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Abstract—In a distributed speech recognition (DSR) frame-
work, the speech features are quantized and compressed at the
client and recognized at the server. However, recognition accuracy
is degraded by environmental noise at the input, quantization dis-
tortion, and transmission errors. In this paper, histogram-based
quantization (HQ) is proposed, in which the partition cells for
quantization are dynamically defined by the histogram or order
statistics of a segment of the most recent past values of the param-
eter to be quantized. This scheme is shown to be able to solve to a
good degree many problems related to DSR. A joint uncertainty
decoding (JUD) approach is further developed to consider the
uncertainty caused by both environmental noise and quantization
errors. A three-stage error concealment (EC) framework is also
developed to handle transmission errors. The proposed HQ is
shown to be an attractive feature transformation approach for
robust speech recognition outside of a DSR environment as well.
All the claims have been verified by experiments using the Aurora
2 testing environment, and significant performance improvements
for both robust and/or distributed speech recognition over con-
ventional approaches have been achieved.

Index Terms—Error compensation, robustness, speech recogni-
tion, vector quantization (VQ).

1. INTRODUCTION

WIDE variety of potential applications for automatic

speech recognition (ASR) technologies have been highly
anticipated. However, the recognition accuracy of ASR sys-
tems is always the core concern, which is very often seriously
degraded by the mismatch between training and testing envi-
ronments. Hence, robustness for ASR technologies with respect
to environmental disturbances is definitely a key issue when
considering real-world applications.

In addition, the client-server framework for distributed
speech recognition (DSR) has been widely accepted, in which
speech features are extracted and compressed at hand-held
clients and recognition is performed at the server [1]. Various
schemes for compression of ASR features have been proposed
in recent years. Distance-based vector quantization (VQ) has
been found very useful for clean speech and/or matched VQ
codebook conditions [2], [3] and split vector quantization
(SVQ) has been recommended by the ETSI standard [4].
However, environmental noise and quantization distortion
naturally tend to jointly degrade recognition performance.
The quantization process may increase the distance between
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clean and noisy features, and environmental noise may also
move the feature vectors to a different quantization cell. The
quantization distortion is actually related to the bit rates, which
is another key parameter in DSR. The higher bit rate required
for lower quantization distortion naturally becomes another
difficult issue for transmission. Vector quantization or SVQ
performed in a transformed domain (obtained with transforms
such as discrete cosine transform (DCT) [5]-[7] or histogram
equalization (HEQ) [8]-[10]) has been shown to be able to
efficiently improve the desired robustness for feature vectors
under environmental disturbances; differential encoding of
transformed coefficients was shown to be very helpful as well
[11]. However, while all these approaches have proven more
robust than the conventional SVQ (i.e., performing SVQ on
Mel frequency cepstral coefficient (MFCC) directly), they
are still based on VQ or SVQ, which are distance- and code-
book-based. As long as the quantization is based on a pretrained
codebook and some distance measure with the codebook, the
mismatch between VQ codebook and testing feature vectors
under lower signal-to-noise ratio (SNR) conditions remains a
difficult problem.

For the above cases of robust and/or distributed speech
recognition, feature vectors corrupted by environmental noise
and/or quantization errors can be viewed as random vectors
with uncertainty. Uncertainty decoding approaches have been
proposed to consider such uncertainty [3], [12]-[15], including
handling those produced by environmental noise [12]-[14]
and estimating the uncertainty generated in the quantization
process [3], [15]. However, in DSR with environmental noise,
it is naturally better to consider environmental noise and
quantization errors jointly. However, this is difficult because
environmental noise is hidden in the quantized codewords,
or mixed with quantization errors. The meager computational
resources available on hand-held devices further complicate
many useful advanced robust approaches. Furthermore, when
noise conditions are unknown and/or are changing at the
moving client, various successful data-driven robust methods
cannot be used. The recommendation to use a standardized
VQ codebook also leads to further difficulties because of the
inevitable codebook mismatch.

In addition to quantization distortion and environmental
noise, in DSR cases the transmission errors caused by com-
munication channels create further problems. Various error
concealment (EC) techniques have been proposed to handle
these transmission errors. Some reduce transmission errors
through error detection and correction [16], some reconstruct
the feature vectors by estimating the erroneous subvectors [17],
and some consider the reliability of the estimated vectors at
the decoding stage [18]-[20]. These methods are very useful
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when the input speech is clean, in which case it is possible
to make up for transmission errors because there are enough
correctly received feature parameters, and the continuity nature
or prior statistical information of speech signals can be useful
in data consistency checks [21] or lost vectors estimation
[17]. However, it is important to consider the effectiveness of
these methods when the input speech is seriously corrupted by
environmental noise.

In this paper, histogram-based quantization (HQ) is proposed
to solve the many related problems mentioned above. HQ is a
novel approach in which the partition cells for quantization are
dynamically defined by the histogram or order statistics of a seg-
ment of recent past samples of the parameter to be quantized.
It is actually a dynamic quantization, completely based on the
local statistics of the signal, not on any distance measure, nor
directly related to any pretrained codebook. On one hand, in
the case of DSR, many of the above-mentioned problems that
arise from a fixed pretrained VQ codebook in conventional DSR
framework are shown to be solved to a good extent with this new
approach, because the quantization is dynamic and not solely
based on a fixed pretrained codebook at all; therefore, the mis-
match between the corrupted feature vectors and a fixed pre-
trained codebook is reduced. This concept of HQ is then further
extended to histogram-based vector quantization (HVQ). On the
other hand, HQ is also shown to be useful as a good approach
for robust feature transformation, which can produce more ro-
bust features, because most of the noise disturbances can be au-
tomatically absorbed by the dynamic histogram. This robust na-
ture of HQ against environmental noise is extensively explored
and analyzed, including considering quantization resolution (or
required bit rate), noisy environment, and transmission condi-
tions. The quantization distortion and environmental noise are
jointly considered further in a joint uncertainty decoding (JUD)
approach for HQ. For robust speech recognition alone without
DSR, HQ can be used as the front-end feature transformation
and JUD as the enhancement approach at the back-end recog-
nizer. For DSR applications, on the other hand, HQ can be ap-
plied at the client end as a quantization process for data com-
pression, and JUD at the server. In addition, a three-stage EC
framework is further proposed for a DSR transmission environ-
ment to handle transmission errors introduced by wireless chan-
nels, in which the first stage detects the erroneous feature pa-
rameters, the second stage reconstructs the detected erroneous
subvectors, and the third stage considers the uncertainty of the
estimated vectors during Viterbi decoding. All the claims men-
tioned above were verified by extensive experiments reported
below that were performed under the AURORA 2 testing envi-
ronment for different types of noise, different SNR values, and
different transmission conditions including different bit rates
[22].

The rest of this paper is organized as follows. In Section II,
the complete formulation of HQ is presented and its robust
nature discussed. Section III then discusses JUD for HQ, and
Section IV presents the three-stage EC approach. In Section V,
the experimental setup is described. The many results for a
whole series of experiments for both robust and/or distributed
speech recognition are then presented and analyzed in detail
in Section VI. The concluding remarks are finally made in
Section VII.
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Fig. 1. General formulation of histogram-based quantization (HQ).

II. HISTOGRAM-BASED QUANTIZATION (HQ)

A. General Formulation of HQ

The concept of HQ is to perform quantization of a feature
parameter ¥, at time ¢ based on the histogram or order statis-
tics of that feature parameter within a moving segment of the
most recent past T samples, [Yt—7+1,- -, Yt—1, Yt] 2 Yir,
up to the time ¢ being considered [23]. As shown in Fig. 1,
the values of these 1" parameters in Y; 1 are sorted to produce
a time-varying cumulative distribution function C'(v), or his-
togram, which changes for every time instant ¢, where C'(vg) =
bop = 0 and C(vy) = by = 1,vp and vy are, respectively,
the minimum and maximum values within Y; 7. Also shown in
Fig. 1, N partition cells, {D; = [b;_1,b;],7=1,2,..., N}, to-
gether with their corresponding representative values, {Z;,i =
1,2,..., N}, are defined on the vertical scale [0, 1], which are
derived from a standard Gaussian N (0, 1) with cumulative dis-
tribution Co(v) via the Lloyd-Max algorithm [24], [25]. Note
that the boundaries {b;,7 = 0,1,2, ..., N} on the vertical scale
can be either uniformly or nonuniformly distributed [23]. In the
case of nonuniform quantization, the Lloyd—Max algorithm can
be performed with respect to any distribution, including the dis-
tribution of training sets. Since different training sets may have
different distributions, we performed the Lloyd—Max algorithm
based on uniform, Laplacian and Gaussian distributions in the
preliminary experiments. The best performance was obtained
with Gaussian distribution under noisy environments, probably
because the distribution of feature parameters under noisy envi-
ronments on the vertical scale is closer to a Gaussian distribu-
tion. Using the dynamic histogram C(v) constructed with Y; 7,
these partition cells on the vertical scale, {D;,i = 1,2,...,N},
are then transformed to the horizontal scale to be the IV parti-
tion cells [v;—1,v;],7 = 1,2,..., N on the horizontal scale for
the quantization of y;, where C(v;) = b;. In other words, the
partition cell [v;_1,v;] on the horizontal scale is obtained from
the partition cell D; = [b;_1, b;] on the vertical scale via the dy-
namic histogram C(v). Thus, the partition cell [v;_1, v;] on the
horizontal scale is dynamic. However, the representative values
{zi,i = 1,2,..., N} for these partition cells {[v;_1,v;],% =
1,2,..., N} on the horizontal scale are fixed, and are trans-
formed from the representative values {z;,i = 1,2,...,N}
previously obtained on the vertical scale by the histogram Cy(v)
of the standard Gaussian.

The above formulation indicates that HQ is based on a hidden
codebook {(D;, z;),i = 1,2,..., N} derived from a standard
Gaussian on the vertical scale, which is then transformed
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by a dynamic histogram C(v) into time-varying partition
cells [v;—1,v;], and by a fixed histogram Cy(v) into the fixed
representative values z;, both on the horizontal scale. The
quantization here is then similar to all conventional quantiza-
tion processes, in that it is a mapping relation which maps the
present parameter y; to a fixed representative value z;, if y; is
within the partition cell [v;_1,v;], except that this partition cell
is dynamically defined

Yt — Zi, if b;_1 <C(yt)<bi7 or v;—1 <Y <;

C(Ui—l) :bi—lvc('vi) :bi7 1= 1,2,,N (D
Note that the quantization codebook here includes a set of dy-
namic partition cells {[v;—1,v;],7 = 1,2,..., N} and a set of
fixed representative values {z;,i = 1,2,...,N}. It will be

shown below that many practical problems mentioned previ-
ously can be automatically solved to a good extent in this way.
Also, although here HQ is a quantization process, it can also
be used as a feature transformation process offering the desired
robustness as will also be discussed below, in which each pa-
rameter y, is transformed to its representative value z; for the
corresponding partition cell.

B. Histogram-Based Vector Quantization (HVQ)

The above general formulation of one-dimensional HQ in
Fig. 1 can be easily extended to HVQ with more than one
dimension. Consider SVQ as an example [4], in which two
MEFCC parameters (e.g., c; and cz) can be quantized jointly
by a two-dimensional VQ codebook. Extending from the
one-dimensional HQ mentioned above, a moving segment of
the most recent past 1" samples of the first parameter yt(l) up
to time ¢, [yfi)TH, . ,yt(i)l, yfl)] EN Y;(_l), gives a histogram
C1 (v M) for ygl), and a similar segment of the past 7" samples
of the second parameter yt(z) up to time ¢, Y;(;) , gives another
histogram Cy(v()) for yt(Q). The formulation below is exactly
the same as the one-dimensional HQ in Fig. 1, except that
here both the vertical and horizontal axes are no longer one-di-
mensional axes, but are extended to vertical and horizontal
two-dimensional planes as shown in Fig. 2. On the vertical
plane with coordinates (b("), 5(?)), we have a two-dimensional
hidden codebook {(D;, z;),7 = 1,2, ..., N}, which is derived
from a bivariate standard Gaussian via the LBG algorithm [26].
Every point (b("),5®)) on this plane is then transformed by
the above-mentioned dynamic histograms Cy(v(1)), Cy(v(?))
back to a point (v(1),v(?)) on the horizontal plane, where
C1(vM) = b, Cy(v®) = b(?). The set of all these points
(v, () on the horizontal plane transformed from those
points (b1, b(?)) on the vertical plane in a certain partition cell
D; then forms the dynamic partition cell ; on the horizontal
plane as follows:

(v, 0 € Q;, if (1M, b®) € D;
Ci(vM) =bW | CP) =b@, i=1,2,...,N. (2)

On the other hand, the representative points 2; for each partition
cell D; on the vertical plane are similarly transformed back to
the fixed representative points z; on the horizontal plane, except
that the transformation is performed by two fixed histograms

Fig. 2. Concept of histogram-based vector quantization (HVQ) using two
dimensions.

Co(v M), Cy(v?), both derived from a one-dimensional stan-
dard Gaussian. The quantization here is a mapping relation just
as one-dimensional HQ in (1), which maps the present param-
eter set (yt(l), yt(Q)) to a representative value z; for the dynami-

cally defined partition cell Q;

WM, y®) =z, i (G D), Co(u?)) € D
Or(ygl),yt(m)eQL/ Z:1,27,N (3)

Based on the above, the two-dimensional HVQ can be per-
formed dynamically on the (v(}),+(?)) plane. For the present
parameter pair (yt(l) , yt(z)) at time ¢, the two dynamic histograms
C1(v™) and Cy(v?)) based on Yt(lT) and Yt(? give a point
(Cy (yt(l)), CQ(yt(z))) on the vertical plane. The partition cell D;
on the vertical plane to which this point belongs then determines
the partition cell ; and representative point z; on the horizontal
plane.

C. Discussions About Robustness of HQ (and HVQ)

Conventionally, feature quantization is for data compression
and robust features are for handling noise disturbances. The pro-
posed HQ, however, includes the desired robustness in the quan-
tization process.

1) Robust Nature of HQ: With the conventional SVQ, the
mismatch between the pretrained fixed VQ codebook and the
current corrupted testing features may significantly increase
quantization distortions. With the proposed HQ, however, the
actual partition cells are dynamically adjusted according to
local statistics. For example, as shown in Fig. 1, C(v) may
be changed to C’(v) when disturbances are encountered. The
partition cell on the horizontal scale for the disturbed parameter
y, may also be changed to [v]_;, v!], where C’'(vi_;) = b;_1
and C’(v}) = b;, which can be quite different from [v;_1, v;].
Nevertheless, the partition cell D; and the corresponding rep-
resentative value z; for y; may remain unchanged as long as
vi_y <y, < vl since D; is fixed on the vertical scale, while
the disturbances from g, to y; are on the horizontal scale, and
z; is fixed on the horizontal scale. Since the actual partition
cells are no longer fixed as in conventional SVQ methods, the
codebook mismatch problem mentioned above can thus be
avoided to some extent. In other words, HQ is based on the
partition cells D; fixed on the vertical scale and the dynamic
histogram C(v), and is therefore less sensitive to disturbances
on the horizontal scale: disturbances on the horizontal scale
are actually absorbed by the dynamic histogram to a certain
degree. When a segment of parameters Y; 7 are corrupted by
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small disturbances, all individual values may be changed (C(v)
is disturbed into C’(v)), but the order statistics which produce
the partition cells on the horizontal scale may remain similar,
and the representative values z; remain fixed; therefore, the
changes to the quantization results may be very limited. Such
robustness is obtained by local order statistics for the most
recent past values of feature parameter. This is why HQ is
able to handle various noise conditions as will be shown in the
experiments presented below.

2) Comparison With Histogram Equalization (HEQ): The
popularly-used HEQ equalizes the cumulative distributions (or
histograms) of both the training and testing feature parameters
in each temporal span, and has been shown to produce very
robust features for recognition [8]-[10]. HQ actually borrows
the concept from HEQ. The experiments below will show that
HQ can be used as an attractive feature transformation approach
for robustness purposes as well, and it even performs better
than HEQ. It is important to explain why. HEQ actually per-
forms point-to-point feature transformation based on the order
statistics, which can absorb the small disturbances to a good
degree, although some residual disturbances inevitably remain
because the point-based order statistics are in any case more
or less disturbed. Quantile-based HEQ [27] performs a piece-
wise-linear approximation of HEQ. It reduces the computation
complexity for histogram estimation, but does not change the
point-based nature of the transformation. HQ, on the other hand,
performs the transformation block by block; therefore, the small
disturbances within each block (D); in Fig. 1) are absorbed by
the block-based order statistics. The block-based order statis-
tics certainly introduce uncertainty as well, but with the proper
choice of the number of quantization levels N or the block size,
this uncertainty may be compensated for by the stochastic nature
of the Gaussian mixtures in the HMMs. HEQ can be considered
the limiting case of HQ when the number of quantization levels
N becomes infinite. As will be shown below, the recognition
performance certainly depends on the value of NV considering
the noise conditions and so on, but [V being infinite is not nec-
essarily the best.

III. JOINT UNCERTAINTY DECODING (JUD) FOR HQ

Uncertainty decoding has been developed for HMM decoding
considering the uncertainty of the observation vectors. Such
techniques are also very useful for the HQ developed here, as
presented below.

A. General Formulation of Uncertainty Decoding

In standard HMM decoding, the probability b;(w) for ob-
serving a feature vector w at a state j is

M
b](w) = Z ijN(w; Him s Ejrn,) (4)
m=1

where m is the mixture indeX, and cjm, ftjm, 2 jm are, respec-
tively, the mixture weight, mean, and covariance for the mth
Gaussian mixture in state j. There have been slightly different
approaches in formulating the concept of uncertainty decoding
[12], [14]. In the approach used here [3], [13], [15], instead of
evaluating the observation probability b;(w) only for a single

feature vector w, uncertainty decoding treats the observed fea-
ture vector w as being corrupted, and therefore considers the un-
corrupted but unobservable feature vector o as arandom variable
with a distribution p(o|w) during decoding. The probability of
observing w, b;(w), can then be defined as the expected value
of b;(0) with respect to the distribution p(o|w) [3], [13], [15]

bi(w) = (i) = [ p(olulbs(o)do. 9
Assuming p(o|w) to be Gaussian with mean ,,, and covari-
ance matrix X, p(o|w) ~ N (05 tojw; Yo|w ) Where both 1i,)y,
and 3J,),, can be estimated in various ways, the integration in (5)
can be reduced to [13]

M
b](w) = Z cij(ﬂ'o|w§ Hjm> Xjm + Eo|w)~ (6)
m=1

Thus, the standard HMM decoding using (4) remains un-
changed, except that the variance of each Gaussian in the
HMMs is increased by Y, the uncertainty of the unobserv-
able vector o. In this way, the Viterbi decoding can be based
more on reliable parameters with a smaller variance X,,,.
The observed feature vector w can be taken as the estimated
value of i, for simplicity, as is done here in this section.
However, pi,,, can also be estimated based on previous feature
vectors as in the three-stage error concealment approaches as
discussed later on. Below, we present the approaches used here
to estimate the uncertainty of the unobservable feature vector
o, or the covariance matrix 3.

B. JUD for HQ

There are two sources of uncertainty in HQ-based features:
quantization errors and environmental noise. Here, we first sep-
arately estimate them and then consider them jointly.

1) Quantization Error Uncertainty: In an HQ partition cell,
the representative value z; is the observed corrupted feature
vector w in (5), and all the possible samples in the corresponding
ith partition cell [v;_1, v;] are these samples for the uncorrupted
unquantized feature vectors o in (5) collected at the client, which
are unobservable at the server. The variance ¥¢¢ for quantiza-
tion errors in the ¢th partition cell to be used to take the place of
Yow in (6) can thus be estimated using a clean speech training
set. Taking the one-dimensional HQ as in Fig. 1 as an example

1
L X

b v <y <v;

Bt = (C5H[C(ya)] — 2:)° @

where the summation is over all L; feature parameters y; in the
ith partition cell [v;_1, v;] in the training set. Equation (7) can
be easily extended to HVQ for more dimensions. Because the
representative value z; was obtained via the Lloyd—Max algo-
rithm (or LBG algorithm [26] in the case of HVQ) based on the
histogram Cj () for a standard Gaussian distribution, all param-
eters y; in the partition cell need to be transformed first by C(e)
then transformed back via Cjj *(e) to evaluate ¥¢°. Because
the Lloyd—Max algorithm produces tightly quantized levels in
high-density regions and loosely quantized levels in low den-
sity regions to minimize total distortion, uncertainty decoding
automatically increases the Gaussian variances for the loosely
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TABLE 1
AVERAGED HISTOGRAM SHIFT FOR HQ UNDER DIFFERENT SNR CONDITIONS
SNR Clean |20 dB| 15dB|10dB| 5dB |0 dB
Hi hiff
istogram shift ) 16 | 0.038 | 0.053 | 0.090 | 0.109 |0.132
|Cr 1 (0.5)]

quantized levels. In this way, ¥¢¢ can be trained in advance for
all partition cells [v;_1, v;].

2) Environmental Noise Uncertainty: Under low SNR
conditions, disturbances may be very serious. For example, in
Fig. 1, v;_1 and v; may be changed to v} ; and v/ and C(v) to
C"(v), or there may be a histogram shift which cannot be well
absorbed by the dynamic histogram. Inevitably, then, HQ’s
performance deteriorates. Such a histogram shift may be rea-
sonably estimated by C; 1(0.5), because ;5 1(0.5) = 0 for a
standard zero-mean Gaussian. For server-side histograms con-
structed based on the quantized codewords, the average values
of |C;1(0.5)| under all types of noise for the AURORA 2
testing environments (with further details in Section V) for dif-
ferent SNR values are shown in Table I. Clearly, the histogram
shift increases with lower SNR values. This is reasonable
because under lower SNR conditions, the order statistics and
histograms of the original speech samples collected at the
client in the respective moving segments change very rapidly;
thus, the quantized HQ codewords based on these histograms
also change quickly and significantly with time. As a result,
the server-side histogram constructed using the quantized HQ
codewords also change quickly and significantly with time,
introducing a significant and fast fluctuating bias or shift
|C;71(0.5)| in each short segment, even if the original noise
added to the signal samples is zero-mean in the long term.
Hence, we can take the histogram shift |C;(0.5)] as a simple
indicator for the SNR condition: that is, higher such shifts
correspond to lower SNR values. Therefore, the variance X"
for uncertainty caused by environmental noise at time t—used
in place of X,,, in (6)—can be reasonably estimated as

ot = a(Cr1(05))? @®)
where « is an empirically determined scaling factor and is fixed
for all SNR values and noise conditions in our experiments. In
fact, the value of X! only indicates the relative importance of
feature parameters in Viterbi decoding—we found in prelimi-
nary experiments that recognition performance is not very sen-
sitive to the value of « chosen here. Cy(e) is the histogram for
the HQ-quantized codewords z; for all feature parameters y; in
the moving segment Y; 7 at frame ¢. In this way, in the DSR
case, ¥, can be estimated at the server easily for each time
t without any extra bit rate costs. This allows us to solve the
problem where the environmental disturbances are hidden in
codewords and cannot be estimated directly.

3) Joint Uncertainty Decoding (JUD) for HQ: The above
two types of uncertainties should be jointly considered [28].
A reasonable assumption is that for higher SNR conditions the
quantization error uncertainty $¢:* dominates, while for lower

SNR conditions, the environmental noise uncertainty Eg’t dom-
inates. Therefore, the joint uncertainty ¥%* for a codeword z; in
the ith partition cell at time ¢ can be estimated as

Ef;t = max(Eg"i? »rty )
where %9 is pretrained for the ith partition cell using (7), and
Y7t is estimated in real time using (8). This value of ¥%! can
then be used as X, directly in (6).

C. Histogram-Shift Compensation

As mentioned previously, histogram shift occurring at lower
SNR values inevitably results in seriously degraded HQ perfor-
mance. As a result, in addition to the uncertainty decoding as
mentioned above, we can also shift the histogram horizontally
to have

c70.5) =0 (10)
for each time ¢. A large portion of the serious disturbances can
be absorbed by such a shift, as will be verified by the experi-
ments below.

IV. THREE-STAGE EC FOR HQ-BASED DSR SYSTEMS

Here, we consider the approaches to handling the transmis-
sion errors added to the received HQ codewords under the DSR
framework [29]. A three-stage EC approach is developed, as
presented below.

A. Stage 1—Error Detection

In the ETSI DSR standards, every two frames are grouped
together and protected with four-bit CRC [4]. In this way, the
entire frame-pair is labeled erroneous even if only a single bit
error occurs in the frame-pair packet. Adding check bits at the
subvector level is helpful for subvector level error detection,
but comes at the cost of additional bandwidth [7]. A more ef-
ficient way is to make use of the speech signal characteristics
at the subvector level. The data consistency test checks the con-
tinuity of the parameters in two neighboring subvectors [21].
When the difference between two consecutive values of a fea-
ture parameter in a subvector exceeds a predetermined threshold
obtained from some training corpus, the subvector is classified
as inconsistent. However, if the statistics of the testing features
are time-varying and different from those of the training corpus,
this approach becomes less reliable. With environmental noise,
the parameters are likely to be classified as inconsistent even if
they are correctly received.

HQ performs feature parameter quantization based on the
local histogram (or order statistics), so the quantized codewords
represent the local order-statistic information of the original pa-
rameters. The quantization process does not change the order
statistics of the parameters, and if there are no transmission er-
rors, the histogram for the subvector codewords received at the
server should be similar to the histogram for the original fea-
ture parameters at the client. Thus, the partition cell obtained by
reperforming HQ on the received subvector codeword, based
on the dynamic histogram for these received codewords, should
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Fig. 3. (a) Recall and (b) Precision rates for error detection using SVQ with
the conventional data consistency check and HQ with the HQ-based consistency
check proposed here.

be the original partition cell. If not, it is very possible that the
order statistics have been changed and the received subvector
codeword may be erroneous. Based on this observation, the
consistency test in the HQ framework proposed here is as fol-
lows. Taking a two-dimensional HVQ as an example, z; =
(zgl), zi(z)) is a received subvector codeword at some time, and
HQ (zgl) ) 252) ) } represents the representative value for the sub-
vector (z; ! ) % 2)) assigned by HQ performed at the server based
on the histogram for the received codewords. The subvector

(251)7 zl-(z)) is then classified as consistent if

HQ{(#". =)} = (. 2%). an
In other words, if these two parameters are correctly received,
their order statistics at the server should be similar to the order
statistics for the original values before quantization at the client,
and therefore similarly quantized into the same HQ partition
cell.

We compared the error detection accuracy of the conven-
tional SVQ scheme with the data consistency check [21] and the
proposed HQ with the HQ-based consistency check mentioned
above under all different noise conditions for the AURORA 2
testing environment with the transmission errors introduced by
the General Packet Radio Service (GPRS) wireless environment
(further details are presented in Section V below). The averaged
recall (percentage of detected errors out of all errors) and preci-
sion (percentage of correct errors out of all detected errors) rates
for error detection are shown in Fig. 3(a) and (b). For lower SNR
cases, it is clear that the noise seriously affects the SVQ with
data consistency check as verified by the precision degradation
in Fig. 3(b) (from 66% at clean down to 12% at 0 dB). With the
proposed HQ-based consistency check approach, however, the
precision rate is much more stable at all SNR values, and both
recall and precision rates are higher.

Note that when (11) is not satisfied, it is also possible that the
present codeword is actually correctly received, but instead the
dynamic histogram, on which the HQ in (11) is based, is dis-
turbed by erroneous received codewords in the past 1" frames.
This is one good reason why the precision rate in Fig. 3(b) for
HQ with the proposed consistency check is slightly less than
70%, i.e., some detected inconsistencies are actually correctly
received codewords. However, this precision is much higher
than SVQ with conventional approach. In fact, the probability
that the inconsistency in (11) is due to the disturbed histogram
rather than the considered codeword being erroneous is lower,
because the effect of the erroneous codewords in the past T’
frames is reasonably absorbed by the histogram (the order sta-
tistics of a large number of codewords) as well as the partition

cells in HQ. In other words, with erroneous codewords in the
past T' frames, the change of the histogram may not be very
serious, and the partition cell that the present codeword being
considered belongs to may remain unchanged. This is verified
in Fig. 3(b) where the precision rate, although much less than
100%, remains almost the same from clean speech to 0-dB SNR.

B. Stage 2—Erroneous Feature Vector Estimation

Different techniques for estimating the detected erroneous
feature vectors have been proposed. Repetition and interpola-
tion only use the correctly received feature vectors [16], while
statistical-based techniques use prior knowledge about speech
source in addition, and have been shown to offer better perfor-
mance [30].

The erroneous subvector estimation proposed here under the
HQ framework is based on the maximum a posteriori (MAP)
criterion, which determines the estimated value $; of a certain
transmitted subvector codeword s; at time ¢, which is detected
as erroneous (here both §; and s; are certain codewords z; men-
tioned above for some ¢, respectively). This MAP estimation
is conditioned on the present and previously received corre-
sponding subvector codewords 7; and r;_1 (here both r; and
r¢_1 are also certain codewords z; mentioned above for some 7,
respectively)

§¢ = argmax{P(s; = z|re,r4-1)} (12)
zi

where s; = z; denotes that s; is the 2th HQ codeword out of

the N possible codewords. The maximization here is over all of

these codewords. If we assume r; and r;_; are independent

P(St|’f’t_1)P(3t|Tt) P(St|7"t_1)P(’l“t|3t)

P(st|re,re—1) ~ P(s1) - P(re)

(13)
With the denominator in (13) left out in the maximization in
(12), the probability in (12) can be approximated by the code-
word bigram P(s; = z;|r:—1) and the channel transition prob-
ability P(r¢|s; = z;)

8 = argmza,x{P(st = zi|ri—1)P(re|se = z:) }- (14)
In (14), the codeword bigram P(s; = z;|r;—1) can be esti-
mated by the bigram of the considered subvector codewords
P(s; = z;|s;—1) trained from a clean training set (for example,
the clean training set of AURORA 2). Also, the channel transi-
tion probability P(r¢|s; = z;) in (14) can be estimated from the
bit error rate (BER) of the present frame being considered

P(ry)s; = z) = BERAb(:):b(r)] (1- BER)K*d[b(zz’)vb(m)]

(15)
where BER is estimated as the total number of inconsistent
subvectors (in simulation analysis, it was found that in most
cases there is only one bit error in an erroneous codeword,
and therefore this number can be used to estimate the total
number of erroneous bits) detected in the first stage (discussed
in Section IV-A) in the present frame divided by the total
number of bits in the frame, K is the total number of bits in the
received subvector codeword 7, b(z;) and b(r;) are, respec-
tively, the bit patterns for the codewords z; and 74, and d(e, ®)
represents the Hamming distance between two bit patterns.
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TABLE II
MUTUAL INFORMATION I(s;, $;—1) FOR SVQ AND HQ
I(s1,80-1)] c1,¢2 [ ca,ca | Cs,C6 | c7,C8 | Co,Ci0 | Ci1,C12 | Co, logE
SVQ 1.365 | 0.998 | 0.791 | 0.652 | 0.611 0.568 1.455
HQ 1473 | 1.110 | 0.856 | 0.722 | 0.678 | 0.619 1.541

The value of P(r¢|s: = z;) in (15) is actually the probability
of z; being changed to r; if BER can be accurately estimated.
With (15), when r; is less reliable (or has a larger BER), the
values of P(ri|s; = z;) for all possible codewords z; with
different ¢ become closer to each other (i.e., the difference in
P(r¢|s¢ = 2;) is insignificant for different Hamming distances
d(e,e)). On the other hand, when 7, is more reliable (or has a
smaller BER), P(r¢|s; = z;) is larger for only few values of 1.
In this way, more emphasis can be put on the codeword bigram

P(s;y = z;|ri—1) than on the channel transition probability
P(r¢|st = z;) in (14) when the channel condition is less
reliable.

Because the basic principle here is to exploit the short-time
correlation between consecutive frames in speech signals to es-
timate the lost subvectors, the robustness of HQ as mentioned in
Section II-C is very helpful. If the quantization process is less
robust, the environmental noise may move the feature vectors
to a different partition cell and the subvector transition relation-
ship in speech signals may be disturbed. This problem is actually
lessened by the HQ’s robustness, as can be verified by the mu-
tual information I(s;, s;—1) between the present and previous
subvector codewords s; and s;_1

I(St; St—l) = H(St) - H(3t|8t—1) (16)
where
N
H(sy) = Z —P(s¢ = z;)1log[P (st = #;)] (17)
j=1
and
H(8t|8t_1)
N N
:ZZ—P(st:zj,st,lzzi)log[P(st:zj|st,1:zi)] (18)
i=1j=1

are, respectively, the degree of uncertainty for the present sub-
vector S, and the remaining degree of uncertainty for s, after
the previous subvector s;_; is known. Thus, the mutual infor-
mation 7(s¢, s;—1) in (16) shows how much the codeword bi-
gram model reduces uncertainty for the subvectors s;. In other
words, a bigram model with higher mutual information implies
that predicting the present subvector s; given the previous sub-
vector s;_1 is easier. The mutual information for the conven-
tional SVQ and the proposed HQ averaged for different subvec-
tors from the three testing sets of AURORA 2 is listed in Table II.
We can see that HQ’s mutual information is always higher than
that of SVQ, which indicates that the HQ framework allows for
more precise estimation of the lost subvectors.

C. Stage 3—Uncertainty Decoding

The uncertainty decoding discussed in Section III-A can be
used here in the final stage. Consider Section III-A: the above
received codeword 7; is taken as the observed corrupted fea-
ture vector w in (5), and all of the possible transmitted code-
words, s; = z;, ¢ = 1,2,..., N, are the possible samples of
the uncorrupted but unobservable feature vector o in (5). The
distribution of the probability P(s; = z;|r,7:—1) obtained in
(12) then characterizes the uncertainty of the observed code-
word. With the estimated codeword $; in (12) taken as the mean
Holw and the covariance estimated using the probability distri-
bution P(s; = z;|r, 1) taken as the covariance ¥,,,, both
used in (6), uncertainty decoding can then be directly performed
within the HQ framework as presented previously by increasing
the variance of each Gaussian mixture by Y, in the HMMs as
in (6) [28]. In this way, HMM decoding puts more emphasis on
more reliable subvectors, i.e., those with lower covariance Eo|w
for the probability distribution P(s; = z;|r¢, m¢—1) in (12).

D. Three-Stage EC Under the HQ Framework

The three stages of EC under the HQ framework can be easily
integrated. At the first stage, the received frame-pairs are first
checked with CRC to detect errors at the frame level. The erro-
neous frame-pairs are then further checked at the subvector level
by the HQ consistency test as mentioned in Section IV-A. At the
second stage, the erroneous subvectors detected at the first stage
are estimated and reconstructed as presented in Section IV-B.
At the third stage, uncertainty decoding in the Viterbi search
process makes the HMMs less discriminative for subvectors
with higher uncertainty as presented in Section I'V-C.

V. EXPERIMENTAL CONDITIONS

All the experiments reported in this paper were conducted
on the AURORA 2 testing environment [22] based on a corpus
of English connected digit strings. Two training conditions
(clean-condition and multicondition) and three testing sets (sets
A, B, and C) were defined in AURORA 2. Both clean and noisy
speech signals were prepared by filtering the TI database (both
training and testing) using a telephone-bandwidth bandpass
filter. The testing set A included four types of noise which were
used in the multicondition training (subway, babble, car, and
exhibition), while the testing set B included another four types
of noise not used in the multicondition training (restaurant,
street, airport, and train station). The testing set C was filtered
with a MIRS (Modified Intermediate Reference System, which
simulates the bandpass filtering [300-3400 Hz] behavior of the
telephone channels in the public switched telephone networks
[PSTN]) characteristic filter [22], [31] before adding two ad-
ditive noise types (subway in set A and street in set B). In all
sets A, B, and C, the SNR tested ranged from 20 to —5 dB. The
MFCC extraction follows the WIO07 front-end [22] defined in
AURORA 2 with frame length 25 ms and frame shift 10 ms,
which gives 13 coefficients (C1-C12 and log energy) to be
used to obtain the delta and delta-delta features together for
recognition.

General Packet Radio Service (GPRS) was chosen in this re-
search as an example for wireless channels in the experiments;
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GPRS was developed by ETSI based on a packet switching
framework to enhance the GSM system. GPRS shares the GSM
frequency bands and uses several properties of the physical
layer of the GSM system. It includes four different error control
coding schemes, CS1-CS4, each with a different code rate.
The GPRS simulation software used in the tests described here
was developed by the Wireless Communication Laboratory
of National Taiwan University [32], in which all complicated
transmission phenomena have been carefully simulated in de-
tail, such as the propagation model, multipath fading, Doppler
spread, etc. The experimental results presented below are based
on the following simulation configurations: typical urban (TU,
an environment more frequently encountered with a more
severe fading problem), the client traveling at speeds of 3, 50,
100, 250 km/h, single antenna, hard decision at the receiver,
and CS4 (i.e., without any protection) coding scheme, which
corresponds to a transmission bit error rate of 5.3% for a client
traveling at a speed of 3 km/h.

VI. EXPERIMENTAL RESULTS

The fundamental experimental results for HQ as dis-
cussed in Sections II-A—C are briefly reported in sections
Sections VI-A-C. Sections VI-D and VI-E then present the
results for robust and distributed speech recognition systems,
respectively. All the experiments reported here were based on
order statistics over segments of most recent past parameter
values as mentioned in Section II, so there was no time delay.
Better results were obtainable if this no-delay condition was
removed.

A. HQ as a Feature Transformation Method

In the first set of experiments, we considered the case of ro-
bust speech recognition apart from the DSR environment, in
which one-dimensional HQ was used as a feature transforma-
tion technique, that is, each feature parameter y; is transformed
to the representative value z; for the corresponding partition cell
as in (1) to be used for recognition.

The results are shown in Fig. 4(a)—(c). The recognition ac-
curacies for baseline experiments with original MFCC features,
compared to those with MFCC parameters filtered by the MVA
filter (mean and variance normalization followed by autoregres-
sion moving-average (ARMA) filtering) [33] and the principal
component analysis (PCA) filter derived [34], as well as trans-
formed by the well-accepted HEQ [8]-[10], and the proposed
one-dimensional HQ are, respectively, shown in Fig. 4 under
clean-condition training for (a) averaged over all SNR values
but separated for different types of noise, (b) averaged over all
types of noise but separated for different SNR values, and (c)
averaged over all types of noise and all SNR values for testing
sets A, B, and C, respectively. Here, the order of the MVA filter
was M = 2, the PCA filter was performed with filter length
L = 15, and HEQ was performed in exactly the same way as
HQ, based on a moving segment of the most recent 1" past pa-
rameters, and the same value of 7' = 100 (or one second) was
used for all experiments for both HEQ and HQ. It has been ver-
ified that long-term features derived from one second time in-
terval carry important speech information [35].

@ | OMFCC TJMVA MPCA [JHEQ MHQ (I-dim) |
86
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70
62
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Fig. 4. Accuracies for MFCC baseline and those transformed by MVA
filtering, PCA filtering, HEQ, and HQ, respectively, under clean condition
training. (a) Averaged over all SNR values but separated for different types
of noise. (b) Averaged over all types of noise but separated for different SNR
values. (c) Averaged over all types of noise and all SNR values for different
testing sets.

Many observations can be made here. First, it is clear that
HQ (the last bar) significantly improved the performance as
compared to the baseline MFCC (the first bar) for all testing
sets, all SNR values (except for the clean speech case), and all
noise types. For example, from Fig. 4(a), it can be observed
that for speech-like noise such as babble or restaurant noise,
the MFCC baseline accuracy (around 50%) was much lower as
compared to most other noise types (around 60% or more). HQ
was able to absorb the speech-like variation and improved the
performance in such a way that the results for different noise
types were not only much higher, but also were more similar
to each other (around 80%). As another example, in Fig. 4(b)
the recognition accuracy of HQ was 87.88% as compared to
MFCC baseline 66.95% at 10-dB SNR. The improvements be-
came even more significant for lower SNRs. Second, HQ pro-
posed here performed consistently better than MVA, PCA, and
HEQ compared here for all testing sets, all noise types, and all
SNR conditions (except for clean speech cases). In particular,
HEQ and HQ (the fourth and fifth bars) performed better as
compared to MVA and PCA (the second and third bars). This
is probably because HEQ and HQ dynamically transform the
MEFCC features considering the whole distribution locally, while
the filters used in MVA and PCA are fixed, and only the first
and second moment statistics are taken into consideration. Fur-
thermore, in all Fig. 4(a)—(c), HQ performed consistently better
than HEQ for all testing sets, all noise types, and all SNR con-
ditions. For example, in Fig. 4(a), HQ turned out to be very
helpful for babble/restaurant noise (78.41%/79.08%) as com-
pared to HEQ (75.95%/76.28 %), probably because in such cases
of speech-like noise, the order statistics disturbances were better
absorbed by HQ’s blocks than by HEQ’s point-by-point trans-
formation. For subway noise, on the other hand, the improve-
ment of HQ (81.70%) compared to HEQ (80.86%) is relatively
less, probably because the impulse-like disturbances may very
often exceed beyond the blocks.
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TABLE III
AVERAGED NORMALIZED DISTANCES BETWEEN CLEAN
AND CORRUPTED SPEECH FEATURES UNDER DIFFERENT
SNR VALUES FOR HEQ AND HQ (1-D)

SNR 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB
HEQ 0.7876 | 0.8695 | 0.9516 | 1.0384 | 1.1314 | 1.2276
HQ (1-dim) | 0.7172 | 0.7870 | 0.8588 | 0.9362 | 1.0204 | 1.1087

We further compared HEQ with HQ (one-dimensional)
tested here using a different metric, the averaged normalized
distance between the corrupted feature parameters z; and the
corresponding clean speech feature parameters x;

1 &
d=—— Ty — Ty, 19
0Ty ; |$t $t|, (19)

where the average in (19) is performed over all feature param-
eters in all the testing speech in sets A, B, C, T}y is the total
number of frames, and o is the standard deviation for all the
clean feature parameters z;. Both Z; and z; have been pro-
cessed by either HEQ or HQ, so the difference (z; —x;) indicates
how the mismatch caused by noise disturbance is reduced by ei-
ther HEQ or HQ for each individual feature parameter. Smaller
values of d imply that the features are less influenced by dis-
turbances, although d is not necessary directly related to recog-
nition accuracy. The results are listed in Table III for different
SNR values. We find in the table that the values of d consistently
increase as the SNR value degrades, which makes very good
sense, and HQ clearly gives smaller values of d in all cases. This
may explain from a different perspective why HQ performed
better than HEQ.

B. HQ as a Feature Quantization Method

The next set of experiments considered HQ as a feature
quantization method in a DSR framework. However, here we
first examined the effect of quantization and compression on
recognition accuracy, so we assume that the environmental
noise was present with the input speech, but there were no
transmission errors. For comparison, recognition accuracies
for MFCC features with quantization and compression using
the standard SVQ [4], the well-known transform coding [5],
[7] (i.e., performing quantization in the transformed domain)
followed by SVQ (TC-SVQ), the cascade of the HEQ front-end
with SVQ (HEQ-SVQ), and the proposed HQ (actually two-di-
mensional HVQ) for bit rates 4.4, 3.9, 3.3, and 2.7 kb/s are
listed, respectively, in Table IV for clean-condition training, av-
eraged over all ten types of noise and all SNR values in sets A,
B, and C. The recognition accuracies for baseline experiments
with original MFCC features without quantization is 61.08%.
Because all these results are averages over all SNR values from
20 down to 0 dB, the numbers here are not very high. Note that
the performance of HQ was consistently and significantly better
than SVQ, TC-SVQ, and HEQ-SVQ under all transmission bit
rates. For example, at bit rate of 2.7 kb/s, the overall accuracy
of HQ (82.08%) represented relative error rate reductions of
26.93%, 62.62%, and 64.57%, respectively, as compared to
those with HEQ-SVQ (75.47%), TC-SVQ (52.06%), and SVQ
(49.43%). It is even significantly higher (with an error rate
reduction of 53.96%) than the original unquantized MFCC

TABLE 1V
RECOGNITION ACCURACIES FOR FEATURE QUANTIZATION AND COMPRESSION
‘WITH CLEAN-CONDITION TRAINING, AVERAGED OVER ALL SNR VALUES AND
NOISE TYPES IN SETS A, B, AND C FOR DIFFERENT BIT RATES (4.4 TO 2.7 kb/s)

Bit rates (kb/s) 44 1 39 [ 33 [ 27
unquantized MFCC 61.08
SVQ 56.51 | 55.74 | 51.13 | 49.43
TC-SVQ 6341 | 62.53 | 60.33 | 52.06
HEQ-SVQ 79.79 | 78.89 | 7835 | 75.47
HQ 81.87 | 81.95 | 81.74 | 82.08

(61.08%). This was clearly due to the robust nature of HQ,
as discussed previously. Note that the original uncompressed
MFCC degraded seriously under noisy conditions, but HQ
held up quite well. Also note that the performance of SVQ,
TC-SVQ, and HEQ-SVQ all degraded significantly under
lower bit rates, while the performance of HQ remained very
stable for different bit rates, or the performance of HQ is
actually relatively insensitive to the quantization resolution
N in (1). These results indicate that, with the conventional
distance-based quantization (SVQ), even with the more robust
feature transformation front-end (TC or HEQ), the quantization
distortion and environmental noise still jointly degraded the
performance seriously. The HQ approaches, however, were
able to reconstruct the feature parameters based on the order
statistics or histogram, which automatically absorbed many of
the disturbances, therefore offering a much better recognition
accuracy.

The results in Table IV are averaged over all SNR values
and all noise types in sets A, B, and C. Further, we see in
Fig. 5(al)—(a4) the detailed accuracies obtained in exactly the
same experiments, but separated for different noise types and
averaged over all SNR values for different bit rates (4.4, 3.9, 3.3,
and 2.7 kb/s), respectively. From Fig. 5(al)—(a4), we can find
that HQ (the last bar in each set) consistently performed much
better than the other approaches compared in Table IV (the
first four bars in each set). HQ can even handle nonstationary
disturbances as well to a good degree, clearly because it is
based on the dynamic histogram of the most recent past values.
For example, in the case of 3.3 kb/s in Fig. 5(a3), HQ is actually
significantly better than HEQ-SVQ (78.82% versus 73.69%,
79.40% versus 73.77%, 83.80% versus 79.37%, and 83.12%
versus 77.82% for babble, restaurant, airport, and train-station
noise cases, respectively), and the corresponding numbers for
MEFCC, SVQ, and TC-SVQ approaches were much lower.

C. Further Analysis of Bit Rates Versus SNRs for HQ as a
Feature Quantization Method

To see how quantization distortion (or bit rate) mixed with
the environmental noise (SNR) in the input speech jointly
influences the recognition performance of a DSR system (as-
suming no transmission errors), the respective accuracies for
the same experiments mentioned in Section VI-B and listed
in Table IV are further analyzed, respectively, for different
bit rates and different SNRs as shown in Fig. 5(b1)—(b6) for
clean to 0-dB SNR. For clean speech, SVQ performed the best
(although slightly lower than unquantized MFCC) under higher
bit rates (4.4, 3.9, and 3.3 kb/s), while for other approaches
(TC-SVQ, HEQ-SVQ, and HQ) feature transformation more or
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Fig. 5. Recognition accuracies for feature quantization and compression with
clean-condition training. (al)-(a4) Averaged over all SNR values but separated
for different types of noise at bit rates of 4.4 to 2.7 kb/s. (b1)-(b6) Averaged over
all types of noise but separated for different bit rates (4.4 to 2.7 kb/s) at different
SNR values.

less changed the speech characteristics, and therefore inevitably
slightly degraded the performance for clean speech. At a lower
bit rate such as 2.7 kb/s, however, HQ offered better perfor-
mance than other approaches. This is probably because SVQ is
more sensitive to quantization distortion, so the performance
of SVQ, TC-SVQ, and HEQ-SVQ all degraded for lower bit
rates. On the other hand, the dynamic nature of HQ makes it
relatively insensitive to the quantization resolution (or bit rates),
as can be verified in the clean speech case in Fig. 5(b1). Under
noisy environments (SNR from 20 dB all the way down to
0 dB), HQ consistently performed better than other approaches
for all SNR values and all bit rates. Under very poor SNR
conditions, the noisy disturbances were very serious, but still
well absorbed by the HQ histogram. For example, in the case

of 5-dB SNR and 2.7 kb/s bit rate, HQ offered an accuracy of
77.61% compared to 22.30% for SVQ, 28.31% for TC-SVQ,
and 69.07% for HEQ-SVQ. HQ offered an accuracy of higher
than 50% (55.27%) even at 0-dB SNR and the low bit rate of
2.7 kb/s. These results indicate that for SVQ the mismatched
codebooks significantly increase the quantization distortion,
especially under poorer SNR conditions. The performance of
HQ, however, remains relatively high and even very stable
for different bit rates for SNR degrading from 20 to 0 dB.
This verified that HQ is very robust against both quantization
distortion and environmental noise.

D. HQ-Based Robust Speech Recognition System With Joint
Uncertainty Decoding (JUD)

Here, we consider a complete HQ-based robust speech recog-
nition system under noisy conditions, outside of the DSR or
client-server framework. The input speech features were first
transformed by HQ just as was presented in Section VI-A. In ad-
dition, in this section JUD as discussed in Sections III-A-III-C
was further applied at the decoder, including the histogram shift
plus the uncertainty estimated for the environmental noise and
quantization errors.

The results are plotted in Fig. 6. Note that in Fig. 6(b) the
plots for 5- and 0-dB SNR are shown in different scales so as
to make the differences easier to observe. The four bars in each
set in Fig. 6(a)—(c) are, respectively, for the accuracies obtained
with the proposed HQ feature transformation alone (one-dimen-
sional with bit rate (resolution) 3.9 kb/s, exactly the same as the
last bar in Fig. 4 presented in Section VI-A), HQ plus histogram
shift (HQ-s, Section III-C), HQ with histogram shift plus un-
certainty for environmental noise (HQ-s,n, Sections III-C and
[1-B2), and HQ with complete JUD including histogram shift
and uncertainty for environmental noise and quantization er-
rors (HQ-s,n,q, Sections III-C and III-B). It can be found in
Fig. 6(a)—(c) that with the various JUD approaches proposed in
Sections III-B and III-C performed at the decoder, accuracies
can be consistently improved step-by-step in all cases. There
was almost no performance degradation for clean speech, and
slight improvements at high SNR conditions [Fig. 6(b)]: this
implies uncertainty decoding for HQ is able to preserve the
discrimination among HMMs. In other words, it is clear that
the quantization process produces quantization errors, but with
proper design of the quantizer and the uncertainty decoding,
quantization errors and environmental disturbances can in fact
be well absorbed and compensated for to a good extent. Accu-
racies for the first and the last bars in Fig. 6(c) (HQ alone and
HQ-s,n,q with complete JUD) are also compared in Table V. It
can be found that significant error rate reduction was actually
achieved in all three testing sets.

E. HQ-Based Distributed Speech Recognition (DSR) System

Here, we finally consider a complete DSR system based on
the proposed HQ approaches. HQ was first applied at the client
end to quantize and compress the input speech features. The
quantized codewords were then transmitted via wireless net-
works to the server. JUD discussed in Section III was then ap-
plied at the server to improve accuracies. There were inevitable
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Fig. 6. Performance improvements obtained by the various JUD approaches
as compared to HQ alone: (a) averaged over all SNR values but separated for
different noise types in sets A, B, and C. (b) Averaged over all noise types but
separated for each SNR value. (c) Averaged over all SNR values and noise types
but separated into sets A, B, and C.

TABLE V
ACCURACIES AND ERROR RATE REDUCTIONS FOR HQ ALONE
(ONE-DIMENSIONAL, 3.9 kb/s) AND HQ-s,n,q (WITH COMPLETE JUD)
FOR DIFFERENT TESTING SETS IN FIG. 6(c)

Accuracy Set A | Set B | Set C | Overall

HQ (one-dimensional) 80.85 82.17 81.86 81.58
HQ-s,n,q (Complete JUD) 82.40 | 83.81 83.11 83.67
Relative error reduction (%) 8.09 9.14 6.89 8.27

transmission errors introduced by the wireless channels, and the
three-stage EC discussed in Section IV was finally applied.

1) HQ-JUD Compared With Conventional Approaches As-
sociated With SVQ, But Without Transmission Errors: Before
considering transmission errors, the first issue to be investigated
here is feature quantization and compression. Conventionally,
in DSR this is done using SVQ [4]. If noise can be properly
handled to a good degree by cascading an HEQ process at the
front, we can also compensate for quantization errors caused
by SVQ using some conventional approaches associated with
SVQ, for example the well-known extended cluster informa-
tion vector quantization (ECIVQ) [3]. Therefore, we need to
compare the proposed HQ followed by JUD with such conven-
tional approaches associated with SVQ first. The results are in
Fig. 7(a)—(c). The six bars in each set in Fig. 7 are, respectively,
for SVQ alone, ECIVQ alone, the cascade of HEQ front-end and
SVQ (HEQ-SVQ), the cascade of HEQ front-end and ECIVQ
(HEQ-ECIVQ), HQ (two-dimensional), and the same HQ with
complete JUD including histogram shift (HQ-s,n,q), all with bit
rates 4.4 kb/s. The first, third, and fifth bars in Fig. 7 are the same
as the second, fourth, and fifth bars of the first 4.4-kb/s group in
Fig. 5.

We can find from Fig. 7 that ECIVQ (second bar) performed
better than SVQ (first bar) for sets A and B, but slightly worse
for set C, and the same trend can be observed when HEQ is
performed as a front-end of SVQ (HEQ-SVQ, third bar versus
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Fig. 7. Comparison of different approaches discussed in this paper for DSR.
(a) Averaged over all SNR values but separated for different noise types in sets
A, B, and C. (b) Averaged over all noise types but separated for different SNR
values. (c¢) Averaged over all SNR values and noise types but separated for sets
A, B, and C.

TABLE VI
ACCURACIES AND ERROR RATE REDUCTIONS FOR HEQ-ECIVQ AND HQ-s,n,q
(WITH COMPLETE JUD) AT 4.4 kb/s FOR DIFFERENT SNR VALUES IN FIG. 7(b)

SNR Clean [20dB [15dB |[10dB | 5dB | 0 dB
HEQ-ECIVQ 98.19 | 95.25 [ 92.65 | 86.01 | 75.96 | 53.28
HQ-s,n,q(Complete JUD) | 98.50 | 96.38 | 93.99 | 89.04 | 78.34 | 57.01
Relative error reduction(%) | 17.13 | 23.79 | 18.23 | 21.66 | 9.90 | 7.98

HEQ-ECIVQ, fourth bar). This is probably because ECIVQ
considers quantization errors only, but the channel mismatch
for set C might move the feature vectors to different partition
cells, for which the cluster variance used in ECIVQ was not able
to help. HEQ offered very significant improvements when cas-
caded with SVQ or ECIVQ (HEQ-SVQ or HEQ-ECIVQ, third
or fourth bar), but the HQ (fifth bar) proposed here consistently
provided better performance in almost all cases, and the com-
plete JUD proposed here including histogram shift (HQ-s,n,q,
sixth bar) offered additional improvements consistently in al-
most all cases. The accuracies for HEQ cascaded with ECIVQ
(HEQ-ECIVQ, fourth bar) and HQ with JUD (HQ-s,n,q, the last
bar) are further compared in Table VI. The relative error rate re-
ductions shown in the last row are significant and consistent for
all SNR values, including the clean and 20-dB cases.

The above experimental results in Fig. 7 and Table VI are for
a 4.4-kb/s bit rate. Further analysis was then performed for sev-
eral better approaches found above with respect to different bit
rates (4.4, 3.9, 3.3, and 2.7 kb/s) at all different SNR values.
The results are shown in Fig. 8(a)—(f) for different SNR from
clean to 0 dB, each with different bit rates. The four bars in
each set in Fig. 8 are, respectively, for ECIVQ considering quan-
tization error uncertainty for SVQ, the cascade of transform
coding (TC) and ECIVQ (TC-ECIVQ), the cascade of HEQ
and ECIVQ (HEQ-ECIVQ), and HQ with complete JUD in-
cluding histogram shift (HQ-s,n,q). Here, except for the clean
speech case at higher bit rates, HQ-s,n,q consistently performed
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Fig. 8. Comparison of different approaches discussed in this paper for DSR
(but without transmission errors) under different bit rates and SNR values.
(a) Clean. (b) 20 dB. (c) 15 dB. (d) 10 dB. (e) 5 dB. (f) 0 dB.
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Fig. 9. Comparison of SVQ, HEQ-SVQ, and HQ, and those with GPRS trans-
mission errors (SVQg, HEQ-SVQg, HQg), averaged over all types of noise, but
separated for each SNR value.

better for all SNR values and all bit rates than other combi-
nations of the front-end feature transformation (TC or HEQ)
or back-end compensation considering quantization uncertainty
(ECIVQ). Also, the performance of ECIVQ, TC-ECIVQ, and
HEQ-ECIVQ are all more sensitive to lower bit rates, while
HQ-s,n,q is relatively insensitive to different bit rates at all SNR
conditions.

2) HQ-Based DSR Over Wireless Channels With Transmis-
sion Errors, But Without EC: We first compared the robust-
ness of SVQ and HQ against environmental noise at the client
end plus the transmission errors at a client traveling speed of
3 km/h, assuming no EC approach was used. Fig. 9 is the av-
eraged results over all different types of noise but separated for
different SNR values. The first three bars are the results for the
standard SVQ, SVQ followed by HEQ front-end (HEQ-SVQ),
and HQ (two-dimensional), all at 4.4 kb/s and without trans-
mission errors, exactly the same as the first, third, and fifth bars
in Fig. 7(b), and the next three bars are those suffering from
GPRS transmission errors (SVQg, HEQ-SVQg, HQg: the label
“g” indicates GPRS). For SVQ, the performance degradation
caused by GPRS (first bar compared to fourth bar) is larger when
SNR is lower, even with HEQ (second bar compared to fifth bar,
e.g., 98.07% to 87.78% for clean speech, 91.97% to 76.74% for
15-dB SNR, and 85.86% to 68.73% for 10-dB SNR). Clearly,
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Fig. 10. Comparison of SVQg, TC-SVQg, HEQ-SVQg, and HQg (all with
GPRS transmission errors), for different bit rates and SNR values. (a) Clean.
(b) 20 dB. (c) 15 dB. (d) 10 dB. (e) 5 dB. (f) 0 dB.

features corrupted by noise are more susceptible to transmis-
sion errors. The improvements that HQ offered over HEQ-SVQ
when transmission errors were present (sixth bar to fifth bar) are
consistent and significant at all SNR values. For example, in the
case of 10-dB SNR with GPRS, HQ (sixth bar) offered an ac-
curacy of 78.69% while the number was 69.84% for HEQ-SVQ
(fifth bar). This verified that HQ is robust against both environ-
mental noise and transmission errors.

The above results in Fig. 9 are for a 4.4 kb/s bit rate. Fur-
ther analysis was then performed for several better approaches
found above with respect to different bit rates (4.4, 3.9, 3.3, and
2.7 kb/s) for all SNR values (from clean to O dB) as shown
in Fig. 10(a)—(f). The four bars in each set in Fig. 10 are, re-
spectively, for SVQg, transform coding followed by SVQ (TC-
SVQg), the cascade of HEQ and SVQ (HEQ-SVQg), and HQg,
all with GPRS transmission errors. Here, HQ consistently per-
formed better than different versions of SVQ enhanced by some
feature transformation approaches (TC or HEQ) for all SNR
values and all bit rates. With SVQ, features with environmental
noise and quantization distortion are more sensitive to lower
bit rates when transmission errors are present. For example, in
the case of 5-dB SNR, the performance of HEQ-SVQ degraded
from 56.66% at 4.4 kb/s to 51.88% at 2.7 kb/s. On the other
hand, the performance of HQ is very stable for different bit rates
in all cases of SNR, even with the presence of transmission er-
rors. This verified that HQ is robust against not only quantiza-
tion distortion and environmental noise, but transmission errors
as well.

3) HQ-Based DSR Over Wireless Channels With EC: The
next set of experiments tried to examine the effectiveness
of the three-stage EC techniques for HQ proposed here in
Section IV. Fig. 11 shows the results with GPRS transmission
errors at a speed of 3 km/h, without and with the different
EC approaches. The five bars in each set are, respectively, for
SVQg, HEQ-SVQg, HEQ-SVQ with GPRS and with repetition
(HEQ-SVQgr: the label “r” indicates the ETSI-recommended
error mitigation strategy by repetition), HQg, and HQ with
GPRS and the three-stage EC techniques propose here (HQgc:
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Fig. 11. Comparison of SVQ under GPRS (SVQg), HEQ-SVQ under GPRS
without and with repetition (HEQ-SVQg and HEQ-SVQgr), HQ under GPRS
without and with EC techniques (HQg and HQgc). (a) Averaged over all SNR
values, but separated for different noise types in sets A, B, and C. (b) Averaged
over all types of noise, but separated for each SNR value. (c) Averaged over all
SNR values and noise types but separated for sets A, B, C.

the label “c” indicates three stage EC), all at bit rate of 4.4 kb/s.
Fig. 11(a) are those averaged over all SNR values but separated
for different noise types in sets A, B, and C, (b) are those
averaged over all types of noise but separated for different
SNR values, and (c) are those averaged over all types of noise
and all SNR values but separated for sets A, B, and C. It can
be found that the ETSI repetition technique actually degraded
the performance of HEQ-SVQg (third bar versus second bar),
probably because the whole feature vectors including the
correct subvectors are replaced by estimations that are very
possibly inaccurate. Under GPRS, HQg without any EC tech-
niques (fourth bar) actually outperformed the first three bars
for all cases. Applying the proposed three-stage EC techniques
(HQgc, fifth bar) then further improved the performance sig-
nificantly for all cases. This verified that the three-stage EC
framework is robust against not only transmission errors, but
against environmental noise as well.

The above results in Fig. 11 are for a 4.4 kb/s bit rate. Fur-
ther analysis was then performed with respect to different bit
rates (4.4, 3.9, 3.3, and 2.7 kb/s) for all SNR values as shown in
Fig. 12(a)—(f). The four bars in each set in Fig. 12 are, respec-
tively, for SVQ with GPRS errors and with repetition (SVQgr:
the label “r” indicates the ETSI-recommended error mitigation
strategy by repetition), TC-SVQ with GPRS errors and with rep-
etition (TC-SVQgr), HEQ-SVQ with GPRS errors and with rep-
etition (HEQ-SVQgr), and HQ with GPRS and the three-stage
EC techniques propose here (HQgc). Here HQgc consistently
performed better than all other approaches for all SNR values
and all bit rates. For example, in the case of 10-dB SNR and
a 3.3 kb/s bit rate, HQgc offered an accuracy of 81.57% com-
pared to 38.92% for SVQgr, 53.34% for TC-SVQgr and 64.97%
for HEQ-SVQgr. HQgc offered an accuracy of higher than 65%
(67.42%) even at 5-dB SNR and the low bit rate of 2.7 kb/s.
These indicate that HQ with the three-stage EC is robust against
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Fig. 12. Comparison of SVQgr, TC-SVQgr, HEQ-SVQgr (all under GPRS
with repetition), and HQgc (under GPRS with error concealment) for different
bit rates and SNR values. (a) Clean. (b) 20 dB. (¢) 15 dB. (d) 10 dB. (e) 5 dB.
(f) 0 dB.

both environmental noise and transmission errors, and is insen-
sitive to different bit rates.

The above results in Figs. 11 and 12 are for a client traveling
at a speed of 3 km/h. We then consider other different client
traveling speeds at 4.4 kb/s in Fig. 13. Here, the four cases
shown in each figure are for HEQ-SVQ under GPRS, without
and with ETSI repetition (HEQ-SVQg and HEQ-SVQgr), and
HQ under GPRS, without and with the three-stage EC (HQg
and HQgc), at traveling speeds of 3, 50, 100, and 250 km/h.
Only two typical types of input speech noise, car for stationary
and babble for nonstationary were taken as examples, since
for some noise types such as exhibition or restaurant a client
traveling speed above 3 km/h does not make sense. The results
for two typical values of SNR, 15 dB and 5 dB plus those results
averaged over all SNR values for car/babble noise are shown in
Fig. 13(al)/(a2)—(c1)/(c2), respectively. The superiority of HQ
with EC (HQgc) is obvious as verified by the highest curves in
all cases. As an example, for 15-dB car noise at 100 km/h as
shown in Fig. 13(al), the performance of HEQ-SVQ degraded
seriously (78.74%), applying ETSI repetition on HEQ-SVQ did
not help (72.89%), and HQ is much better (86.04%) while the
three-stage EC offered very good improvements (92.80%). As
another example, for 5-dB car noise as shown in Fig. 13(b1),
the performance of HEQ-SVQ degraded seriously at high
traveling speeds (e.g., 59.20% at 100 km/h); here, HQ was
much better (e.g., 66.24% at 100 km/h), and the three-stage EC
further improved the performance significantly (e.g., 78.29%
at 100 km/h). On the other hand, as one more example in
Fig. 13(al) the HEQ-SVQ features with noise disturbances
were more susceptible to higher transmission errors due to
higher client traveling speeds (81.82% at 3 km/h and 78.74%
at 100 km/h), while HQ features were more robust in this case
(87.33% at 3 km/h and 86.04% at 100 km/h). This is why the
curves for HQg are quite flat in almost all the six figures in
Fig. 13, while those for HEQ-SVQg and HEQ-SVQgr decline
faster as the client traveling speed increases. The curves for
HQgc are also quite flat for car noise (Fig. 13(al)—(cl)), but
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Fig. 13. Comparison of HEQ-SVQ under GPRS without and with repetition,
HQ under GPRS without and with EC, at traveling speeds of 3, 50, 100, and
250 km/h. (al)/(a2) for car/babble noise at 15-dB SNR. (b1)/(b2) for car/babble
noise at 5-dB SNR. (c1)/(c2) for car/babble noise averaged over all SNR values.

less flat for babble noise [Fig. 13(a2)—(c2)]; the nonstationary
nature of the babble noise is probably more difficult to handle
with EC techniques.

VII. CONCLUSION

HQ is proposed in this paper, a novel approach for robust
and/or DSR. HQ has been shown to be robust for all types of
noise and all SNR conditions for either conventional speech
recognitions systems, or DSR at all bit rates. The HQ config-
uration has been shown to be easily scalable based on band-
width or noise conditions. For future personalized and context-
aware DSR environments, HQ can be adapted to network and
terminal capabilities, with recognition performance optimized
based on environmental conditions. HQ can also provide more
robust recognition features for many possible applications in the
future.
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