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Fish catch species provide essential information for marine resource management. Some international organizations demand fishing vessels to
report the species statistics of fish catch. Conventionally, the statistics are recorded manually by observers or fishermen. The accuracy of these
statistics is, however, questionable due to the possibility of underreporting or misreporting. This paper proposes to automatically identify the
species of common tuna and billfish using machine vision. The species include albacore (Thunnus alalunga), bigeye tuna (Thunnus obesus),
yellowfin tuna (Thunnus albacares), blue marlin (Makaira nigricans), Indo-pacific sailfish (Istiophorus platypterus), and swordfish (Xiphias gla-
dius). In this approach, the images of fish catch are acquired on the decks of fishing vessels. Deep convolutional neural network models are
then developed to identify the species from the images. The proposed approach achieves an accuracy of at least 96.24%.
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Introduction
Fish is a major dietary protein source. In 2014, �81.5 million MT

of aquatic products were harvested from marine sources world-

wide (FAO, 2016). Because of the high demand and advancement

in fishing technology, fishing grounds in the world have been

tapped rapidly in the past two decades. The Food and Agriculture

Organization of the United Nations reported that 31.4% of the

fish stocks are overfished (FAO, 2016), showing that the manage-

ment of fishery resources is extremely urgent. Hence, interna-

tional organizations have begun regulating fishing practices by

demanding vessels to report fish catch statistics, such as fish spe-

cies (Hosch and Blaha, 2017). The statistics are usually manually

recorded by observers or fishermen, and thus, their accuracy is

questionable because they can be misreported or underreported.

Therefore, an automated approach for fish species identification

is required. Combined with electronic monitoring systems

(Monteagudo et al., 2015), the approach may be used to identify

species of fish catches in images or videos automatically. Thus,

the labor for reporting the fish catch statistics can be reduced and

the accuracy of the reports can be improved.

Image analysis approaches have been increasingly used to col-

lect fish species information. These approaches, in contrast to

conventional manual methods, have benefits of automation, effi-

ciency, truthfulness, and accuracy. Previous studies have

addressed the identification of sea fish types using image analysis.

Rodrigues et al. (2010) developed a nearest-neighbour classifier

for identifying fish of nine species using morphological and col-

our traits. Hu et al. (2012) developed a directed acyclic graph

multi-class support vector machine classifier for distinguishing

fish of six species using wavelet-based texture features as the

inputs. Li and Hong (2014) developed a method using image

processing and statistical analysis for recognizing fish of four spe-

cies with colour, shape, and textural traits. Navarro et al. (2016)

assessed 27 fish morphological traits and found three types of fish

to differ considerably from each other. Huang et al. (2015) com-

bined hierarchical tree with Gaussian mixture model to recognize

15 species of fish in underwater videos. Marini et al. (2018) esti-

mated the abundance of the fish using an autonomous imaging

device and genetic-programming-based classifier. Another proj-

ect, Fish4Knowledge (Fisher et al., 2016), developed tools for
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analysing the behaviours of fish in underwater videos using image

processing and machine learning approaches. Although presum-

ably accurate, these image analysis approaches typically use hand-

crafted features (i.e. features defined manually). Preprocessing

may be required if these methods are applied to images that are

collected at locations with a high degree of variability in illumina-

tion conditions or of complex backgrounds.

Images of fish acquired on the deck of vessels are usually under

uncontrolled conditions. Figure 1 shows fish images acquired on

longliners: (i) albacore (ALB, Thunnus alalunga), (ii) bigeye tuna

(BET, Thunnus obesus), (iii) yellowfin tuna (YFT, Thunnus alba-

cares), (iv) southern bluefin tuna (Thunnus maccoyii), (v) blue

shark (Prionace glauca), (vi) blue marlin (BUM, Makaira nigri-

cans), (vii) Indo-pacific sailfish (SFA, Istiophorus platypterus),

(viii) swordfish (SWO, Xiphias gladius), (ix) shortbill spearfish

(Tetrapturus angustirostris), and (x) moonfish. The decks where

the fish were located were full of miscellaneous items. Moreover,

the illumination condition varies unavoidably because fishing is

performed 24 h and weather is uncontrollable. Hence, it is chal-

lenging to use the aforementioned image analysis approaches for

identifying the fish species from the images.

Recently, deep learning has emerged as a powerful tool for

addressing complicated image analysis problems. Convolutional

neural networks (CNNs; Fukushima, 1980) are a deep learning

approach specifically used for image classification. CNNs are

multilayer perceptron composed of millions of neurons. The neu-

rons are arranged as sets of filters to perform spatial convolution.

After training the parameters of the neurons, the convolution

operations can extract desired features from the input images

with almost no preprocessing. Hence, CNNs are used to tackle

complex classification problems. Initially, CNNs were used to

perform tasks on images with a simple background, such as hand-

written character recognition (Bengio et al., 1994), mammogram

masses and normal tissue distinction (Wei et al., 1995), textural

pattern classification (Tivive et al., 2006), and face recognition

(Lawrence et al., 1997). With the advances in graphic processing

unit (GPU) computing, CNNs became larger and deeper and

have been applied to solving complicated tasks. Krizhevsky et al.

(2012) developed a deep CNN for distinguishing images of 22 000

classes in 2012 ILSVRC. Lee et al. (2017) developed a CNN-based

system for identifying 1000 species of plants in the 2016

plantCLEF task. Sprengel et al. (2016) developed a deep CNN

model for recognizing 999 species of birds from monophonic

recordings in the 2016 BirdCLEF challenge. Although presumably

powerful, thousands of images are normally required for training

deep CNNs, which may restrict the use of deep CNNs.

Transfer learning has alleviated the demand for a large amount

of training data for CNNs (Pan and Yang, 2010). Originally, trans-

fer learning aimed to transfer knowledge between related sources

and target domains (Caruana, 1995). Starting from this concept, it

has been shown that models trained using huge datasets can be

adopted for other applications because the first layers of neural net-

works deal with generic features (Yosinski et al., 2014). Oquab

et al. (2014) exhibited the high potential of using the mid-level fea-

tures extracted from networks trained using the ImageNet dataset

for classifying images in the Pascal VOC 2007 and 2012 datasets. Li

et al. (2015) detected fish and recognized the species of the fish in

the images of the ImageCLEF dataset using pre-trained CNNs and

fast region-based CNN. Siddiqui et al. (2017) identified 16 species

of fish in underwater videos using pre-trained CNNs. Ali-Gombe

et al. (2017) recognized fish species in images with random noise

using CNNs and transfer learning.

This study aimed to automatically identify the species of ma-

jor tuna and billfish from the images acquired on longliners.

The specific objectives were to (i) collect images of major tuna

and billfish fish, (ii) adapt pre-trained deep CNN models for

identifying the fish species, (iii) demonstrate the performance

of the models, and (iv) visualize the features learned by the

CNN models.

Material and methods
Image collection
A total of 16 517 images of fish catch were provided by Fishery

Agency, Council of Agriculture (Taiwan). The images were ac-

quired on the deck of longliners by observers between 2006 and

2017 using digital cameras. The illumination conditions when the

images were taken varied considerably. Some images were ac-

quired during dark nights using flash light (Figure 1b), while

others were acquired on sunny days (Figure 1f). Shadows may

cover part of the fish body (Figure 1a). The images were sorted

into ten categories: ALB, BET, YFT, other tuna (OT), BUM,

SWO, SFA, other billfish (OB), shark, and other fish (OF)

(Table 1). The category of OT contained two species: southern

bluefin tuna and Skipjack tuna (Katsuwonus pelamis).

The category of OB contained four species: striped marlin fish

Figure 1. Images of (a) albacore, (b) big eye tuna, (c) yellowfin tuna, (d) other tuna, (e) shark, (f) blue marlin, (g) Indo-pacific sailfish, (h)
swordfish, (i) other billfish, and (j) moonfish.
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(Kajikia audax), giant black marlin (Makaira indica), shortbill

spearfish, and longbill spearfish (T. pfluegeri). The category of OT

contained common sea fish other than tuna, billfish, or shark

(e.g. dolphin fish, moonfish, and smooth skin oilfish).

Image preprocessing, cross-validation, and image
augmentation
The dimensions of the fish images ranged from 640� 360 to

4608� 3456 pixels. To reduce the complexity of the CNN mod-

els, the images were resized to 330� 250 pixels. Zero padding was

applied to the resized images for maintaining the aspect ratio of

the images. Subsequently, image augmentation was applied to the

images for model training (i.e. training images). Image manipula-

tion generalizes the images and, hence, increases the robustness of

the models to be developed. The augmentation operations in-

cluded horizontal flipping, vertical flipping, width shifting (ran-

domly between �33 and 33 pixels), height shift (randomly

between �25 and 25 pixels), rotation (randomly between 0� and

30�), shearing (randomly between 0 and 66 pixels), zoom-in (ran-

domly between 1 and 1.2), and zoom-out (randomly between 0.8

and 1) (Figure 2). Each operation was randomly applied to the

images before they were used for training.

Strategies for fish species identification
Two strategies were used for fish species identification. Strategy

one used three models in a cascade (Figure 3). Model 1A was

used to identify fish types: tuna, billfish, shark, and OF. Models

1B and 1C, respectively, were used to identify the species of tuna

and billfish. Strategy two used a single model (Model 2) to iden-

tify fish types and fish species for tuna and billfish. Strategy one

alleviated the issue of unbalanced image numbers (Table 1) in

model training.

Table 1. Numbers of images for each fish species or type.

Species/type Numbers of images

Albacore (ALB, Thunnus alalunga) 2 240
Big eye tuna (BET, Thunnus obesus) 2 240
Yellowfin tuna (YFT, Thunnus albacares) 2 240
Other tuna (OT) 1 735
Blue marlin (BUM, Makaira nigricans) 1 056
Indo-pacific sailfish (SFA, Istiophorus platypterus) 416
Swordfish (SWO, Xiphias gladius) 1 600
Other billfish (OB) 830
Shark 1 600
Other species of fish (OF) 2 560

Figure 2. Image manipulation: (a) original image, (b) horizontal flipping, (c) vertical flipping, (d) width shift, (e) height shift, (f) rotation, (g)
shearing, (h) zoom-in, and (i) zoom-out.
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Model development using transfer learning
Transfer learning was applied to the development of deep CNN

models. In this procedure, a model with parameters pre-trained

using other datasets was adapted. The structures of the output

layers were modified to match the output dimensions (i.e. types

or species). Next, some layers of the model were frozen. Fine-

tuning was then applied to the remaining layers of the model to

update the parameters. In this study, VGG-16 (Simonyan and

Zisserman, 2014) was chosen as the pre-trained model because

the architecture performed well in various classification tasks and

was used in numerous applications (Ballas et al., 2015; Liu et al.,

2016; Lopez et al., 2017; Abas et al., 2018). Originally, VGG-16

consisted of 13 convolutional (C1 to C13), 5 max pooling (S1 to

S5), and 3 fully connected (FC1 to FC3) layers (Figure 4). A con-

volutional layer applies convolution operations to the neurons in

the current layer using filters and passes the results to the next

layer. A pooling layer combines the neurons in the current layer

into a single neuron in the next layer (Huang et al., 2007). A fully

connected layer connects every neuron in the current layer to ev-

ery neuron in the next layer (Viglione, 1970). Convolutional

layers C1 to C13 contained 64, 64, 128, 128, 256, 256, 256, 512,

512, 512, 512, 512, and 512 filters, respectively. The dimension

and stride of the filters in the convolutional layers were 3� 3 pix-

els and 1 pixel, respectively. Zero padding was used in the convo-

lution operations to keep the dimension of the output the same

as that of the input. The dimension and stride of the filters in the

max pooling layers were 2� 2 pixels and 2 pixels, respectively.

In this study, the architecture of VGG-16 was adjusted by

replacing the original FC layers with new FC layers (FC1 and FC2

in Figure 4) with dimension of R256 and RN, where N is the

Figure 4. Architecture of the modified VGG-16 model. C: convolution layer, S: max pooling layer, and FC: fully connected layer.

Figure 3. Two strategies for fish type and species identification. Strategy 1 uses three models to identify fish types, tuna species, and billfish
species. Strategy 2 uses a single model to identify fish types and species.
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number of categories to be classified in each model. The rectified

linear unit (ReLU; Glorot et al., 2011) was used as the activation

function for all convolutional layers and the first FC layer.

Softmax (Bishop, 1995) was used as the activation function for

the second FC layer to determine the confidence scores of the pre-

dicted fish types or species. In this study, parameters in the first

four convolutional layers (C1 to C4) were frozen, while those in

the remaining layers (C5 to FC2) were fine-tuned during training.

Model training
The models were developed using adaptive moment estimation

(Kingma and Ba, 2014) as the optimizer and cross-entropy as the

loss function. The initial learning rate was set to 0.00002. Each

model was trained for 50 epochs. In each epoch, image augmen-

tation was randomly applied to the training images. Effectively,

the images were augmented for 50 times. The models were then

trained using the images and back propagation (Rumelhart et al.,

1986). To prevent the models from being overfitted, dropout

(Srivastava et al., 2014) with a rate of 0.5 was applied to layer

FC1. Hence, in the training stage, each neuron in FC1 had 50%

chance of being ignored. The model development was performed

using Python3 and Keras toolbox (Chollet, 2015). A GPU

(GeForce GTX 1080 Ti, NVIDIA; Santa Clara, USA) was used to

expedite the training. Tenfold cross-validation (Kohavi, 1995)

was applied for assessing the performance of the models. The

mean accuracies were presented.

Visualization of filters in the CNN models
Filters of the CNN model were visualized to realize how the CNN

models work and what features the models had learned. To visu-

alize a specific filter in a CNN model, a loss function that

maximizes the activation of the filter was determined. An image

with a dimension of 330� 250 pixels was next generated and ini-

tialized with random pixel values. The gradient of the loss func-

tion using the image as the input to the CNN model was

calculated. Gradient ascent (Simonyan et al., 2013) was then ap-

plied to update the pixel values in the input image. The afore-

mentioned steps were performed for 200 iterations. The resulting

input image was the visualization of the filter.

Saliency maps and Grad-CAMs of the CNN models
Saliency maps (Simonyan et al., 2013) and gradient-weighted

class activation maps (Grad-CAMs; Selvaraju et al., 2017) were

generated to illustrate the essential information in an input im-

age for the developed models to determine the category (i.e. fish

types or species) of the image. Saliency maps indicate the im-

portance of each pixel in an input image. In the procedure of

calculating a saliency map, an input image of a known category

was fed into a trained CNN model. The derivatives of the model

output with respect to the pixels of the input image were calcu-

lated using guided backpropagation (Springenberg et al., 2014).

The saliency map was then formed as the derivatives reshaped

to the dimension of the input image (i.e. 330� 250). Grad-

CAM indicates the importance of pixels in the feature maps of a

model. In the procedure of calculating a Grad-CAM, an input

image of a known category was fed into a developed CNN

model. The gradients of the model output with respect to the

feature maps of the last convolutional layer in the model were

calculated, and then, the gradients were fed into global average

pooling (Lin et al., 2013). The weighted combination of the fea-

ture maps using the gradients as the weights were calculated.

Figure 5. Model accuracy and loss during training.

Deep convolutional neural networks 5

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article-abstract/doi/10.1093/icesjm
s/fsz089/5509966 by N

ational Taiw
an U

niv. H
ospital user on 03 June 2019



Figure 6. Test accuracy of (a) Model 1, (b) Model 2, (c) Model 1A, (d) Model 1B, and (e) Model 1C.

Figure 7. Challenging cases that were successfully identified: (a) ALB, (b) BET, (c) YFT, (d) BUM, (e) SFA, and (f) SWO.
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Grad-CAM was the output of the ReLU function using the

weighted combination as the input.

Fish species identification using bag-of-features
approach
A bag-of-features (BoF; Sivic and Zisserman, 2003) model was

developed as the baseline for performance comparison with the

proposed CNN-based approach. In the BoF model, the size of the

visual vocabulary was set to 1000. Speeded-up robust features

(Bay et al., 2008) with a Hessian threshold of 1000 were used as

the features. Soft-margin support vector machines (SVMs, Chang

and Lin, 2011) with radial basis function kernels were used as the

classifiers. The SVMs were arranged in the one-vs.-rest fashion to

fulfill the task of multiclass classification. The margin and kernel

parameters of the SVMs were determined using grid search.

Results and discussion
Model accuracy and loss during training
The accuracies and losses of the models during training were ex-

amined (Figure 5). After 50 epochs, both the training and test

losses of Models 1A, 1B, and 2 converged to under 0.16. Both the

training and test accuracies of Models 1A, 1B, and 2 reached over

96%. However, for Model 1C, there was �6% difference between

the training and test accuracies. This observation implied that

Model 1C might be slightly overfitted, which could be caused by

the inadequate amount of training images (Table 1). The issue of

overfitting may be resolved by increasing the amount of the train-

ing images of SFA.

Performance of the models
The performance of the developed CNN models was evaluated

using tenfold cross validation (Figure 6). In the evaluation,

Models 1A, 1B, and 1C were concatenated to form Model 1

(Figure 6a). The mean accuracies of Models 1 and 2 were

95.85% and 96.24%, respectively. The standard deviations of

the accuracies were 0.75% and 0.67% for Models 1 and 2, re-

spectively. The mean processing time for Models 1 and 2 to clas-

sify an image were 0.0226 s and 0.0155 s, respectively, using a

GPU (GeForce GTX 1080 Ti). Models 1 and 2 used 8575 MB

and 8063 MB, respectively, of the GPU memory. Model 2

achieved higher accuracy and used less resource. However,

Model 1 could provide the correct fish type of an image even if

the fish species was misclassified. For both models, the two least

accurate categories were SFA and OB (Figure 6a and b). The low

accuracies in these two categories were also observed in Model

1C (Figure 6e), which may be caused by the imbalanced training

images (i.e. only 416 images for SFA and 830 images for OB;

Table 1).

Figure 8. Visualization of the last fully connected filters of each species or type. The green and orange boxes enclose the visualization of
filters in Models 1B and 1C, respectively.
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Cases that were challenging to be identified were examined.

Figure 7 illustrates the images of ALB, BET, YFT, BUM, SFA,

and SWO that were successfully identified. The challenges

included panned fish body (Figure 7a), low lamination (Figure 7b

and d), colour tone shifting (Figure 7c, e, and f), inadequate

resolution (Figure 7c), slanted fish body (Figure 7d), and incom-

plete fish body (Figure 7f). In Figure 7, the upper jaw of SWO

was cut off.

Figure 9. Saliency maps and Grad-CAM of (a) Model 1 and (b) Model 2. The green and orange boxes enclose the visualization of filters in
Models 1B and 1C, respectively.
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Filters of the CNN models
Filters of the last FC layer in Models 1 and 2 were visualized

(Figure 8). The filters in both models exhibited patterns similar

to parts of the fish body of each fish species or type. The filters of

tuna (ALB, BET, YFT, and OT) displayed curves and sawtooth

waves corresponding to the dorsal and anal fins and finlets, re-

spectively, of tuna. The filters of billfish (BUM, SFA, SWO, and

OB) displayed patterns similar to the dorsal fin and anal fins and

long upper jaw. The filters of shark exhibited patterns corre-

sponding to the first dorsal fin of shark. The filters of OF dis-

played patterns of fish body contours, which were distinct from

those of tuna, billfish, or shark.

The pattern differences between the tuna species were ob-

served. Yellow curves similar to dorsal fins of tuna appeared in

the filters of YFT and BET; however, they were not found in the

filters of ALB and OT. In addition, the curves in YFT filters were

much longer than those in BET filters. Moreover, the horizontal

strips in OT filters were similar to the grain patterns on the bod-

ies of Skipjack tuna. The same patterns were not found in ALB,

BET, and YFT filters. The aforementioned characteristics may

be the benchmarks for the models to distinguish the tuna

species.

The pattern differences between the billfish species were also

observed. The patterns of body contours were found in the filters

of BUM, SWO, and OB, but not in those of SFA. In addition, the

dorsal fin patterns were observed in the filters of all billfish cate-

gories; however, SWO filters exhibited the most substantial pat-

terns of dorsal fins compared with BUM, SFA, and OB filters.

Moreover, the dorsal fin patterns were displayed in SFA filters,

but not in BUM, SWO, and OB filters.

Saliency maps and Grad-CAMs of the CNN models
The saliency maps and Grad-CAMs of the developed models were

generated (Figure 9). The same set of fish images was used as in-

put to the two models for comparison purposes. The saliency

maps displayed that the models paid attention mostly to the con-

tour, pectoral fin, finlets, dorsal fins, and anal fins of the fish,

while Grad-CAMs displayed that the models paid attention

mostly to the abdomen, dorsum, and anal fins of the fish.

For the tuna species, the ALB maps displayed that the pectoral

fins received considerable attention. This observation agreed with

the fact that ALB has longer pectoral fins compared with the

remaining tuna species (Chapman et al., 2015). The OT maps

showed that only anal fins received attention. By contrast, the

Figure 10. Misclassified cases. The true and predicted categories of the images were shown on the left side.
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maps of YFT and BET displayed that both the dorsal and anal

fins received considerable attention. Particularly, the attention to

the dorsal and anal fins of YFT was strong. This observation

agreed with the fact that YFT has longer second dorsal and anal

fins compared with BET. Moreover, the BET maps showed that

the finlets received considerable attention. This observation

agreed with the fact that BET finlets are bright yellow with a black

edge. The areas that received strong attention agreed with the

characteristics of human observers for distinguishing the tuna

species.

For the billfish species, the SWO maps displayed that the pec-

toral fins and first anal fins received considerable attention. This

observation agreed with the fact that the pectoral fins of SWO

can flatten against its body, whereas those of BUM and SFA can-

not. The maps of SFA displayed that the first dorsal fins received

considerable attention. This observation agreed with the fact that

SFA has a large first dorsal fin. The width of its first dorsal fin can

be double its body width (Chapman et al., 2015). The BUM maps

displayed that the abdomen, tail and head received considerable

attention. BUM has two caudal keels, whereas SWO has only one.

In addition, the dorsal fin of BUM is not as large as that of SFA.

These differences were used to distinguish BUM from SWO and

SFA.

For shark and OF, the first dorsal fins and body contours re-

ceived considerable attention. The dorsal fins of shark are usually

larger than those of tuna, billfish and OF. Moreover, the contours

of shark fins are smooth, whereas those of tuna, billfish and OF

fins are tippy. This information was used to distinguish shark and

OF from tuna or billfish.

Study of misclassification cases
Misclassification occurred due to colour tone variation, inade-

quate resolution, low illumination, body part occlusion, or fish

immaturity. Figure 10a displays an image of ALB that was falsely

recognized as BET. The image was acquired at night and was in

green tone. The pectoral fin, one of the most essential traits of

ALB, of the fish were almost invisible. The saliency map and

Grad-CAM of the image confirmed that the pectoral fin received

almost no attention. Instead, the anal fin received attention.

Figure 10b displays an image of YFT that was falsely recognized

as BET. The image was in green tone and was taken from a dis-

tance. The saliency map and Grad-CAM of the image indicated

that the fish contour was not completely identified. The ventral of

the fish received attention at a certain degree. However, the dorsal

and anal fins, two of the most essential traits of YFT, received al-

most no attention. Figure 10c displays an image of BET that was

falsely recognized as ALB. Shadow covered the tail of the fish

body and made the finlets invisible. The saliency map and Grad-

CAM of the image displayed that the fish contour was not

completely identified. Although the anterior of the fish received

attention at a certain degree, the part typically does not contain

traits that are essential for determining the species. Figure 10d

displays an image of SFA that was falsely recognized as OB. The

Figure 11. Test accuracy of the BoF model.
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body of the fish was tilted so that the dorsal fin, one of the most

essential traits of SFA, of the fish was occluded. The saliency map

and Grad-CAM of the image displayed that the posterior received

attention. However, the posterior of the fish typically does not

contain traits that are essential for determining the species.

Figure 10e displays an image of SWO that was falsely recognized

as BUM. The colour of the second anal fin of the fish was similar

to that of the background, making the second anal fin almost in-

visible. Also, the pectoral fin was close to the fish body, making it

almost invisible. The saliency map and Grad-CAM of the image

confirmed that the second anal fin or pectoral fin of the fish did

not receive strong attention. Figure 10f displays an image of YFT

at juvenile stage. The saliency map and Grad-CAM of the image

displayed that the contour of the fish was clearly identified and

the dorsal and anal fin of the fish received strong attention.

However, the lengths of the fins were short. Thus, YFT was falsely

recognized as BET. Although misclassified, a tuna species was

usually falsely recognized as another tuna species and a billfish

species was usually falsely recognized as another billfish species

(Figure 10).

The performance of the bag-of-features model
The performance of the BoF model was evaluated using tenfold

cross validation (Figure 11). The mean accuracy reached 56.03%

and the standard deviation of the accuracy was 1.69%. The ma-

jority of the misclassification cases occurred within the same fish

types. A tuna species was usually falsely recognized as another

tuna species, and a billfish species was usually falsely recognized

as another billfish species. This observation indicated that the

BoF model could distinguish fish with obvious differences in ap-

pearance, such as fish type. However, the model could not effec-

tively recognize the subtle differences in appearance between the

fish species of the same type.

Conclusions
This paper proposed the identification of the species of six com-

mon tuna and billfish using machine vision. In the proposed ap-

proach, images of fish catch were acquired on the deck of

longliners with miscellaneous items in the background and under

various illumination conditions. The images were then resized to

330� 250 pixels with zero padding. CNN models were next de-

veloped to identify the fish species using a pre-trained architec-

ture VGG-16 and the concept of transfer learning. Saliency maps

and Grad-CAMs of the models exhibited that the information the

models learned were the characteristics that human observers

used for distinguishing the fish species. The proposed approach

outperformed conventional BoF approaches and reached an over-

all accuracy of at least 96.24%.
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