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中文摘要 

預測分子或材料的性質，一直是在科學研究上很被重視的課題，舉凡特用化學品的開發或者

新藥的設計都與這個主題有關。理論上可以透過量子化學或者統計熱力學，來得到分子的性

質，但因為多電子系統的薛丁格方程式並沒有解析解，要用近似的方法會消耗很多計算資源

以及時間。因此所謂的定量結構與性質關係(QSPR)的模型就被提出，我們透過特徵工程將分

子的結構轉換成描述子或者特徵，再透過數學上的方法將特徵與性質間的關係建立起來。隨

著機器學習的發展，有越來越多用不同的機器學習技術，例如支援向量機或者隨機森林，來

連結特徵與性質關係間的模型被提出。 

本論文建立在這樣的基礎上，受到語言翻譯的啟發，提出了另外一種預測分子性質的途徑。

語言翻譯時，會建立一個語意空間(semantic space)，不同的語言可以藉由這個空間轉換。因此

我們也相信存在有一個高維度的空間，它蘊含了用來描述分子最重要的資訊，從這個空間可

以得到所有分子的性質。本論文利用 SMILES 以及 σ-profile 兩種不同的分子描述方法

(molecular representation)作為類神經網路的輸入，我們驗證利用類神經網路將分子描述法投射

到這個空間，再從這個空間來預測分子的性質是可行的。此外我們也驗證了進行機器學習時，

訓練集和測試集內資料的分布的選擇的重要。以及遇到過擬合(overfitting)的問題時，可以透

過集成方法(ensemble method)來解決。我們也發現不同的分子表示法，會影響到模型的表現。

SMILES 的表現會比 σ-profile 來的好，因為 σ-profile 是從 SMILES 經過初步的量子化學計算

得到的，這個過程就像是建立在人類智慧上的特徵工程，而透過類神經網路投影到高維度空

間的過程則是建立在人工智慧上的特徵工程。 

在進行語言翻譯時，我們可以透過類神經網路將不同語言中對應到的字投影到語意空間。我

們相信每種分子表示法或者性質，都可以理解成是分子的語言，因此我們的最終目標是同時

透過多種分子表示法以及性質，來找到假設中的高維空間，如此一來，所有的分子性質都可

以藉由這個空間來做到雙向的轉換。 
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Abstract 

Predicting molecules/material properties is always important when designing new drugs or 

developing novel material. Traditionally, we can acquire the properties from quantum mechanics or 

statistical thermodynamics. However, this process is time-consuming and resources-consuming. 

Therefore, the quantitative structure property relationship (QSPR) is proposed. This method converts 

structure into descriptors or features by feature engineering. Then map the relationship between 

features and property by the mathematical model or machine learning technique. 

This paper builds on this basis, we verify that using neural networks to extract latent features from 

different molecular representations and predicting properties from these latent features is feasible. 

Besides, we find that if the distribution of molecular size in the training and test set has a large 

difference, the model only performs well in the training set and cannot generalized to the test set. The 

so-called overfitting situation happened, and an ensemble method is a powerful way to deal with this 

problem. Moreover, we compare the performance of two models based on different representations 

respectively. The results show that σ-profile is more physically meaningful than SMILES. This is 

because σ-profile is the result of feature engineering by human intelligence of SMILES. 

Most importantly, we inspired by natural language translation. The process of language translation 

projects different words into semantic space then transforms between different languages. We believe 

any kind of property or representation can be viewed as a molecular language and there exists a 

hypothetical space contains all the necessary information about the molecules. All the properties of 

molecules can be derived from this space. We have verified that it is feasible to find this space from 

SMILES and σ-profile by neural network respectively. Therefore, our ultimate goal is to find this 

hypothetical space from multiple molecular representations and properties simultaneously. Then, we 

can bidirectionally transform between different properties and representations. 

 

 

 

Keywords: Machine Learning, Natural Language Processing, Auto-encoder, Artificial Neural 

Network, Feature Engineering, Molecular Representations, Molecular Properties 
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1. Introduction 

Nowadays, there are more and more efforts dedicated to developing specialty chemicals, novel 

materials, and innovative drugs. When dealing with the abovementioned tasks, it is necessary to 

acquire molecular properties from its structure. 

From Figure1(a)., traditionally, we can use methods of quantum chemistry and statistical mechanics 

to obtain desired quantum or thermodynamic properties. However, the difficulty is that Schrödinger's 

equation for the multi-electronic system has no analytical solution and the approximation method will 

consume considerable computing resources and time. Additionally, it is annoying and inefficient to 

repeat calculation whenever we encounter new molecules.  

According to the above discussion, the most ideal method to acquire molecular properties is to derive 

a model based on existing data, then using it to predict the properties of new molecules. To achieve 

the above goal, we want to get help from the thriving of artificial intelligence and machine learning. 

We take advantage of neural networks to build a mathematical model based on sample molecules 

along with known properties, in order to predict new molecules. From Figure1(b)., the so-called 

chemoinformatics model is the study of this kind of approach1-7. The model consists of two parts. 

First, a molecular structure is converted into a vector of features, which also known as the descriptors. 

This process is called feature engineering. Next, we map the feature vector to the interested properties. 

The mapping process finds the underlying function and pattern which generally based on machine 

learning techniques. The most efforts of this approach put on finding different combinations of 

features vector and machine learning techniques. For example, Wu, Zhenqin et al. (2018) compared 

the performance of many different featurization methods, such as extended circular fingerprints 

(ECFP)8, coulomb matrix, and graph convolution with different machine learning technique, such as 

random forest and neural network on the same database9. Jeon, Woosung et al. (2019) proposed a 

new featurization method based on neural networks to enhance the performance of the 

chemoinformatics model10.  

In this paper, we inspired by the concept of language translation11 and propose another approach 

rather than focusing on extracting features then mapping it to properties. During language translation, 

each word will project to a high dimensional space called semantic space. Each corresponding word 

in different languages will project to the same point in this space. So, we assume there exists a 

hypothetical space that contains all the necessary information of the molecule, for instance, the wave 

function in quantum mechanics and the partition function in statistical mechanics. Besides, we think 

different molecular properties can be viewed as different languages of molecules. Therefore, we 

believe that all the properties of a molecule/material can be properly derived from this hypothetical 
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space. Form Figure 1(c)., our ultimate goal is to find that space using multiple molecular/material 

properties simultaneously by the neural network. Just like finding the semantic space of each word 

from different languages. 

 

 

Figure 1. Different approaches to acquire molecular properties. (a)traditional methods (b) 

chemoinformatics models (c)neural network inspired by natural language translation 

 

Our approach is more efficient than traditional quantum mechanics methods, because we can directly 

use the model when we encounter new molecules rather than consume lots of resources and time. 

Besides, we can bidirectionally transform between different molecular properties and representations 

from the hypothetical space. While most chemoinformatics model only map the unidirectional 

relationship between structure and property. 
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2. Theory 

2.1 Machine Learning 

Machine learning12-13 is a way to achieve artificial intelligence. It is the study of algorithm and 

statistical model that computer systems use to perform a specific task relying on patterns and 

inference rather than explicitly instructing and programming. As for deep learning14-15, it is a branch 

of machine learning. It using deep neural networks to achieve the goal of machine learning. When 

doing conventional machine learning techniques, most efforts are put on feature engineering. From 

Figure 2(a)., it means extracting important features from original data that need domain knowledge 

and rely on human intelligence. Then use traditional methods such as support vector machine 

(SVM)16 or random forest17 to learn the pattern. The goal and advantage of deep learning is to realize 

end-to-end learning. As shown in Figure 2(b)., it means the neural network performs feature 

engineering itself. We believe each layer can act as a transformer or classifier. After many deep layers, 

the machine can perform feature engineering itself and learn the underlying pattern from training data 

for classification or regression problems. 

 

 

Figure 2. The difference between (a) traditional machine learning and (b) deep learning. 

 

2.2 Procedure of Machine Learning 

The procedure to create a neural network model and train it by data can be simply divided into four 

steps. First, we need to collect data or find the source of data and split it properly. Next, we should 

determine the structure of the neural network. Such as the number of neurons and layers and the type 

of activation function. Then, we define the loss function which measures the error between the 

predicted value and the expected value. After that, we choose the optimizer which means the most 

suitable algorithm to optimize the model parameters to get the best performance. In the next part, we 
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will introduce these four steps in detail. 

 

2.2.1 Training, Validation, and Test Set 

After finding the source or collecting a group of data, we will split it into the training set, validation 

set, and test set. The training set is simply used to train a neural network, in other words, tuning the 

parameters of the model. The function of the test set is acting as new data which used to judge the 

performance of the trained model. Our ultimate goal is to develop a model that can generalize to new 

data. Excellent performance on the training set does not guarantee the equivalent performance on the 

test data. Therefore, there comes up with a concept called the validation set. The model sees the 

validation set but does not learn from it. It acts as pseudo-test data deciding which group of parameters 

is the most suitable. The process is called fine-tuning. That is, make the training set and validation 

set have the optimal performance simultaneously. Therefore, we can generalize this model to test data 

and expect good performance. 

 

2.2.2 Structure of the Neural Network 

A neural network is composed of the input layer, hidden layer, and output layer. Each layer consists 

of a group of nodes. Node, or neuron is the basic unit of the neural network. 

 

 

Figure 3. The architecture of the neural network. 

 

Each node will receive the previous output as its input and generate the output after proper 

transformation. As shown in Figure 4. and Equation (1), the output of a neuron is determined by the 

output of the previous layer, weight, bias, and the activation function. The output in the previous layer 

will be multiplied by so-called weights then add it together with bias. Next, transforming by an 
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activation function to get the output of this neuron.  

 

output=σ(∑ (wixi+b)n
i=1 ) (1) 

where 

w : weight 

x : input 

b : bias 

σ : activation function 

 

 

Figure 4. A basic unit (neuron) in the neural network. 

 

The basic idea of the activation function is to simulate the opening and closing of neural signals. With the 

development of different types of neural networks and algorithm, more different versions of activation 

functions are proposed. Figure 5. shows some of them. 

 

 

Figure 5. Different types of activation function. 
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The parameters of the neural network model are weights and bias. We will tune the parameters so 

that the model has the best performance. The word deep in deep learning means many layers are 

stacked together. The whole structure of neural networks can be viewed as a non-linear function. Data 

is read by the neural network from the input layer. Then, after transformed by a set of weights, bias, 

and activation function in the hidden layer, the result of regression or classification is expressed in 

the output layer. By tuning the value of weights and bias from the training data, this neural network 

not only maps the input to output, but also learn and reveal the underlying physical laws, or so-called 

patterns. 

 

2.2.3 Definition of the Loss Function 

The metric used to measure the difference between the expected value and predicted value from 

neural networks is called the loss function. There have lots of options and we can even define it by 

ourselves. Different loss function will be selected in different task. If an inappropriate loss function 

is used, it will result in an ineffective training process and lead to terrible performance. Give a few 

common examples, cross entropy and mean square error.  

The concept of cross entropy comes from information theory, it used to compare the similarity 

between two different probability distributions. So cross entropy is dominant when we treat a 

classification problem. Because the principle of classification is to predict the possibility of each 

possible outcome. The smaller the value of cross entropy, the similar the two probability distributions. 

For two identical probability distribution, the cross entropy of them is 0. 

 

H(p,q)= -∑ p(x) ln q(x)x∈X  (2) 

Where  

p  : actual probability distribution 

q  : predicted probability distribution 

x : each possible outcome in the probability distribution 

X : set of possible outcomes in the probability distribution 

 

When the task is about regression, the mean square error is very common and useful. The smaller the 

value of mean square error, the more accurate the model predicts. 
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MSE= 
1

N
∑ (y-ŷ)

2N
i=1  (3) 

Where 

y  : predicted value 

�̂� : expected value 

 

2.2.4 Optimizer: Gradient Descent and Backpropagation 

After defining the loss function, we need to minimize it by tuning the parameters of the model. 

Because the output of the neural network is obtained after a series of operations of weights and bias, 

the loss function will contain the above parameters. Here comes the concept called gradient descent, 

it iteratively moving in the direction of steepest descent as defined by the negative of the gradient, 

looking forward to finding the globe minimum. 

 

Wi+1= Wi-λ∇J(Wi) (4) 

Where 

Wi+1 : weight after update 

Wi  : weight before update 

∇J(Wi) : gradient of loss function when the parameter is Wi 

λ  : learning rate 

 

 

Figure 6. The schematic overview of gradient descent. 

 

Figure 6. shows the process to reach the global minimum. The learning rate determines the rate or 
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magnitude of updating parameters. If it is too low, the optimization process may stuck in the saddle 

point or local minimum. On the other hand, if the learning rate is too large, it may move back and 

forth between the global minimum. The most commonly used minimum algorithms are based on 

gradient descent, such as Adagrad18 and Adam. They all propose some correction term or modify the 

learning rate to improve the process of optimizing parameters. 

In the process of gradient descent, we need to calculate the partial derivative respective to each weight 

and bias. Because the neural network is so deep, we used the so-called backpropagation method to 

realize the complex process of chain rule from back to front.  

 

2.3 Overfitting and Solutions 

As mentioned above, it is easy to iterate too many times during the optimization process leading to 

over-optimize the parameters. It causes a complex model so that the model has very little error in the 

training set, but the performance is very poor when we want to generalize this model to the test set. 

This situation is called overfitting. On the other hand, if we don’t have enough iterations to optimize 

the parameters, the over-simplified model will not learn anything from the training data. It will have 

poor performance on both training data and test data. This situation is called underfitting. So, there is 

always a trade-off between optimization and generalization. Too much emphasis on optimization will 

lead to overfitting, while too much focus on generalization will cause underfitting. 

 

 

Figure 7. The schematic overview of underfitting and overfitting situation. 

 

There are some ways to deal with the overfitting problem. We can monitor the loss function of the 

training set and validation set during the training process. When the loss of the training set is 

decreasing while that of the validation set is increasing, it means that the trained model is too focus 

on the features and details of the training set. Overfitting has occurred. So, we stop the training process 

when both the training set and validation set have good performance simultaneously. This method is 

called the early-stopping. 
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Figure 8. Loss during the training process. 

 

Moreover, we know overfitting comes from an over-complex model and this kind of model has little 

bias but a large variance. So, we use averaging to reduce the variance of the model. To realize this 

concept during training process, we trained many different models based on the same data. Use these 

models to predict, then averaging the prediction of each model to get the final results. This technique 

is called an ensemble method19-20. 

 

 

Figure 9. The schematic overview of ensemble method. 

 

2.4 DNN and RNN  

We will slightly modify the architecture of the neural network for different tasks. Based on the deep 

neural network (DNN), we can further memory the present state and use it as one of the next inputs. 

So, we can not only process single data, but also a sequence of data. Then we have the so-called 

recurrent neural network (RNN)21-22. RNN is suitable for dealing with dynamic and sequential 

problems, such as speech reorganization. Because it is important for the continuous or sequential data 

to memory its previous state. The most commonly used RNN module is long short-term memory 
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(LSTM)23. A single unit of LSTM consists of input, output, and forget gates. The on/off of each gate 

is learned by the machine itself from the training data. By increasing the design of the gate, we can 

make the machine have memory. 

 

2.5 Auto-encoder 

The auto-encoder24 is a special type of neural network. It consists of encoder and decoder. The number 

of neurons in the encoder layers is decreasing while that in the decoder layers is increasing. We 

deliberately make the input and output of the auto-encoder the same. It means the input can convert 

back to the original representation after a series of transformations inside the hidden layer. So, we 

give the output of the middle layer or bottleneck layer a special name called latent features, which 

contain all the necessary and essential information about the original data. 

 

 

Figure 10. The architecture of the auto-encoder. 

 

This process can be viewed as a kind of dimension reduction. We discard redundant information and 

extract the essence through auto-encoder to get the so-called latent space which is more representative 

and informative. 

 

2.6 Molecular Representation 

Making computer and mathematical models understand the structure or the feature of molecules is an 

essential and crucial task. Furthermore, it’s often the key to the performance of the model. There are 

many ways to represent the type of atoms that forms a molecule and the connectivity between them 

on the computer. More broadly, the method of describing the electronic interaction of the molecular 

can also be called molecular representation. In this paper, we utilize two different molecular 
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representations and verify their performance. 

 

2.6.1 SMILES25 

One simple way is Simplified Molecular Input Line Entry Specification (SMILES) which is a 

specification in the form of a line notation. SMILES uses the English alphabet to express the type of 

atoms and other symbols to express the connectivity between them. For example, the SMILES 

representation of acetic acid is CC(=O)O. English letter C means the carbon atom, while character = 

means the double bond between carbon and oxygen. Besides, character () means the side chain. 

 

2.6.2 σ-profile 

A more advanced method is called σ-profile. This concept comes from the COSMO-based model. 

Conductor-like Screening Model (COSMO)26 is a calculation method for determining the 

electrostatic interaction of a molecule with a solvent. And σ-profile is the probability distribution of 

surface area having specific screening charge density σ (e/Å2). Because the generation of σ-profile 

needs preliminary quantum calculation based on the type of atoms and connectivity, it describes the 

electronic interaction of the molecular. Therefore, σ-profile can better represent the characteristics of 

the molecules theoretically. 

Following is an example of different molecular representation of the same molecule. 

 

 

Figure 11. Different representations of a same molecule. 
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3. Databases 

As mentioned early, we need sample molecules to train the neural network model and new molecules 

to test the performance of the model. Hence, we choose two molecular databases as our source of 

molecules, one is GDB-1127-28 and the other is Sigma database.  

GDB-11 is a database which collects small organic molecules up to 11 atoms of C, N, O, and F 

following simple chemical stability and synthetic feasibility rules. GDB-11 database is expressed in 

the form of SMILES. Other than that, Sigma database is build up by our lab which consists of 

molecules ranging from 2~31 heavy atoms (except for hydrogen). In addition to SMILES, the Sigma 

database also records the σ-profile of each molecule. 

Therefore, there are two type of molecular representations can be used to train the neural network as 

input. As for the output, we choose the n-octanol/water partition coefficient (logP) as interested 

property in this paper. It is the ratio of concentrations of such compounds in a mixture of two 

immiscible solvents at equilibrium. We utilizing RDKit, an open-source cheminformatics software to 

calculate the n-octanol/water partition coefficient as our expected output when training the model. 

Besides, as mentioned above, we split each database into different sets to train, validate, and test. In 

this paper, actually, we divide the database into the training set and test set, then using 30 percent of 

training data to validate the model and avoid overfitting. In the GDB-11 database, we deliberately 

make the distribution of molecular size different in the training set and test set. In detail, we only 

choose molecules that contain 8 heavy atoms as our training set, and molecules that contain 6~11 

heavy atoms as our test set. On the other hand, we make the distribution of molecular size in the 

training set and test set of the Sigma database roughly the same. The most frequently occurring 

molecular size is 7, and the percentage is 32.5% in both training set and test set. We want to verify 

whether the distribution of molecular size inside the training set and test set will affect the 

performance of the model. 

 

Table 1. Training set and test set of GDB-11 and Sigma databases 

Database GDB-11 Sigma 

# training data 50000 33734 

Description of training set 8 heavy atoms 2~31 heavy atoms 

# test data 600 1000 

Description of test set 6~11 heavy atoms 2~27 heavy atoms 

Details SMILES, logP SMILES, σ-profile, logP 
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4. Computational Details 

4.1 One-Hot Encoding and Vectorized SMILES 

When training the neural network, everything is represented by vector rather than alphabet or 

character. So, we borrow the concept of one-hot encoding which is often used in natural language 

processing to encrypt SMILES representation. We create a vector which element represents the 

alphabet or character that has appeared in the training data. The vector consists of 0 in all elements 

with the exception of a single 1 in an element used uniquely to identify the alphabet or character. 

From another perspective, this vector represents the probability distribution of each alphabet or 

character. After the transformation, a matrix which size is m×n is used to represent a molecule. Where 

m is the largest number of alphabet and character owned by a molecule in the training set and n is the 

total number of alphabet or character appeared in the training set. 

 

4.2 Vectorized σ-profile 

It is observed that the screening charge density for most molecules lies between -0.025 to 0.025 (e/Å 2). 

When we choose the interval as 0.001, we can use a vector which has 51 elements to represent a 

molecule. The value of each element is the molecular area under that specific screening charge density. 

This vector which has 51 elements will serve as our input to the neural network. 

 

4.3 Structure of the Model 

Our fundamental idea is to use auto-encoder to extract latent features from different molecular 

representations. In other words, project molecular representation into more informative latent space. 

Because we believe this latent space contains all the essential information about the molecule, we use 

these latent features to predict the molecular properties. Therefore, our structure of the model is made 

up of two parts. One is an auto-encoder to extract the essential features and the other is a neural 

network to predict logP form these latent features. We create two types of models using SMILES and 

σ-profile as input, and we call it SMILES_logP29 and σ_logP model respectively. The difference 

between the two models is the input representation, the architecture of the auto-encoder, and the 

selection of the loss function. 

Because SMILES representation expresses the sequential relationship and connectivity between 

atoms, so we choose RNN architecture which is suitable for handling sequential data as our auto-

encoder in the SMILES_logP model. As for σ-profile, we simply choose DNN architecture as our 

auto-encoder. 
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Figure 12. SMILES_logP and σ_logP model. 

 

When we encrypt SMILES into one-hot encoding then using auto-encoder to extract the latent feature, 

the value of each element in this vector actually represents the probability. So it is a classification 

problem and the loss function we chose is cross entropy. While the value of each element in the σ-

profile vector represents the real molecular area. Therefore, we choose the mean square error as our 

loss function. In addition, the part of predicting logP from latent features in both models is a 

regression problem. So again, mean square error is the most suitable loss function. Besides, the 

optimizer we chose in this paper is Adam, which is the most commonly used algorithm with the best 

performance. 
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5. Results and Discussions 

First, this paper uses SMILES_logP model on both GDB-11 and Sigma databases to verify the effect 

of molecular size distribution in the training and test set on the neural network. Besides, we use the 

ensemble method to solve overfitting problem. Furthermore, we also use SMILES_logP and σ_logP 

model on Sigma database to compare the performance of two different molecular representations. 

In the following table, Loss_1 means the average loss when the auto-encoder extracting the latent 

features, while Loss_2 means the average loss of the neural network predicting logP from latent 

feature during the training process. As mentioned above, we choose cross entropy for SMILES auto-

encoder but MSE for σ-profile autoencoder. As for the performance on test data, we select root mean 

square error (RMSE) and correlation coefficient R2 as our metrics. We expect the smaller the RMSE 

and the closer to 1 the R2. 

 

RMSE= √
1

N
∑ (y-ŷ)

2N
i=1  (5) 

 

R2=(
n ∑(yŷ)-(∑ y)(∑ ŷ)

√[n ∑(y2)-(∑y)2][n ∑(ŷ
2)-(∑ ŷ)2]

)
2

 (6) 

 

where 

y : predicted value 

�̂� : expected value 
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Table 2. Results of SMILES_logP model on GDB-11 database 

Database Model Loss_1 

(cross entropy) 

Loss_2 

(MSE) 

RMSE R2 

GDB-11 SMILES_logP 0.0018 0.1389 0.9461 0.4660 

 

 

Figure 13. SMILES_logP model results on test data of GDB-11 database. 

 

Table 3. Results of SMILES_logP model on GDB-11 database (ensemble) 

Database Model Loss_1 

(cross entropy) 

Loss_2 

(MSE) 

RMSE R2 

GDB-11 SMILES_logP Ensemble method 0.4076 0.8433 

 

 

Figure 14. SMILES_logP model results on test data of GDB-11 database (ensemble). 
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Table 4. Results of SMILES_logP model on Sigma database 

Database Model Loss_1 

(cross entropy) 

Loss_2 

(MSE) 

RMSE R2 

Sigma SMILES_logP 0.0340 0.3478 0.5741 0.7989 

 

 

Figure 15. SMILES_logP model results on test data of Sigma database 

 

Table 5. Results of σ_logP model on Sigma database 

Database Model Loss_1 

(MSE) 

Loss_2 

(MSE) 

RMSE R2 

Sigma σ_logP 3.4306 0.2709 0.5177 0.8362 

 

 

Figure 16. σ_logP model results on test data of Sigma database 
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5.1 Different Distribution of Molecular Size 

From Figure 13., we find that the trained model will have different performance when predicting 

molecules of different sizes. For molecules having 8 heavy atoms, the predicted value and expected 

value roughly lie on the diagonal. While molecules having 10 and 11 heavy atoms have large 

deviation. The reason why the trained model performs best when predicting molecules of 8 heavy 

atoms is the training set we choose. We deliberately let the training set only contain molecules of 8 

heavy atoms. So, we verify that machine really learns details and features only belong to molecules 

of such specific size. When we want to generalize the model to the molecules of different sizes, it 

falls. And the greater the difference in the size of molecules, the worse the performance. 

On the other hand, from Figure 15., we find the trained model performs roughly the same when 

predicting molecules of different sizes, except some special outliers. Because we make the 

distribution of molecular size in the training set broader and more diverse. Besides, we check the 

distribution of molecular size in the training set and test set is roughly the same. Therefore, the 

machine can learn more diverse and general features that belong to all size of molecules and we can 

get a more general model. 

 

5.2 Overfitting and the Ensemble Method 

When the trained model cannot generalize to molecules of different sizes, it means the overfitting 

situation happened. The machine learns specific and limited features rather than diverse and general 

features. Fortunately, we can use the ensemble method to deal with this problem. We train four 

different models with the same data. The predicted results between each model have a small bias but 

a large variance. Then we average the predicted values from each model as the final result. 

Theoretically, the averaging process can reduce the large variance and get better performance. From 

Figure 14., we find the ensemble method worked. We successfully solved the overfitting problem. 

 

5.3 Different Type of Molecular Representations 

We use two different types of auto-encoder on Sigma database. One uses SMILES as input and the 

other uses σ-profile as input. We want to verify which molecular representation can better express 

the molecules. Especially the electronic interaction, which determines most of the properties of a 

molecule. From Figure 15. and Figure 16., the results show that when we select σ-profile as our input, 

we can get better performance than SMILES. The reason is that σ-profile is obtained after preliminary 

quantum calculation. The electronic interaction of a molecule can be calculated form the type of 

atoms and connectivity between them after quantum calculation. SMILES only express the type of 
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atoms and connectivity between them, while σ-profile express the electronic interaction. Therefore, 

σ-profile can better represent a molecule than SMILES. From the perspective of machine learning, 

σ-profile is actually the results of SMILES after doing feature engineering by human intelligence. 

The process discard redundant information and obtain more representative expression. 
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6. Conclusion 

From above results, we come to a conclusion that the auto-encoder is a useful way to extract latent 

features from different molecular representations. Besides, using latent features to predict molecular 

properties is feasible. Furthermore, we believe the latent space contains all the necessary information 

about such molecule. Multiple properties can be bidirectionally transformed between each other. 

We also verify that the machine learns from what we give to it. Therefore, the split of database is 

important. The model does not work if the training set contains only the specific size of molecules. 

Before we actually utilize this model to predict the new molecules, we cannot confirm the size 

distribution of them. In most cases, it is assumed that this distribution is similar to the distribution of 

the test set. Therefore, we must make sure that the molecular size distribution in the training set is the 

same as test set. If the training set only contain specific molecules, the machine will learn limited 

features. As consequence, we cannot get general model, which means we have no way to predict 

molecules of different sizes. The trained model is useless.  

If it has too many iterations during the process of optimizing parameters to minimize the loss function, 

the model may over-focus on the specific details only belong to training data. It may lead to an over-

complex model and cause the over-fitting problem. In other words, we get a model that cannot be 

generalized in the trade-off between optimization and generalization. When this circumstance 

unfortunately happens, the ensemble method is a powerful method to deal with it. The reason why 

this method works is because overfitting is caused by an over-complex model. It has the 

characteristics of a low bias but a high variance. The process of averaging can reduce the variance 

and we expect to get better performance. 

Moreover, using σ-profile as a molecular representation will have better performance than SMILES. 

It is because σ-profile describes the electrostatic potential of the molecule by preliminary quantum 

calculation, while SMILES only express the type of atoms which made up the molecule and the 

connectivity between them. We know that most of properties of the molecule is determined by the 

electronic interaction of the molecule. Therefore, σ-profile is more physically meaningful and 

representative than SMILES. We know that feature engineering means discarding the redundant 

information then acquiring more representative expression. The process can be done by either human 

or artificial intelligence. Preliminary quantum calculation is feature engineering by human 

intelligence and the auto-encoder is feature engineering by artificial intelligence. The results show 

that if we do the feature engineering by human intelligence first, we can expect to get better 

performance. 
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7. Future Work 

The concern and criticism about machine learning lie in the so-called black box. We cannot clearly 

indicate what the machine has learned and why it makes such predictions. We believe we can solve 

this problem by further investigating the latent space. As mentioned above, this space contains and 

implies all the necessary and essential information about the molecules. We borrow the concept from 

natural language processing. When translating between different languages, there is a technique using 

RNN to project each word to a high dimensional space which we call it the semantic space. Each 

corresponding word in different language will project to the same point in this space. Therefore, we 

are inspired by language translation and propose so-called molecular translation. We believe there 

exists a high dimensional space that contains all the necessary information of the molecule, for 

instance, the wave function in quantum mechanics and the partition function in statistical mechanics. 

We believe that all the properties of a molecule/material can be properly derived from this space. We 

call this space the Schrödinger space. In this paper, we have used the auto-encoder to extract and 

project SMILES and σ-profile into Schrödinger space respectively. If we can prove that similar 

molecules will be in close positions in Schrödinger space no matter which representations or 

properties are used for auto-encoder to extract features, we can confirm that the machine really 

learned some underlying physical patterns and the assumption of Schrödinger space is feasible. 

Therefore, the criticism of black box can be explained.  Furthermore, we can even use multiple 

properties and representations simultaneously to acquire a more accurate Schrödinger space. 

Therefore, we can effectively and bidirectionally convert between multiple molecular properties. 

 

 

Figure 17. The concept of language and molecular translation. 
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