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ABSTRACT 

In this paper, the problem of navigating a mobile robot 
around baniers in an-unexplored terrain is studied All the obsta- 
cles within the terrain are not limited to be of polygonal shapes 
nor to be convex. A model map is used to memorize the 
configuration of the environment observed so far and is updated 
while the robot is being navigated. With "safety" as a more impor- 
tant factor to the solution of the problem, an algorithm which 
tends to find a "center-line path" among obstacles is proposed. 
The case where the sensor has only limited effective range is also 
considered. Detailed proof is provided to assure the collision-free 
and goalconvergent properties of the algorithm. 

1. Introduction 
Path planning and navigarion are two of the most vital 

issues in robotics regarding autonomous mobile robots. The 
former can be thought of as moving a mobile robot through a ter- 
rain populated with obstacles which are known a priori. There 
have been considerable research work on this aspect. The earliest 
one may be traced back to [17], and after that came in the work 
[2-3][8][12-13][22] [24][26]. With the obstacle model available 
ahead of the real maneuvering of the mobile robot, fmding an 
optimal path is usually attempted and may be quite achievable. 
The latter is, however, a problem where some kind of "learning" 
of its environment has to be performed due to the lack of prior 
knowledge of the obstacle model while navigating the mobile 
robot through a terrain as before. So the problem can be thought 
of as the combination of terrain acquisition [21] and path plan- 
ning [ZO]. The task of learning can be accomplished via a use of 
sensors, such as, visual sensors, laser range-finders, proximity sen- 
sors, etc. Since the circumstance here is generally much more 
adverse than that in the former case, fmding just one path leading 
the robot from the source to the goal through obstacles is usually 
pursued. Several results have been reported in this regard, for 
example, [I] [4-7][ 10-1 1][14-20][23] [25][27-281. 

The algorithm pursued in this paper is mainly motivated by 
the work of [19] and is a generalization of [ll].  But, the approach 
here is different from [19] in that a center-line oriented path is 
generated whereas the path found there consists of vertex-to-vertex 
segments and portions of obstacle edges. The former is generally 
considered to be safer ([22]) than the latter regarding to the risk of 
possible collision due to the uncertainty in the sensor devices and 
positioning mechanisms of the robot. Also, more general obstacles 
can be handled in the former than in the latter which solves typi- 
cally the case with polygonal obstacles. Moreover, considerable 
time may be spent in traversing along edges of obstacles since a 
"guarded motion is usually considered slow in real application. 
The algorithm to be proposed here focuses on the planning level 
rather than the low level sensing issues, which heavily depends on 
the modem technology. 

T 

This paper is organized as follows: in section 2, a navigation 
problem in a two dimensional domain is formulated; in section 3, 
a center-line oriented navigation algorithm is presented along with 
a rigorous proof assuring its obstacle-avoidance and goal- 
convergence; in section 4, to illustrate the performance of the 
algorithm, some computer simulation examples are provided; in 
section 5 ,  some modification is given on the algorithm in view of 
the limited distance measurability of the sensor device and 
nonzero volume of the robot; in section 6, generalization of the 
case of polygonal obstacles to the case where obstacles can be of 
arbitrarily shapes is made; a discussion on the difference between 
the current work with that of [21] is given in section 7; finally, a 
conclusion is reached in section 8. 

2. Problem Statement 
The generic nature of the problem for navigating a mobile 

robot around barriers is the lack of prior model of the terrain 
which is to be explored. Some sort of recovering of the model has 
to be done while the robot is heading toward the goal. This update 
of the model map can be accomplished through the use of several 
types of sensors [6][9][14][18][25][27]. Imperfect sensor readings 
due to limited distance measurability may, however, exist, but for 
the time being we will first relax this practical limitation and 
reconsider the nonideal case later. In the algorithm we assume the 
robot volumeless, i.e. the robot is assumed to be only a point. 
However, the similar technique can be applied to any nonzero 
volume robot, which will also be discussed later. 

Consider the terrain with polygonal obstacles as shown in 
Fig. 2.1. The objective of the navigation task is obviously to lead 
the (point) robot from the source S to the goal G without colliding 
with any obstacles. Note that when time comes to update the 
model of obstacles from the current position of the mobile robot, a 
suitable sensor scans the environment and its readings enable the 
robot to determine the locations of visible vertices and edges of 
obstacles. It is clear that any two such vertices which are con- 
nected by such an edge belong to the same obstacle. The path. 
depending crucially on these sensor readings and on the ever- 
known goal direction, is then determined by some navigation algo- 
rithm. 

In the situation where some obstacles may not be polygonal 
as shown in Fig. 6.1, the so called "tangent points" instead of ver- 
tices are detected by the sensor. Likewise, every two such points 
which are connected by a continuous curved edge belong to the 
same obstacle. The formulation of the path-searching problem is 
then similar to the one just described. After the robot has reached 
several observation points so that sufficiently many tangent points 
are collected, a quite close approximation of the non-polygonal 
obstacles by polygonal substitutes is obtained. Consequently, the 
solution to this problem should also be similar to the one which 
resolves the above problem. 
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3. Center-Line Oriented Navigation Algorithm 
In this section, we present an algorithm which navigates the 

mobile robot from the source to the goal without any collision 
with obstacles. As indicated in section 2, positions of visible ver- 
tices of polygonal obstacles are obtained from sensor readings. 
This information, then, plays a crucial role in our algorithm. 

The algorithm is different from that in [13] or [I91 where 
"edge following" about obstacles is a necessary step in their algo- 
rithms. That particular procedure has an effect of shortening the 
geometric distance of the output path [17]. In light of a possible 
collision with obstacles due to some uncertainty of sensor devices 
or positioning mechanisms of robots, here, however, we consider 
"safety" as a more important factor than "shortness". In other 
words, the mobile robot will be kept away from any obstacle at a 
much safer distance while the robot is moving toward the goal 
point. It turns out to be a more popular criterion in the real world. 
Hence, our algorithm is aimed at providing a safer path which 
tends to follow the center line among obstacles. With this type of 
path, another possible payoff could come from the fact the mobile 
robot may run at a faster speed if the computer processing time of 
the path search is much less than the actual running time when the 
robot is performing an "edge following"! The following are some 
necessary assumptions. 
Assumptions: 
(Al) The robot is able to determine the direction of the goal 

from any position of the environment. 
(U) AU polygonal obstacles are of finite dimensions. They can 

be convex and non-convex. 
(A3) The robot is able to detect its current position in an 

appropriate coordinate frame. 
Definition 3.1: ( Track-Tree ) 
Track-Tree is a data structure which is used to record in every 
step the position of the mobile robot, or so called "intermediate 
goal point". In this structure, no loop is allowed, and all ascen- 
dantship as well as descendantship are clearly registered. 
Definition 3.2: ( Candidate-Queue ) 
Candidate-Queue is a priority queue which is used to record the 
next candidate positions at the current "intermediate goal point". 
Every intermediate goal position has a Candidate-Queue associated 
with it. 
Remark If the Candidate-Queue of some intermediate goal is 
empty, it means that there is no suitable next candidate point for 
the robot to go to. We call the intermediate goal a "dead node". 
At this point, only backtracking is allowed. 
Definition 3.3: ( Global-Map ) 
Global-Map is a disconnected graph which is used to record the 
global environment that the robot has observed so far. 
Specifically, the data in Global-Map are locations of the vertices 
observed so far and the relation of adjacency of these vertices. 
Remark: Global-Map records locations of the vertices and the 
edges which have been observed by the robot. It is gradually built 
by integrating information about obstacles. When information 
about the environment structure is sufficiently collected, a better 
path can then be generated (211. 
Definition 3.4 ( Cluster of Visible Vertices (CVV) ) 
From the sensor readings, all the visible vertices are grouped into 
clusters where any two vertices of a cluster are connected by an 
edge or edges pieced together. Edges along with vertices of each 
cluster form a connected subgraph and all these subgraphs form a 

disconnected graph. 
Notation: 

(1) 

(2) 
(3) 

ang@,q) denotes the angle between the two vectors $ and 
3, where r represents the current position of the robot. 
disr@,q) denotes the distance between position p and q. 
V,@' , q ' )  is used to denote the ith cluster of vertices with p' 

and q' as the outwardmost vertices ( i.e. both degree of 
vertices p' and of q' are one ) and p' and q' are chosen so 
that q' and p'+' are close-by. Note that ang@' . q ' )  may be 
greater than n. 

Remark: If the 1 th cluster contains only one vertex, then p' and 
q' are the same point. Referring to Fig. 2.1, we obtain three clus- 
ters of vertices, namely, V,@' ,q ' ) .  V2@2.qz)  ( here, p 2 = q 2  ), and 
V 3 e 3 , q 3 ) .  In Fig. 3.1, because the robot sits on the vertex, the 
clusters is V I @ ' , q ' ) ,  V2(S ,S), and V3@'.q2). 
Navigation Algorithm: 
Step1:If the goal is visible, 

then go to the goal directly and exit the algorithm. 
Step2Scan the environment and add new information onto 

Global-Map. 
Step3:If no obstacle can be obsetved because the robot either 

already sits on a vertex or on an edge of an obstacle, 
then move the robot along the edge in a direction which is 
closer to that of 2 till it reaches a vertex, add the location 
data of the vertex into Track-Tree, and go to Step 1. 
else perform the procedure Find-Intermediate-God. 

then move the robot to that point directly, generate a node 
in Track-Tree, remove the node corresponding to the current 
position from all Candidate-Queues's constructed so far and 
go to Step 1, 
else perform the procedure Backtrack-Track-Tree. 

Step4:If the next intermediate goal is found, 

StepSGo to Step 1. 

Remark : The backtracking procedure will not be necessary 
when the environment is free of obstacles with nonconvex 
shapes. In fact, the procedure will be invoked only when the 
robot is or going to be trapped inside the concave region 
embraced by a nonconvex obstacle. 

The navigation algorithm shown above assumes that the 
effective range of the sensor device is unlimited. This assumption 
will be relaxed in section 5 and the modified version of the dgo- 
rithm will also be shown. There are two procedures which are 
used in the algorithm and will be explained in the following: one 
is Find-Intermediate-Goal, and the other is Backtrack-Track-Tree. 
Procedure 1: ( Find-Intermediate-Goa1) 
Let r denote the current location of the robot. 
Step1:Fmd cluster of visible vertices, V,@' , q ' ) ,  i = 1, 2 ..... n. 
Step2Create a Candidate-Queue. 
Step3:When n = 1. 

if both p' and q' already appeared in Track-Tree, 
then go to Step 5 ,  
else return that the intermediate goal is p' and go to Step 6 
if (i) q' already appeared in Track-Tree; or (ii) ang(p' ,G) c 
ung(q' ,G);  or (iii) a n g @ ' , G )  = a n g ( q ' , G )  and disr(r,p')  
> disr (r , q I), and vice versa. 
lf it turns out that the intermediate goal is p' and q' has not 
appeared in Track-Tree, 
then add q' to the Candidate-Queue associated with current 
location r, and vice versa. 
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(qi  ( i.e. ci is the middle 
2 S t e p k k t  co=p l .  c. '4". and ci = 

point between 4' and pi+' ) for i = 1, 2 ,.... n-1. 
If all cir i = 0, 1 ,..., n, have already appeared in Track-Tree, 
then go to Step 5, 
else if ci, i = 1, 2 ..... n-I. have already appeared in Track- 

Tree, 
then return that the intermediate goal is CO or c, 
depending on which of the two ong(co,G) and 
ong,(c. .G)  is smaller (if equal. consider which of the 
two distances, disr(co,r) and disl(c. , r ) ,  is larger), 
else return that the intermediate goal is cI if cj has not 
appeared in the Track-Tree and ong(cj ,G)  is the smal- 
lest angle among ong(ci ,G)  where ci has not appeared 
in the Track-Tree. I S i  Sri-I (if the smallest one is not 
the only one, consider the distance from cj to r). 

Add cj , I Si Sn - I except the intermediate goal and those 
which have appeared in Track-Tree into Candidate-Queue 
and go to Step 6. 

StepSReturn that the intermediate goal can not be found. 
Step6End. 
Procedure 2: ( Backtrack-Track-Tree ) 

Step1:Move the robot to the position corresponding to the nearest 
ancestor node of the current node in the Track-Tree which is 
not a dead node. 

Step2:Move the robot to the location corresponding to the element 
with the highest priority in the current Candidate-Queue and 
generate a node in Track-Tree. 

Step3:Retum. 
S tep4:End. 

The fact that application of the navigation algorithm will 
lead the mobile robot from the source S to the goal G through a 
collision-free path is provided in the following theorem whose 
proof is given in [29]. 
Theorem 3.1: ( Collision-Avoidance and Goal-Convergence ) 
Consider the navigation problem in section 2 satisfying assump 
tions (Al)-(A3). The navigation algorithm given above will navi- 
gate the robot through a collision-free path from the source S to 
the goal G. 
Remark : Such an algorithm is, in fact, performing a depth-first 
search over a tree composed of the source S, the goal G, and 
essentially the set of points each of which corresponds to the 
"middle" point of some pair of two confronted vertices of two 
close-by obstacles. 

4. Simulation Examples 

formance of the navigation algorithm presented in section 3. 
Example : 

Planning a collision-free path in the environment shown in 
Fig. 4.1 will require the use of procedure Backtrack-Track-Tree. 
Apparently, there may be some "misleading" in the first few 
stages due to the "U" type concave obstacle right in front of the 
goal G .  This, hence, leads to the use of the procedure 
Backtrack-Track-Tree at position T. It can be seen that the order 
of the via points of the resultant path is S -> m -> T -> m I -> S 
-> mz -> m3 -> m4 -> G.  In this environment, the path does not 
violate the "center-line" criterion. But in some special situation, 
the resultant path will no longer be a center-line path. However 
the collision-free path always can be found if it exists. 

In this section, an examples is provided to illustrate the per- 

5. Navigation Algorithm for Limited Distance Measurability of 
the Sensor Device 

In section 3, we present an algorithm which assumes that the 
effective range of sensing of the sensor device is unlimited. But 
in practice, this will not hold in general. If that is the case, the 
algorithm just presented has to be modified to cope with the 
"near-sightedness" of the sensor, that is, although some vertices 
and edges are visible from the location of the robot, they cannot 
be detected by the sensor. Therefore, the information about the 
environment which has been collected and recorded onto Global- 
Map each time now plays a crucially important role in helping to 
determine the next immediate goal. 

To be more specific, the difference of the ideal sensing from 
the practical sensing mainly lies in the fact that the clusters of 
visible vertices in the latter case are only subsets of those in the 
former case and may even be empty sets. Thus, one may have 
difficulty in performing the procedure Find-Intermediate-Goal 
since the obtaining of p i  or qi  of the cluster Vi@' , q i )  as given 
previously out of the current sensor reading can no longer be 
assumed straightforward. To remedy this problem. two measures 
should be adopted: one is to steer the robot into a location where 
some obstacle begin to appear in the effective range of sensing so 
that data of vertices as well as edges can be collected and 
recorded; the other is to use the "memory" from Global-Map 
updated so far in order to recover Vi@' ,q i ) .  i = I,  ..., n as much as 
possible so as to find out those intermediate goals. Before we 
make these measures algorithmic, two more definitions will be 
introduced, namely, clusters of detectable vertices, Di @i ,$ ), 
i = I ,... pi, and clusters of critical vertices, Cj@J , Q j ) ,  j = 1 ,... 3, in 
the following: 
Definition 5.1 : ( Cluster of Detectable Vertices (CDV) ) 
Since the distance measurability of the sensor is limited, not a l l  
the visible vertices from the location of the robot can be detected 
by the sensor. By grouping all the detectable vertices out of the 
sensor reading in a way similar to that in defining W, we 
obtain clusters of detectable vertices. This along with related edge 
information is then used to update Global-Map. 
Definition 53 : ( Cluster of Critical Vertices (CCV) ) 
Global-Map is a disconnected graph as mentioned before. Every 
time after Global-Map is updated, the environment is reconstructed 
with obstacles now becoming walls which correspond to edges. 
Thus, all the visible vertices from the current robot location are 
then defined as clusters of critical vertices. 

It is clear from the definitions that we have to find CDV 
before we can determine CCV at each iteration. The following 
procedure describes a method of obtaining CCV. 
Procedure 3 : ( Find-Clusters-of-Critical-VerticeS ) 

Step1:Find CDV, Di@; ,$), i = 1 ,..., m .  

Step2:Update Global-Map and reconstruct the environment. 
Step3Find C W ,  V j @ , Q J ) .  j = l ,  ..., E. Then, CCV is 

cj@ J , ~ j )  = @ J  , Q J  ), j = I ,... 3. 
Step4Order the clusters Cj@j , Q j ) ,  j = 1, ...fi, such that 4' and 

$+' are close by. 
Step5:End. 

This procedure will now replace Step 1 of the procedure 
Find-Intermediate-Goal introduced in section 3. In the foregoing 
observation, there exists a situation where the sensor on the robot 
cannot detect any further new information due to its limited dis- 
tance measurability. It is clear from section 3 that the procedure 
Backtrack-Track-Tree can be invoked to resolve this problem if 
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the ideal sensor is instead assumed. However, in the practical case 
given in this section, the continuous performance of the 
backtracking procedure may only lead the robot back to the start- 
ing point with no solution path found. The remedy is to gain more 
information from the environment so that Global-Map can be 
updated more completely. The following procedure will provide a 
systematic method in realizing this idea. 
Procedure 4 : ( Learn-More-Information ) 

SteplMove the robot toward the goal direction with a displace- 
ment equal to the effective range of the sensor or till it 
reaches some edge of an obstacle, depending on which is 
satisfied earlier. 

Step2:Add the current position of the robot into Track-Tree. 
Step3:If the robot reaches some edge of an obstacle, 

then slide the robot along the edge in either direction till it 
reaches a vertex not visited before, and add the location data 
of the vertex into Track-Tree. 

Step4Scan the environment and add new information onto 
Global-Map. 

Step5If some new information is obtained, 
then go to Step 7; 
else go to Step 6. 

then slide the robot again along the inhabited edge, but not 
allowed to pass by any point which already appeared in 
Track-Tree, till it reaches another vertex not visited before, 
add the location data of this vertex into Track-Tree, and go 
to Step 4. 
else go to Step 1. 

Step6If the robot is located on an edge of some obstacle, 

Step7End. 
Navigation Algorithm* : 
Step1:If the goal is visible, 

Step2Scan the environment and add the collected information 

Step3:If no new information can be collected, 

Step4Perform the procedure Find-Intermediate-Goal. 
Step5If the next intermediate goal is found, 

then go to the goal directly and exit the algorithm. 

onto Global-Map. 

then perform the procedure Learn-More-Information. 

then perform the procedure Guarded-Move and go to Step 
6. 
else if the confronted concave region is perceived, 

then perform the procedure Back-Track-Tree, and go 
to Step 1. 
else perform the procedure Learn-More -Information 
and go to Step 4. 

Step6:If the intermediate goal is successfully reached, 
then generate a node in Track-Tree that corresponds to the 
current location of the robot, remove the node from all 
Candidate-Queue's constructed so far, and go to Step 1. 
else perform the procedure Backtrack-Track-Tree. 

Step7:Go to Step 1. 
Note that the procedure Guarded-Move actually corresponds 

to the confirmation process mentioned in the previous observation 
at the beginning of this section. It is described in detail below: 

Procedure 5 : ( Guarded-Move ) 

Step1:If the intermediate goal is detectable and validated ( i.e. 
within the effective range of the sensor, and out of any obs- 

tacle or not blocked by any obstacle ), 
then go to the intermediate goal directly and go to Step 3; 
else go to Step 2. 

Step2If the intermediate goal is outside the range of effectiveness 
of the sensor and none of the obstacles lying between the 
current robot location and the intermediate goal are detected, 
then move the robot toward the goal direction with a dis- 
placement equal to the effective range of the sensor and 
generate a node in Track-Tree, corresponding, to the current 
location and go to Step 1. 
else go to Step 3. 

Step3:End. 
Theorem 5.1 : ( Collision- Avoidance and Goal-Convergence ) 
Consider the same problem as given in Theorem 3.1 but in the 
case where the sensor has only limited distance measurability. 
Then the navigation algorithm* proposed above will lead the robot 
from the source S to the goal G through a collision-free path. 

The proof is provided in [29]. In the above algorithm, the 
robot is assumed to be volumeless. However, when the robot has 
non-zero volume, the same algorithm can still be applied using the 
method in [13]. 

6. Navigation through a Terrain Populated with Non- 
Polygonal Obstacles 

In the previous sections, the navigation algorithms proposed 
only deal with polygonal obstacles. In this section, we will show 
that by only slight modification of the previous algorithm the simi- 
lar results can also be applied to the case where obstacles may be 
non-polygonal. For ease of presentation, only the case where the 
sensor has unlimited effective range is considered here. 

The idea, roughly speaking, is to gradually construct ever- 
improving approximating polygonal shapes for all the non- 
polygonal obstacles during the process of navigation so that the 
present environment asymptotically converges to the one encoun- 
tered previously. i.e. an environment populated simply with polyg- 
onal obstacles. Clearly, if the construction is fine enough, a gen- 
eric collision-free path in the original environment can still be 
found using the information from the new environment ( contain- 
ing polygonal substitutes ). 

Because the obstacle is non-polygonal, Definition 3.4 is no 
longer appropriate for recording the useful information observed 
by the robot sensor since there may not exist so called "vertices". 
In order to gain the similar function, we will first define the 
outwardmost point, say, p i  of some visible obstacle i as the inter- 
section point of the line, emitting from the current robot location, 
tangent to the obstacle and the obstacle itself. If one of the two 
tangent lines is overlapping with some other obstacles, then the 
pertaining outwardmost point is then not defined. For illustration, 
in Fig. 6.1 there are two clusters of visible tangent points denoted, 
T , @ ' , p ' )  and T,@*,q?) ,  and in Fig. 6.2 there are also two clusters 
of visible tangent points, T , @ ' , q ' )  and T2@'.q3) ( although there 
are, in fact, three visible obstacles here ). Whenever these visible 
tangents points are found, the generating tangent lines are also 
recorded appropriately by some data structure. 

In addition, a maximal number of tangent lines (MNTL) is 
defined for the environment prior to the navigation process. If the 
number of tangent lines of an obstacle recorded so far is equal to 
MNTL, the tangent lines to the same obstacle constructed in the 
subsequent iterations are no longer recorded when it is observed 
again. From then on, that particular obstacle will be replaced by 
its polygonal substitute when performing the search for the next 
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intermediate goal. With the replacement, the cluster of visible ver- 
tices can thus be similarly defined. Of course, it may not be neces- 
sary to conshuct MNTL tangent lines for every obstacle if we are 
only to find a collision-free path from the given source to the final 
goal. In Fig. 6.3, the most current polygonal substitute of the obs- 
tacle, namely, the polygon p ' q z q t p 2  is given by four tangent 
points. Conceivably, the larger the MNTL is, the more accurate 
the approximation is of a non-polygonal obstacle by a polygonal 
substitute. Therefore, after some obstacles are replaced by their 
final polygonal substitutes, the intermediate goal found in a way 
given in section 3 is more likely collision free for higher MNTL. 

Now we are ready to state the navigation algorithm which 
particularly deals with the unknown environment clustered with 
non-polygonal obstacles. 
Navigation Algorithm** : 
Step1:Set the value of MNTL. 
Step2If the goal is visible, 

then go to the goal directly and exit the algorithm. 
Step3:Scan the environment and add new information onto 

Global-Map. 
Step4If no obstacle can be observed because the robot already 

sits on the curved edge of an obstacle, 
then move the robot along the edge in either direction till it 
reaches a point from which more information can be 
observed, add the location data of this point into Track-Tree, 
and go to Step 2. 
else perform the procedure Find-Intermediate-Goal. 

then go to Step 6; 
else perform the procedure Backtrack-Track-Tree and go to 
Step 2. 

then move the robot to that point directly, generate a node 
in Track-Tree, remove the node corresponding to the current 
location from all Candidate Queue's consmcted so far. and 
go to Step 2. 
else perform the procedure Backtrack-Track-Tree and go to 
Step 2. 
The procedure Find-Intermediate-Goal in the above algo- 

rithm is a modified version of the one introduced in section 3. 
The modification is made in its Step 2 and the current version is 
given below: 
Step2:If the tangent lines recorded so far of some visible obstacle 

i is equal to MNTL+l, 
then the newly found cluster of tangent points and the 
tangent lines of that obstacle are not recorded, and the 
polygonal substitute of the obstacle is used to determine the 
clusters of visible vertices Vi@' , q i ) ,  
else the cluster of tangent points as well as the tangent lines 
are recorded. 
Create a Candidate-Queue. 

The following theorem will assure us of the collision-free 
and goalconvergent properties. The proof of the theorem is pro- 
vided in [29]. 
Theorem 6.1 : ( Collision-Avoidance and Goal-Convergence ) 
Consider the problem set-up as given in Theorem 3.1 with non- 
pO~YgOna~ obstacles. Then for sufficiently large MNTL the naviga- 
tion algorithm proposed above will successfully navigate the robot 
through a collision-free path from the source S to the goal G. 

StepSIf the next intermediate goal is found, 

Step6:If the intermediate goal is outside any obstacle, 
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7. Discussions 
The algorithm proposed here bears similarity to that given by 

Rao et al [21] when only polygonal obstacles are dealt with and 
when the sensor possesses unlimited effective range. Under that 
circumstance. the update of Global-Map in the current work will 
be the same as the learning process in the work of [21]. However, 
the final solution path found there will consist of "vertex-to- 
vertex" segments as opposed to the center-line path attempted 
here. Furthermore, the aim of finding a better path in [21] after the 
terrain information has been learned enough is also different from 
the theme of this paper which is simply to find one of possibly 
several solution paths. Despite these quite comparable results, this 
current work can handle more general situations than those in [21] 
such as the environment with non-polygonal obstacles and practi- 
cal limitation of the sensor. Notably, the investigation of the latter 
is so far original to the author's point of view. 

8. Conclusions 
In this research, an algorithm which navigates a mobile robot 

through an unknown terrain populated with obstacles of general 
shapes was presented. The algorithm tends to find a center-line 
collision-free path, which is recognized as a safer scheme in the 
robotics literature. An original investigation of the case where the 
robot sensor possesses only limited distance measurability was 
also given in this paper. To guarantee the property of collision- 
avoidance and goal-convergence of the algorithm, several rigorous 
proofs were provided. A few computer simulation examples were 
given to illustrate the performance of the algorithm. 
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