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It is challenge in epidemiology to characterize the tempeml aspect of exposuredisease association. The 
authon propose a stochastic model to deal with exposures that are time-dependent and exhibit suscept- 
ibility and latency effects. The model is applied to a retrospective cohort data on lung cancer mortality 
in the blackfoot disease endemic area in Taiwan. The authors compare the pmpsed model with the 
multistage model, the back-calculation model, the catalytic model, and the age-penod-cohoa models. 
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1. Introduction 

Characterizing the relationship between an exposure and a disease is a fundamen- 
tal issue in epidemiology. To this end, epidemiologists often use indices such as 
relative risk or odds ratio to represent strengths of association or dose-response 
gradient. However, such representations do not pay due respect to the temporal 
aspect of exposure-disease associations. For example, the intensity of an exposure 
may vary with time and its effects on humans may depend on the ages at which a 
subject is exposed. Furthermore, the effect of the exposure may not be simulta- 
neous. Rather, it may be latent for years after the first exposure, becomes full- 
fledged, and then fades away. It becomes a challenge then to give a full account 
on these complex relationships. 

In this paper, the authors propose a stochastic model to deal with exposures that 
are timedependent and exhibit susceptibility and latency effects. A retrospective 
cohort data on lung cancer mortality in the blackfoot disease endemic area in 
Taiwan was used to illustrate the method. 
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2. The proposed models 

2.1 Notations and assumptions 

We begin by assuming that people in different birth cohorts have dif€erent early 
exposures (experiences) and hence have different disease rates in their later life- 
times. For cancers of environmental origins which are of present concern, the dis- 
ease rates may not be simply related to a single carcinogenesis insult which oc- 
curred sometime in early life, but rather to the accumulation of them from birth to 
current age of a subject. Furthermore, in the theory of multistage carcinogenesis 
(CRW and Ho*, 1984), the effect due to the accumulation of such time-varying 
exposures is to produce an excess risk (rate) in one’s later life. Therefore, we may 
consider the following excess risk model, which was formulated in discrete time 
using a five-year time scale, i.e., 

- 
k = j -  i+Z. (1) 

In this model, AG are the unknown true disease rates of the population under study. 
The first term in the rigth of the equation, A$, represents the background disease 
rates which were assumed known from national vital statistics. These rates were 
crossclassified by age, i (i = 1,2, . .., I) and period, j (j = 1, 2, .. ., J). The second 
term represents the excess risk due to accumulation of carcinogenesis insults since 
birth (the summation starts from age group ‘0-4’ (a = 1)). The exposure intensi- 
ties of the study population in different time period (t) are quantified by the param- 
eters, fir, with t = 1,2, . .., Z + J - 1. These parameters share the same measure- 
ments unit as A*,, i.e., occurrence (death) per 100,OOO person-year, for example. In 
view of the possibilities that the same amount of exposure may have different 
impact on disease rates, depending on the ages of the subjects being exposed and 
the elapsed time since that exposure, another set of parameters, ag,d was intro- 
duced, with g 1 1, d 2 1, and g + d - 1 5 Z. These parameters are unitless and 
reflect the relative impact of an exposure experienced at age (g) upon the disease 
rate (d - 1) unit of time later. The dependency of disease rates upon the exposed 
ages is termed the susceptibility effects in this paper, and the dependency of time- 
since-exposure, the latency effects. Instead of setting a particular ag,d to one as a 
reference group for the relative impact parameters, we use the constraint 
5 - c c Jtsa,,d = 1, where zg is the proportion of individuals in the study popu- 

lation who are of age g. This proportion was assumed known from census tables 
or from surveys. Using this constraint, the time-dependent exposure intensity, fit, 
can be interpreted as average lifetime (up to age I) excess disease rates for a 
subject exposed at time t. The reason why we construct our model using 5-year 
time scale rather than using continuous scale or other discrete time lengths is that 
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the national vital statistics is often presented by 5-year age groups. Using discrete 
formulation also considerably simplities the problem. 

2.2 Incorporating information of out-migration subjects 

It is noted that model 1 may not be identifiable when all pt are equal or when J < Z 
(see appendix 1). We are often interested in disease rates up to 80 years of age 
(Z = 16). And for the model to be identifiable, it requires that we collect mortality 
data for a time span of 80 years of more ( J 2  16) which is hardly possible in 
practice. However, if the out-migration subjects from the study population can be 
traced and the corresponding disease rates be collected, the above conditions can 
be relaxed and the non-identifiability problem may be avoided (appendix 1). In this 
case, the disease rates are cross-classified by age, i, period, j ,  and time-since-out- 
migration, rn. The index m is also expressed in a five-year discrete time scale, with 
m = 1 standing for those who didn’t migrate out or who had out-migrated in less 
than 4 years. For analyzing such data, the following model can be formulated, 

i - m + l  

a= 1 

* 
Aj jm=Aj j+ C &+a- l  -a,,,i-,,+l, i = 1, 2, ..., I ;  

j = 1, 2, ..., J ;  
k *= j -  i + I ;  

m = l , 2  ,..., i .  (2) 
Model 2 above differs from model 1 in only one respect, namely, it is assumed 
that subjects are no longer exposed to the ‘specific’ carcinogenesis insults once 
they migrated out from the study population. This assumption appears reasonable 
when the population under study are exposed to a ‘specific’ carcinogen, for exam- 
ple, an occupational cohort in a certain factory or in an underground mine, etc., or 
the residents living in an environmentally polluted area, such as the blockfoot 
disease endemic areasin Taiwan. The last situation will be described in more de- 
tails in section 3. 

2.3 Imposing a smoothness condition 

The likelihood function of model 2 (see appendix 2) has a non-diagonal matrix of 
second partial derivatives, which makes direct maximization difficult. Furthermore, 
raw maximum likelihood estimates of /? and a tend to be very unstable due to the 
large number of parameters ((Z + J - 1) + Z(Z + 1)/2 - 1 in total). The same diffi- 
culties were previously encountered by the back-calculation models of AIDS 
(BECKER and MARSCHNER, 1993), which are akin to our model. Here we also use 
an EMS-like algorithm to overcome the difficulties. The EMS-algorithm (SILVER- 
MAN et al., 1990) is the EM-algorithm (DEMPSTER et al., 1977) with a smoothing 
step added. The rationale behind the addition of a smoothing step lies in the fact 
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that there is strong a prion expectation that the fl  and the a each follow a fairly 
smooth curve or surface. Note that the EMS-algorithm amounts &o solving a pena- 
lized likelihood maximization problem (SILVERMAN et al., 1990). The estimation 
algorithm for the present problem is outlined in appendix 2. 

3. Lung cancer mortality in blackfoot disease endemic area 

Data on lung cancer mortality in the blackfoot disease endemic area in Taiwan 
was used to illustrate the methodology. Residents of the area have consumed 
water &om artesian wells contaminated with inorganic arsenic since the turn of 
this century when new drilling techniques kgan  to be employed. They gradually 
abandoned the use of the artesian wells decades later when a piped water system 
began to be introduced into the area in the 1950’s. Previous studies conducted in 
this area have demonstrated significant dose-response relations between ingested 
arsenic and mortality from various cancers (CHEN et al., 1985, 1986; Wu et al., 
1989). However, the possibility that cancer potentials may be modified by tempor- 
al factors, such as birth-cohort, time-since-exposure, and age-at-exposure, etc., has 
not been investigated. It is therefore of interest to analyze mortality data in this 
area using model 2. Here, the data is from a retrospectively assembled cohort of 
59156 subjects residing in this area in the year 1946.. This cohort was followed-up 
till 1990 by us. The person-year observation and lung cancer mortality cases of 
this cohort were crossclassified according to age, period, and time-since-out-mi- 
gration. Due to retrospective nature of the data, we do not have information of 
smoking behavior of the study subjects, one of the most important risk factors for 
lung canker. However, this does not jeopardize the applicability of model 2. Since 
in model 2, we are examining the ‘excess’ effects from the ‘area-specific’ expo- 
sure (i.e., the ingested arsenic) relative to the general population. And there seems 
no reason to suspect that the out-migrated subjects also ‘change’ their smoking 
behaviors and contribute (or reduce) additional excess effect for lung cancer (note 
that in model 2, we do not assume out-migrated subjects ‘stop’ smoking after they 
left the study population). On the other hand, it seems reasonable to assume that 
subjects are no longer exposed to excess carcinogesis insults (relative to the gener- 
al population) once they migrated out from the study population, since the expo- 
sure of high-level inorganic arsenic from artesian well is very specific to the black- 
foot disease endemic area in Taiwan. 

Since national mortality for lung cancer in Taiwan was considered not reliable 
foi: analysis before 1966, follow-up data before that time was not used either. Thus 
we have Z = 16 5-year age groups (0-4, 5-9, . . ., 75-79) and J = 5 5-year peri- 
od groups (1966-’70, ’71-’75, ..., ’86-’90). In addition, due to the aging of the 
cohort, we do not have information of those cells with i - j < 4. Note specifically 
that the youngest age group we have is i = 5. The incomplete nature of our data 
implies that those parametem, ctg,d, for which g + d < 6, cannot be estimated, i.e., 
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those parameters which describe the exposure accumulating processes for age 
groups i < 5. Thus we are left with a total of 145 ((16 + 5 - 1) + 16 - (16 + 1)/ 
2 - 1 - 4 .  (4 + 1)/2) parameters. The analysis is based on 340 cells with non- 
zero person-year which, in total, contain 808105.2 person-years of follow-up and 
791 lung cancer deaths. Appendix 2 details the estimation algorithm. Convergence 
was declared when relative changes of parameter values between successive cycles 
for all the parameters are less than O.OOO1. Using more stringent critria requires 
more computer time which may take several hours. 

Different bandwith values were tried to smooth the parameters (see appendix 2 for a 
detailed description about smoothing). The smallest values that leads to biologically 
plausible estimates were subjectively chosen. Alternatively, one can use cross-valida- 
tion technique to determine appropriate values of the smoothing parameters. How- 
ever, for illustrative purposes, we feel our ‘intuitive’ approach is sufficient. Figure l 
displays estimates of time-dependent exposure intensity when different bandwidth 
values were used. It can be noted that bandwith values hb = 1.0 and ha = 2.0 lead 
to a smaller peak at around 1973-1983, which was considered implausible since 
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Fig. 1. Timedependent exposure intensity in the blackfoot disease endemic area The inten- 
sity can be interpreted as average lifetime (up to 80 years) excess lung cancer mortality for 
an exposed subjected (per 100,OOO person-year) 
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there is no evidence that the exposure intensity in the study area rises again in 
recent years. On the other hand, bandwith values hp = 3.0 and ha = 2.0 lead to 
estimates that are too much smoothed out. Therefore, we choose hp=2.0 and 
ha = 2.0 as reasonable values. From figure 1, it can be seen that the exposure 
patterns estimated from our model correspond roughly well with what we known 
about the chronicle of artesian wells usage in that zyea. The curve, however, 
started to decline a little bit earlier than was expected. This finding may not neces- 
sarily be a counter-example against our model, since other factors not associated 
with usage of artesian wells, such as nutritional improvement, dietary change, etc., 
in the study population (CHEN et al., 1988) may also contribute to the decline. 

The large number of parameters and the addition of the smoothing steps pre- 
clude the use of the usual asymptotic properties of maximum likelihood estimates 
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Fig. 2. Time-dependent exposure intensity in the blackfoot disease endemic area, with 90% 
bootstrap confidence intervals 
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for determining precision. Here, we resort to the bootstrap method (EFRON, 1979) 
instead. A total of 500 bootstrap samples were generated assuming that deaths (or 
events) follow a Poisson distribution with rates speciiied by model 2. These simu- 
lated data were each analyzed using our estbpation procedure. Pointwise percen- 
tiles of the bootstrap replications were reported. The 90 percent bootstrap confi- 
dence intervals for the exposure intensity estimates were displayed in figure 2. It 
can be seen that there is much variability in estimates in the earlier and in the 
recent years. There is also a considerable right skew (exposure intensity toward 
higher level) in the bootstrap estimates in the early years. This may reflect the 
bias incurred from the smoothing procedures, as one can see from figure 1 that 
greater smoothing moves the exposure intensity toward higher levels in the early 
years. At this stage, it seems premature to draw any firm conclusion from the time 
patterns. Nevertheless this example serves well to illustrate our methodology. 

As regards the relative impact effects (susceptibility-latency effects), a contour 
plot for joint actions of age-at-exposure and time-since-exposure were presented 
(figure 3). It can be seen that an interaction exists between the two variables. 
When time-since-exposure is less than 50 years, the relative impact increases as 
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Fig. 3. Contour plot for joint actions of age-atexposure and time-sinceexposure variables. The value 
accompanying each contour line represents relative impact on lung cancer moxtality for a given expo- 
sure. The relative impact estimates were subject to the constraint described in the text. Here the esti- 
mates were multiplied by 150 before display 
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either age-atexposure or time-since-exposure increases. While for time-since-expo- 
sure greater than 50 years, the impact effects seem only related to the time-since- 
exposure variable. In indicates that arsenic may induce lung cancer through two 
different mechanism, which is in accordance with present knowledge regarding 
arsenic carcinogenesis (MAZUMDAR et al., 1989). Is should be noted again that the 
interpretation here is constrained due to low precision of the estimates as well. 

4. Discussion 

In formulating our models, we assumed that cancers developed as a results of the 
accumulation of carcinogenesis insults since birth and that the accumulation pro- 
cesses are modified by susceptibility and latency effects. These assumptions seem 
reasonable for environmental cancers. In addition, since the proposed roles of ex- 
posure accumulation are essentially the same as what can be derived from the 
Armitage-Doll multistage models With a time-dependent exposure pattern (CRUMP 
and HOWE, 1984), our models also have a biological justification on a cellular 
basis. We, however, have formulated the relative impact of susceptibility and la- 
tency in our models less restrictly than those adopted by the multistage models. 
The multistage models with a time-dependent exposure pattern can at best accomo- 
date susceptibility and latency effects which are polynomial functions and which 
combined multiplicatively in joint actions (CRW and H o w  1984). Therefore 
our models may also be applied to those cancers, such as breast cancer and child- 
hood cancers, which are known not described well by the multistage models 
(MOOLGAVKAR, 1986). In the example presented, the interactive roles of age-at- 
exposure *and time-since-exposure variables would not be disclosed had we sepa- 
rated the relative impact into two independent effects of susceptibility and latency. 
In addition, since the two variables of age-atexposure and time-since-exposure 
usually are highly correlated, using our parameterization also avoids the collinearity 
problem. Other differences between our methodology and the multistage modeling 
are that, in the latter, the time-dependent exposure intensity was assumed known 
and that the information conveyed in the strata, crossclassified by age-atexposure 
and time-since-exposure variables, was modeled to infer the particular stage(s) in 
the carcinogenesis processes which is (are) af€ected by the exposure. In many 
occupational and/or environmental settings, monitoring of exposure concentrations 
may not be routinely performed or the records may not be traced back long en- 
ough for a multistage modeling. Even if the monitored data is adequate, one may 
sometimes confront with a situation where no particular kind of exposures that are 
monitored has been proven causally linked to the disease under study. In such 
occasions, analysis with our model seems a reasonable alternative. The reason that 
we do not tailor our model to infer stage(s) affected as in the multistage model is 
that we believe such simple stochastic stage-transition model may not adequately 
reflect the biologic reality. 
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Besides the multistage models, our models are also similar in form with the 
catalytic models of infectious diseases (AD= and NOKES, 1993) and with the 
back-calculation models of AIDS (JEWELL and BACCHEIT, 1991; BECKER and 
I V k t s m ,  1993). It is of interest to investigate further the common properties 
of such ‘accumulation-type’ models and to find other possible applications for 
them. However, in the latter two models, it is the intensity of infection that is 
accumulating rather than is the intensity of exposure as in the present setting. 
Also, in the backcalculation approach, only one of the functions which are in- 
volved in the convolution is unknown, while in the present model, the two can be 
simultaneously estimated from the data. What makes this possible hinges on the 
fact that the information of out-migration subjects can be retrieved in this study. 
While a proper utilization of this valuable information calls for such a model 
which at first glance seems over-parameterized, the appendix 1 shows that it is 
identifiable at least under certaip conditions. 

It is also of interest to compare our models with the age-period-cohort (APC) 
models. The APC analysis is a popular tool for analyzing vital data (KWPER et 
al., 1985; HOLFORD, 1991). In APC models, the disease rates are hypothesized as 
being determined by three independent effects of age, period, and cohort. How- 
ever, in our proposed models, their roles are replaced by the j? and a parameters. 
The time periods covered by j? parameters span from the earliest birth-year of the 
study popopulation to the most recent period. Thus ’the /3 parameters can in a 
sense be viewed as a combination of the period and cohort effects. However, mak- 
ing epidemiological inferences based on the j? parameters is advantageous because 
these parameters have already quantified the exposure intensities in the study po- 
pulation and therefore we do not have to obtain such information indirectly from 
the traditionally defined cohort or period variables. The effects of susceptibility 
and latency are separately accounted for by the a parameters in our models. These 
effects are ignored in the APC analysis, the ‘excess-risk AE’C models’ (LEE and 
LIN, 1995) being one exception. 

Due to large number of parameters in our models, an additional assumption of 
smoothness in the two sets of parameters is made. For the relative impact effects 
(a), this assumption seem reasonable since the relative impact is related to biologi- 
cal responses which in most circumstances will not display sudden jumps. There 
are occasions, however, when time-dependent exposure intensity (rs) is expected to 
show abrupt changes. The atomic bombing in Hiroshima and Nakasaki provides 
such an example. In those situations, the assumption of smoothness is no longer 
valid and our estimation algorithm may not be employed. 

In order to improve the precision in the example we presented, one probably 
would consider increase sample size in the example. This is hardly possible since 
the example is already based on a very large cohort. One can nevertheless, consid- 
er perform a ‘pooled‘ analysis of arsenic-related cancers, i.e., cancers of lung, 
bladder, kidney, liver, etc. (CHEN et al., 1985, 1986, 1988; Wu et al., 1989), as- 
suming a common pattern of time-dependent exposure intensity. Another possibil- 
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ity would be to resort to a parametric approach. The exponentially damped func- 
tion as used in some catalytic models (ADES and N o w ,  1993) can be assumed 
for the exposure intensity, and the polynomial functions as derived from multi- 
stage models (CRUMP and H o w  1984) can be assumed for the age-at-exposure 
and/or time-since-exposure variables, etc. One may also try a response surface 
modeling for the a parameters. With less parameters in the models, the parametric 
approach can give more precise estimates. Finally, our models can be easily ex- 
tended to accommodate mortality data of those subjects who migrated into the 
study area at different ages. This additional information, if can be collected and 
analyzed in our example, may further improve the presicion of the estimates as 
well. 
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Appendix 1 

When all the pt (t= 1,2, ..., Z +  J -  1) are equal, nahielyj3. Model 1 becomes 
i 

a= 1 
Aj j=A$+p C ~ a , i - a + l  =iz$+6i. 

That is, the excess rates are only dependent on age i. In that case, we only have Z 
degree of freedom but have Z(Z+ 1)/2 parameters. Therefore the model is uniden- 
tifiable. 

When pt ( t= 1,2, ..., Z + J -  1) are not all equal, the excess rates are also 
dependent on periodj, in addition to be agedependent. This is conceivable since 
subjects in Merent periods but with the same age will accumulate different 
amounts of exposure. Therefore, we have I -  J degrees of fkeedom. Now we have 
in total, ( Z  + J - 1) + Z(Z + 1)/2 - 1 parameters. And for the model to be identifi- 
able? the number of parameters must not exceed degree of freedom. A little alge- 
bra shows that this leads to the condition? J 2 Z/2 + 2. However, this condition is 
not sufficient. To see why, consider only the oldest age groups (i = I). There are 
in total, J groups of them. And we use I parameters (cl,,~-,+ 1, (I = 1,2, ..., I) to 
desecribe the exposure accumulating processes for them. Therefore, we see that 
we must have J 5 Z as well. Alternatively, ushg the method of GOODMAN (1974), 
models with J < Z can also be shown to be locally unidentifiable. 

When we have information of out-migration subjects and apply model 2 for 
analysis, the degrees of freedom increase but the number of parameters remains 
the same. Therefore, the above-listed conditions may be relaxed. The extent of 
relaxation depends on how much out-migration information we have. 
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Appendix 2 

Assume that disease occurrence or death in each cell, crossclassified bye age, peri- 
od, and time-since-out-migration, follows a Poisson distribution with the mean ,qm = 
nijm - Aijm, where nij,,, is the person-year of follow-up in each cell and A,, is the dis- 
ease rate specified in model 2. The likelihood function conditioned on observation of 
eventsineachcell,yij,,,,withi=1,2 ,..., & j = 1 , 2  ,..., J ; m = l , 2  ,..., iis 

I J i  
L@, a I { y i j m } )  = n n n 4; * e+*. 

i = l  j = l  m = l  

To apply the EM algorithm, we must first identify a more complete data set for 
which the maximum likelihood estimation is relatively eaqier. Here the complete 
data are zgm(l 1. a 5 i - m + l ) ,  the excess case number of Occurrences (deaths) 
due to the exposure which is experienced at age a, for each i, j ,  and tlz cross- 
classified cell. The log-likelihood function for the complete data is 

logL(B1 a I {zijmo)) 

= C C C C [~ i jm. log(ni j .Bk+=-1 .aa , i -a+ l ) -n i j .Bk+a-1  . a a , i - a + l ] ,  

k = j -  i + Z .  

I J i i - m + l  

i = J j = l r n = l  a = l  

The E-step consists of replacing qw in the above equation by 2vm,.the condi- 
tional expectation of zgw, given y~,,, and parameter value (B, a). That is 

r 1 

k = j - i + Z .  

The M-step consists of maximizing log LW, a I {&jm}) with respect to and a, 
subject to 5 - C C n g a g , d  = 1. Since the are no close-form solutions in this step, 

some modification of the EM-algorithm should be undertaken. Here we adopt the 
'multi-cycle ECM' algorithm @&NG and RUBIN, 1993). In our case, CM (condi- 
tional maximization) entails, instead of simultaneously fnaximizing the two sets of 
the parameters, maximizing one set while holding the other at its previous values. 
Multi-cycle here means we incorporate an E-step preceding each CM-step and let 
the resulting ECM-step cycle between the two sets of the parameters until some 
convergence criteria are met. Specifically, the CM-step for /3 and a are, respectively, 

g d  

cccc &m 
k + a - l = t  'M=ccxx n i j . a o l d  1 k = j - i + Z  

a , i - a + l  
k + a - l = r  
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and 

where 

a=u , i=u+v-  1 , k = j - i + Z .  * 
a u * u =  cccc nG.p’d  k+a-1 

a=u , i=u+v-I  

Now, a smoothing step for each set of the parameters can be added following each 
corresponding ECM-step. Smoothing here is accomplished through weighted 
averages of the unsmoothed parameters: 

u = l  

and ka(.) represent kernel functions. These weights are suitably standardized such 
that c W, = 1 and c Wghv = 1. In the exampIe we analyzed, K’(-) was cho- 

sen to be the Gaussian kernel and Ka(.), triweight kernel. The whole procedure 
can thus be described as the ‘multi-cycle ECMS’ algorithm. Theoretical investiga- 
tion of the convergence properties of this algorithm is currently underway. At pre- 
sent, we have empirical evidences that, irrespectively of the starting configuration 
(B, a), the algorithm converges to the same parameter values. We also found that 
by using larger bandwiths, hb and ha, the number of iterations required for conver- 
gence is reduced. 

Implementation of the above algorithm is straightforward because simple expli- 
cit expressions exist for the updated parameter values. The procedure also has the 
advantage of always giving non-negative estimates. 

U u v  
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