
volume robot, which will also be discussed later.

Consider the terrain with polygonal obstacles as shown in
Fig. 2.1. The objective of the navigation task is obviously to lead
the (point) robot from the source S to the goal G without colliding
with any obstacles. Note that when time comes to update the
model of obstacles from the current position of the mobile robot, a
suitable sensor scans the environment and its readings enable the
robot to determine the locations of visible vertices and edges of
obstacles. It is clear that any two such vertices which are con-
nected by such an edge belong to the same obstacle. The path.
depending crucially on these sensor readings and on the ever-
known goal direction, is then determined by some navigation algo-
rithm.

In the situation where some obstacles may not be polygonal
as shown in Fig. 6.1, the so called "tangent points" instead of ver-
tices are detected by the sensor. Likewise, every two such points
which are connected by a continuous curved edge belong to the
same obstacle. The formulation of the path-searching problem is
then similar to the one just described. After the robot has reached
several observation points so that sufficiently many tangent points
are collected, a quite close approximation of the non-polygonal
obstacles by polygonal substitutes is obtained. Consequently, the
solution to this problem should also be similar to the one which
resolves the above problem.

545

CH2809-2/89/0000-0545 $1.00 ' 1989 IEEE

1 1

3. Center-Line Oriented Navigation Algorithm
In this section, we present an algorithm which navigates the

mobile robot from the source to the goal without any collision
with obstacles. As indicated in section 2, positions of visible ver-
tices of polygonal obstacles are obtained from sensor readings.
This information, then, plays a crucial role in our algorithm.

The algorithm is different from that in [13] or [I91 where
"edge following" about obstacles is a necessary step in their algo-
rithms. That particular procedure has an effect of shortening the
geometric distance of the output path [17]. In light of a possible
collision with obstacles due to some uncertainty of sensor devices
or positioning mechanisms of robots, here, however, we consider
"safety" as a more important factor than "shortness". In other
words, the mobile robot will be kept away from any obstacle at a
much safer distance while the robot is moving toward the goal
point. It turns out to be a more popular criterion in the real world.
Hence, our algorithm is aimed at providing a safer path which
tends to follow the center line among obstacles. With this type of
path, another possible payoff could come from the fact the mobile
robot may run at a faster speed if the computer processing time of
the path search is much less than the actual running time when the
robot is performing an "edge following"! The following are some
necessary assumptions.
Assumptions:
(Al) The robot is able to determine the direction of the goal

from any position of the environment.
(U) AU polygonal obstacles are of finite dimensions. They can

be convex and non-convex.
(A3) The robot is able to detect its current position in an

appropriate coordinate frame.
Definition 3.1: (Track-Tree)
Track-Tree is a data structure which is used to record in every
step the position of the mobile robot, or so called "intermediate
goal point". In this structure, no loop is allowed, and all ascen-
dantship as well as descendantship are clearly registered.
Definition 3.2: (Candidate-Queue)
Candidate-Queue is a priority queue which is used to record the
next candidate positions at the current "intermediate goal point".
Every intermediate goal position has a Candidate-Queue associated
with it.
Remark If the Candidate-Queue of some intermediate goal is
empty, it means that there is no suitable next candidate point for
the robot to go to. We call the intermediate goal a "dead node".
At this point, only backtracking is allowed.
Definition 3.3: (Global-Map)
Global-Map is a disconnected graph which is used to record the
global environment that the robot has observed so far.
Specifically, the data in Global-Map are locations of the vertices
observed so far and the relation of adjacency of these vertices.
Remark: Global-Map records locations of the vertices and the
edges which have been observed by the robot. It is gradually built
by integrating information about obstacles. When information
about the environment structure is sufficiently collected, a better
path can then be generated (211.
Definition 3.4 (Cluster of Visible Vertices (CVV))
From the sensor readings, all the visible vertices are grouped into
clusters where any two vertices of a cluster are connected by an
edge or edges pieced together. Edges along with vertices of each
cluster form a connected subgraph and all these subgraphs form a

disconnected graph.
Notation:

(1)

(2)
(3)

ang@,q) denotes the angle between the two vectors $ and
3, where r represents the current position of the robot.
disr@,q) denotes the distance between position p and q.
V,@' , q ') is used to denote the ith cluster of vertices with p'

and q' as the outwardmost vertices (i.e. both degree of
vertices p' and of q' are one) and p' and q' are chosen so
that q' and p'+' are close-by. Note that ang@' . q ') may be
greater than n.

Remark: If the 1 th cluster contains only one vertex, then p' and
q' are the same point. Referring to Fig. 2.1, we obtain three clus-
ters of vertices, namely, V,@' ,q ') . V2@2.qz) (here, p 2 = q 2), and
V 3 e 3 , q 3) . In Fig. 3.1, because the robot sits on the vertex, the
clusters is V I @ ' , q ') , V2(S ,S), and V3@'.q2).
Navigation Algorithm:
Step1:If the goal is visible,

then go to the goal directly and exit the algorithm.
Step2Scan the environment and add new information onto

Global-Map.
Step3:If no obstacle can be obsetved because the robot either

already sits on a vertex or on an edge of an obstacle,
then move the robot along the edge in a direction which is
closer to that of 2 till it reaches a vertex, add the location
data of the vertex into Track-Tree, and go to Step 1.
else perform the procedure Find-Intermediate-God.

then move the robot to that point directly, generate a node
in Track-Tree, remove the node corresponding to the current
position from all Candidate-Queues's constructed so far and
go to Step 1,
else perform the procedure Backtrack-Track-Tree.

Step4:If the next intermediate goal is found,

StepSGo to Step 1.

Remark : The backtracking procedure will not be necessary
when the environment is free of obstacles with nonconvex
shapes. In fact, the procedure will be invoked only when the
robot is or going to be trapped inside the concave region
embraced by a nonconvex obstacle.

The navigation algorithm shown above assumes that the
effective range of the sensor device is unlimited. This assumption
will be relaxed in section 5 and the modified version of the dgo-
rithm will also be shown. There are two procedures which are
used in the algorithm and will be explained in the following: one
is Find-Intermediate-Goal, and the other is Backtrack-Track-Tree.
Procedure 1: (Find-Intermediate-Goa1)
Let r denote the current location of the robot.
Step1:Fmd cluster of visible vertices, V,@' , q ') , i = 1, 2 n.
Step2Create a Candidate-Queue.
Step3:When n = 1.

if both p' and q' already appeared in Track-Tree,
then go to Step 5 ,
else return that the intermediate goal is p' and go to Step 6
if (i) q' already appeared in Track-Tree; or (ii) ang(p' ,G) c
ung(q' ,G); or (iii) a n g @ ' , G) = a n g (q ' , G) and disr(r,p')
> disr (r , q I), and vice versa.
lf it turns out that the intermediate goal is p' and q' has not
appeared in Track-Tree,
then add q' to the Candidate-Queue associated with current
location r, and vice versa.

546

(qi (i.e. ci is the middle
2 S t e p k k t co=p l . c. '4". and ci =

point between 4' and pi+') for i = 1, 2 ,.... n-1.
If all cir i = 0, 1 ,..., n, have already appeared in Track-Tree,
then go to Step 5,
else if ci, i = 1, 2 n-I. have already appeared in Track-

Tree,
then return that the intermediate goal is CO or c,
depending on which of the two ong(co,G) and
ong,(c. .G) is smaller (if equal. consider which of the
two distances, disr(co,r) and disl(c. , r) , is larger),
else return that the intermediate goal is cI if cj has not
appeared in the Track-Tree and ong(cj ,G) is the smal-
lest angle among ong(ci ,G) where ci has not appeared
in the Track-Tree. I S i Sri-I (if the smallest one is not
the only one, consider the distance from cj to r).

Add cj , I Si Sn - I except the intermediate goal and those
which have appeared in Track-Tree into Candidate-Queue
and go to Step 6.

StepSReturn that the intermediate goal can not be found.
Step6End.
Procedure 2: (Backtrack-Track-Tree)

Step1:Move the robot to the position corresponding to the nearest
ancestor node of the current node in the Track-Tree which is
not a dead node.

Step2:Move the robot to the location corresponding to the element
with the highest priority in the current Candidate-Queue and
generate a node in Track-Tree.

Step3:Retum.
S tep4:End.

The fact that application of the navigation algorithm will
lead the mobile robot from the source S to the goal G through a
collision-free path is provided in the following theorem whose
proof is given in [29].
Theorem 3.1: (Collision-Avoidance and Goal-Convergence)
Consider the navigation problem in section 2 satisfying assump
tions (Al)-(A3). The navigation algorithm given above will navi-
gate the robot through a collision-free path from the source S to
the goal G.
Remark : Such an algorithm is, in fact, performing a depth-first
search over a tree composed of the source S, the goal G, and
essentially the set of points each of which corresponds to the
"middle" point of some pair of two confronted vertices of two
close-by obstacles.

4. Simulation Examples

formance of the navigation algorithm presented in section 3.
Example :

Planning a collision-free path in the environment shown in
Fig. 4.1 will require the use of procedure Backtrack-Track-Tree.
Apparently, there may be some "misleading" in the first few
stages due to the "U" type concave obstacle right in front of the
goal G . This, hence, leads to the use of the procedure
Backtrack-Track-Tree at position T. It can be seen that the order
of the via points of the resultant path is S -> m -> T -> m I -> S
-> mz -> m3 -> m4 -> G. In this environment, the path does not
violate the "center-line" criterion. But in some special situation,
the resultant path will no longer be a center-line path. However
the collision-free path always can be found if it exists.

In this section, an examples is provided to illustrate the per-

5. Navigation Algorithm for Limited Distance Measurability of
the Sensor Device

In section 3, we present an algorithm which assumes that the
effective range of sensing of the sensor device is unlimited. But
in practice, this will not hold in general. If that is the case, the
algorithm just presented has to be modified to cope with the
"near-sightedness" of the sensor, that is, although some vertices
and edges are visible from the location of the robot, they cannot
be detected by the sensor. Therefore, the information about the
environment which has been collected and recorded onto Global-
Map each time now plays a crucially important role in helping to
determine the next immediate goal.

To be more specific, the difference of the ideal sensing from
the practical sensing mainly lies in the fact that the clusters of
visible vertices in the latter case are only subsets of those in the
former case and may even be empty sets. Thus, one may have
difficulty in performing the procedure Find-Intermediate-Goal
since the obtaining of p i or qi of the cluster Vi@' , q i) as given
previously out of the current sensor reading can no longer be
assumed straightforward. To remedy this problem. two measures
should be adopted: one is to steer the robot into a location where
some obstacle begin to appear in the effective range of sensing so
that data of vertices as well as edges can be collected and
recorded; the other is to use the "memory" from Global-Map
updated so far in order to recover Vi@' ,q i) . i = I, ..., n as much as
possible so as to find out those intermediate goals. Before we
make these measures algorithmic, two more definitions will be
introduced, namely, clusters of detectable vertices, Di @i ,$),
i = I ,... pi, and clusters of critical vertices, Cj@J , Q j) , j = 1 ,... 3, in
the following:
Definition 5.1 : (Cluster of Detectable Vertices (CDV))
Since the distance measurability of the sensor is limited, not a l l
the visible vertices from the location of the robot can be detected
by the sensor. By grouping all the detectable vertices out of the
sensor reading in a way similar to that in defining W, we
obtain clusters of detectable vertices. This along with related edge
information is then used to update Global-Map.
Definition 53 : (Cluster of Critical Vertices (CCV))
Global-Map is a disconnected graph as mentioned before. Every
time after Global-Map is updated, the environment is reconstructed
with obstacles now becoming walls which correspond to edges.
Thus, all the visible vertices from the current robot location are
then defined as clusters of critical vertices.

It is clear from the definitions that we have to find CDV
before we can determine CCV at each iteration. The following
procedure describes a method of obtaining CCV.
Procedure 3 : (Find-Clusters-of-Critical-VerticeS)

Step1:Find CDV, Di@; ,$), i = 1 ,..., m .

Step2:Update Global-Map and reconstruct the environment.
Step3Find C W , V j @ , Q J) . j = l , ..., E. Then, CCV is

cj@ J , ~ j) = @ J , Q J), j = I ,... 3.
Step4Order the clusters Cj@j , Q j) , j = 1, ...fi, such that 4' and

$+' are close by.
Step5:End.

This procedure will now replace Step 1 of the procedure
Find-Intermediate-Goal introduced in section 3. In the foregoing
observation, there exists a situation where the sensor on the robot
cannot detect any further new information due to its limited dis-
tance measurability. It is clear from section 3 that the procedure
Backtrack-Track-Tree can be invoked to resolve this problem if

547

the ideal sensor is instead assumed. However, in the practical case
given in this section, the continuous performance of the
backtracking procedure may only lead the robot back to the start-
ing point with no solution path found. The remedy is to gain more
information from the environment so that Global-Map can be
updated more completely. The following procedure will provide a
systematic method in realizing this idea.
Procedure 4 : (Learn-More-Information)

SteplMove the robot toward the goal direction with a displace-
ment equal to the effective range of the sensor or till it
reaches some edge of an obstacle, depending on which is
satisfied earlier.

Step2:Add the current position of the robot into Track-Tree.
Step3:If the robot reaches some edge of an obstacle,

then slide the robot along the edge in either direction till it
reaches a vertex not visited before, and add the location data
of the vertex into Track-Tree.

Step4Scan the environment and add new information onto
Global-Map.

Step5If some new information is obtained,
then go to Step 7;
else go to Step 6.

then slide the robot again along the inhabited edge, but not
allowed to pass by any point which already appeared in
Track-Tree, till it reaches another vertex not visited before,
add the location data of this vertex into Track-Tree, and go
to Step 4.
else go to Step 1.

Step6If the robot is located on an edge of some obstacle,

Step7End.
Navigation Algorithm* :
Step1:If the goal is visible,

Step2Scan the environment and add the collected information

Step3:If no new information can be collected,

Step4Perform the procedure Find-Intermediate-Goal.
Step5If the next intermediate goal is found,

then go to the goal directly and exit the algorithm.

onto Global-Map.

then perform the procedure Learn-More-Information.

then perform the procedure Guarded-Move and go to Step
6.
else if the confronted concave region is perceived,

then perform the procedure Back-Track-Tree, and go
to Step 1.
else perform the procedure Learn-More -Information
and go to Step 4.

Step6:If the intermediate goal is successfully reached,
then generate a node in Track-Tree that corresponds to the
current location of the robot, remove the node from all
Candidate-Queue's constructed so far, and go to Step 1.
else perform the procedure Backtrack-Track-Tree.

Step7:Go to Step 1.
Note that the procedure Guarded-Move actually corresponds

to the confirmation process mentioned in the previous observation
at the beginning of this section. It is described in detail below:

Procedure 5 : (Guarded-Move)

Step1:If the intermediate goal is detectable and validated (i.e.
within the effective range of the sensor, and out of any obs-

tacle or not blocked by any obstacle),
then go to the intermediate goal directly and go to Step 3;
else go to Step 2.

Step2If the intermediate goal is outside the range of effectiveness
of the sensor and none of the obstacles lying between the
current robot location and the intermediate goal are detected,
then move the robot toward the goal direction with a dis-
placement equal to the effective range of the sensor and
generate a node in Track-Tree, corresponding, to the current
location and go to Step 1.
else go to Step 3.

Step3:End.
Theorem 5.1 : (Collision- Avoidance and Goal-Convergence)
Consider the same problem as given in Theorem 3.1 but in the
case where the sensor has only limited distance measurability.
Then the navigation algorithm* proposed above will lead the robot
from the source S to the goal G through a collision-free path.

The proof is provided in [29]. In the above algorithm, the
robot is assumed to be volumeless. However, when the robot has
non-zero volume, the same algorithm can still be applied using the
method in [13].

6. Navigation through a Terrain Populated with Non-
Polygonal Obstacles

In the previous sections, the navigation algorithms proposed
only deal with polygonal obstacles. In this section, we will show
that by only slight modification of the previous algorithm the simi-
lar results can also be applied to the case where obstacles may be
non-polygonal. For ease of presentation, only the case where the
sensor has unlimited effective range is considered here.

The idea, roughly speaking, is to gradually construct ever-
improving approximating polygonal shapes for all the non-
polygonal obstacles during the process of navigation so that the
present environment asymptotically converges to the one encoun-
tered previously. i.e. an environment populated simply with polyg-
onal obstacles. Clearly, if the construction is fine enough, a gen-
eric collision-free path in the original environment can still be
found using the information from the new environment (contain-
ing polygonal substitutes).

Because the obstacle is non-polygonal, Definition 3.4 is no
longer appropriate for recording the useful information observed
by the robot sensor since there may not exist so called "vertices".
In order to gain the similar function, we will first define the
outwardmost point, say, p i of some visible obstacle i as the inter-
section point of the line, emitting from the current robot location,
tangent to the obstacle and the obstacle itself. If one of the two
tangent lines is overlapping with some other obstacles, then the
pertaining outwardmost point is then not defined. For illustration,
in Fig. 6.1 there are two clusters of visible tangent points denoted,
T , @ ' , p ') and T,@*,q?) , and in Fig. 6.2 there are also two clusters
of visible tangent points, T , @ ' , q ') and T2@'.q3) (although there
are, in fact, three visible obstacles here). Whenever these visible
tangents points are found, the generating tangent lines are also
recorded appropriately by some data structure.

In addition, a maximal number of tangent lines (MNTL) is
defined for the environment prior to the navigation process. If the
number of tangent lines of an obstacle recorded so far is equal to
MNTL, the tangent lines to the same obstacle constructed in the
subsequent iterations are no longer recorded when it is observed
again. From then on, that particular obstacle will be replaced by
its polygonal substitute when performing the search for the next

548

intermediate goal. With the replacement, the cluster of visible ver-
tices can thus be similarly defined. Of course, it may not be neces-
sary to conshuct MNTL tangent lines for every obstacle if we are
only to find a collision-free path from the given source to the final
goal. In Fig. 6.3, the most current polygonal substitute of the obs-
tacle, namely, the polygon p ' q z q t p 2 is given by four tangent
points. Conceivably, the larger the MNTL is, the more accurate
the approximation is of a non-polygonal obstacle by a polygonal
substitute. Therefore, after some obstacles are replaced by their
final polygonal substitutes, the intermediate goal found in a way
given in section 3 is more likely collision free for higher MNTL.

Now we are ready to state the navigation algorithm which
particularly deals with the unknown environment clustered with
non-polygonal obstacles.
Navigation Algorithm** :
Step1:Set the value of MNTL.
Step2If the goal is visible,

then go to the goal directly and exit the algorithm.
Step3:Scan the environment and add new information onto

Global-Map.
Step4If no obstacle can be observed because the robot already

sits on the curved edge of an obstacle,
then move the robot along the edge in either direction till it
reaches a point from which more information can be
observed, add the location data of this point into Track-Tree,
and go to Step 2.
else perform the procedure Find-Intermediate-Goal.

then go to Step 6;
else perform the procedure Backtrack-Track-Tree and go to
Step 2.

then move the robot to that point directly, generate a node
in Track-Tree, remove the node corresponding to the current
location from all Candidate Queue's consmcted so far. and
go to Step 2.
else perform the procedure Backtrack-Track-Tree and go to
Step 2.
The procedure Find-Intermediate-Goal in the above algo-

rithm is a modified version of the one introduced in section 3.
The modification is made in its Step 2 and the current version is
given below:
Step2:If the tangent lines recorded so far of some visible obstacle

i is equal to MNTL+l,
then the newly found cluster of tangent points and the
tangent lines of that obstacle are not recorded, and the
polygonal substitute of the obstacle is used to determine the
clusters of visible vertices Vi@' , q i) ,
else the cluster of tangent points as well as the tangent lines
are recorded.
Create a Candidate-Queue.

The following theorem will assure us of the collision-free
and goalconvergent properties. The proof of the theorem is pro-
vided in [29].
Theorem 6.1 : (Collision-Avoidance and Goal-Convergence)
Consider the problem set-up as given in Theorem 3.1 with non-
pO~YgOna~ obstacles. Then for sufficiently large MNTL the naviga-
tion algorithm proposed above will successfully navigate the robot
through a collision-free path from the source S to the goal G.

StepSIf the next intermediate goal is found,

Step6:If the intermediate goal is outside any obstacle,

549

7. Discussions
The algorithm proposed here bears similarity to that given by

Rao et al [21] when only polygonal obstacles are dealt with and
when the sensor possesses unlimited effective range. Under that
circumstance. the update of Global-Map in the current work will
be the same as the learning process in the work of [21]. However,
the final solution path found there will consist of "vertex-to-
vertex" segments as opposed to the center-line path attempted
here. Furthermore, the aim of finding a better path in [21] after the
terrain information has been learned enough is also different from
the theme of this paper which is simply to find one of possibly
several solution paths. Despite these quite comparable results, this
current work can handle more general situations than those in [21]
such as the environment with non-polygonal obstacles and practi-
cal limitation of the sensor. Notably, the investigation of the latter
is so far original to the author's point of view.

8. Conclusions
In this research, an algorithm which navigates a mobile robot

through an unknown terrain populated with obstacles of general
shapes was presented. The algorithm tends to find a center-line
collision-free path, which is recognized as a safer scheme in the
robotics literature. An original investigation of the case where the
robot sensor possesses only limited distance measurability was
also given in this paper. To guarantee the property of collision-
avoidance and goal-convergence of the algorithm, several rigorous
proofs were provided. A few computer simulation examples were
given to illustrate the performance of the algorithm.

References:

R. Bhatt, D. Caw. and A. Meystel. "A Real-Time Guidance System for an
Autonomous Vehicle," Proc. 26th Conf. Decision and Control. pp 1785-
1791, 1987.

R.A. Brook, "Solving the Find-Path Problem by Good Representation of
Freespace." IEEE Trans. Systems, Man. and Cybernetics, Vol. SMC-13.
No. 3, 1983.

R.A. B r d and T. Lozano-Perez, "A Subdivision Algorithm in
Configuration Space for Find-Path with Rotation." IEEE Trans. Systems,
Man. and Cybernetics. Vol. SMC-15. No. 2. pp 224-244, 1985.

R. Chattery, "Some Heuristics for the Navigation for a Robot,'' Int. J.
Robotics Research. Vol. 4. No. 1. pp 59-66, 1985.

J.L. Crowley. "Navigation of an Intelligent Mobile Robot." IEEE J.
Robotics and Automation, RA-1, Vol. 2, pp 31-41, 1985.

A. Elfes. "Sonar-Based Real-World Mapping and Navigation," IEEE J.
Robotics and Automation. RA-3. Vol. 3. pp 249-265. 1987.
G. Gualt. R. Sobek. and R. Chatila. " A Multlevel Planning and Naviga-
tion System for a Mobile Robot." Proc. Int. Joint Conference ~1 Artiiicial
Intelligence. pp 335-338. 1979.

L. Gouzenes. "Stra!egies for Solving Collision-Free Trajectory Problems
for Mobile and Manipulator Robots." Int. J. Robotics Resarch, Vol. 3.
No. 4. pp 51-65, 1984.

R. Hoffman and A.K. Jain, "Segmentation and Classilication of Range
Images," IEEE Trans. Pattern Analysis and Machine Intelligence. VOL.
PAMI-9, NO. 5. 1987.

S.S. Iyengar, C.C. Jorgensen, S.V.N. Rao. and C.R. Weisbin. "Robot
Navigation Algorithms Using Learned Spatial Graphs." Robotica (1986)

C.H. Lin and L.C. Fu, "A Center-Line Oriented Robot Navigation in an
Unknown Terrain," Proc. of International Computer Symposium, Taipi.
Taiwan, Republic of China, pp 235-240. Dec. 1988.

T. Lozanc-Perez, "Spatial Planning: a Configuration Space Approach."

Vol. 4. pp 93-100.

[131

~271

IEEE Trans. Computers, Vol. C-32, No. 2. pp 108-120, 1983.

T. Lozano-Perrz and M.A. Wesley. "An Algorithm for Planning
Collision-Free Paths among Polyhedral Obstacles," Communications.
ACM, VoL 22. pp 560570, 1979.

L. Matthies. and S.A. Shafer. "Error Modcling in Stereo Navigation."
IEEE J. Robotics and Automation. VOL. RA-3, NO. 3. pp 239-248. 1987.

M. Montgomery, D. Gaw. and A. Meystel. "Navigation Algorithm for a
Nested Hiervchical Systan of Robot Path Planning Among Polyhedral
Obstacles." Roc. 26th Conference on Decision and Control. pp 1616-
1622. 1987.

H.P. Monvec. 'The Stanford Cart and the CMU Rover." h. of the
IEEE. VOL. 71. NO. 7, pp 872-884. July, 1987.

N.J. Nilsson. "A Mobile Automation: An Application of ArfiIicial Intelli-
gence Techniques." Pmc. Int. Joint Cod. ktificial Intelligence, pp 509-
520, 1969.
J.L. Olivier and F. Ozguncr. "A Navigation Algorithm for an Intelligent
Vehicle with a Lye r Range-Finder." Roc. IEEE Int. Conf. Robotics and
Automation. pp 1145-1150, 1986.

B.J. Oommen, S.S. Iymgar. and N.S.V. Rao. and R.L. Kashyap. "Robot
Navigation in Unknown Terrains Using Learned Visibility Graphs, Part I:
The Disjoint Convex Obstacle Cas," IEEE I. Robotics and Automation,
VOL. RA-3, NO. 6, pp 672-681, 1987.

S.V.N. bo. S.S. Iycngar. C.C. Jorgmsen. and C.R. Weisbin. "Robot
Navigation in Unexplonxl Terrain," Journal of Robotic Systems, X4). pp
389-407, 1986.

S.V.N. Rao. S.S. Iyengar. BJ. Oommen. and R.L. Kashyap. "On Terrain
Modcl Acquisition by a Point Robot Amidst Polyhedral Obstacles." IEEE
J. of Robotics and Automation. VOL. 4. NO. 4, pp 450455. 1988.

S.H. Suh and K.G. Shin, "A Variational Dynamic Programming Approach
to Robot-Path Planning With a Distance-Safety Criterion." IEEE J. Robot-
ics and Automation, VOL. 4, NO. 3. pp 334-349. June 1988.
A.M. Thompson, 'The Navigation System of the JPL Robot,'' Pmc. Int.
Joint Cderence on M c i a l Intelligence. pp 749-757. 1977.

C.E Thorpe. "Path Relaxation: Path Planning for Mobile Robot," h.
AAAI. 5th Nation Conference on Artificial Intelligence. pp 318-321, 1984.

S . Tsuji. J.Y. Zheng. and M. Asada. "Stereo Vision of a Mobile Robot:
World Constraints for Image Matching and Interpretation," Roc. lEEE Int.
Conf. Robotics and Automation, pp 1594-1599. 1986.

S.M. Udupa. "Collision Detection and Avoidance in Computer Controlled
Manipulators." Roc. 5th Int. Joint Cod. ArtiLicial Intelligence. MlT.
Cambridge, MA, pp 737-748, 1977.

A.M. W a ~ ~ a n . J.L. Moigne, L.S. Davis, E. Liang. and T. Siddalingaiah,
"A Visual Navigation System," Roc. lEEE Int. Cod. Robotics and Auto-
mation, pp 1600-1606. 1986.

C.R. Weisbin. J. Barhen. G.de Saurrurc. W.R. Hamel. C.C. Jorgensen.
EM. Oblow. and R.E. Ricks, "Machine InteUigencc for Robotics Applica-
tions," Prcc. Conf. Intelligent Systems and Machines, pp 47-57, 1985.

C.H. Lin and L.C. Fu. "Robot Navigation through Obstacles of General
Sh-s Using a Center-Line Oriented Algorithm," Technical Rept t
NTUCSIE 89-10. D e p m e n t of Computer Science & Information
Engineering, National Taiwan University, Taipei. Taiwan, R.O.C.

Fig. 3.1 The robot is on the vertex of obstacle

S

Fig. 4.1

r

Fig. 6.1 Fig. 6.2

Fig. 6.3

T

Fig. 2.1

550

