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Abstract

Summary: Mutation accumulation (MA) is the most widely used method for directly studying the

effects of mutation. By sequencing whole genomes from MA lines, researchers can directly study

the rate and molecular spectra of spontaneous mutations and use these results to understand how

mutation contributes to biological processes. At present there is no software designed specifically

for identifying mutations from MA lines. Here we describe accuMUlate, a probabilistic mutation

caller that reflects the design of a typical MA experiment while being flexible enough to accommo-

date properties unique to any particular experiment.

Availability and implementation accuMUlate is available from https://github.com/dwinter/accuMUlate.

Contact: david.winter@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mutation accumulation (MA) is the classic method of directly study-

ing the rates, molecular spectra, and fitness consequences of spon-

taneous mutations. In a typical MA experiment, replicate inbred or

clonal lines are isolated and repeatedly passed through severe

bottlenecks. These bottlenecks reduce the effective population

size of lines and thus reduce the efficiency of selection, allowing all

but the most deleterious mutations to drift to fixation. The develop-

ment of high-throughput sequencing technologies has led to a re-

newed interest in MA experiments. By sequencing whole genomes

from MA lines, researchers can directly estimate the rate and

molecular spectrum of mutations in a given species or strain. Studies

combining MA experiments with whole-genome sequencing

have provided key insights into the evolution of mutation rates

(Lynch et al., 2016), genome evolution (Tenaillon et al., 2016), the

molecular basis of mutation (Zhu et al., 2014), and the distribution

of fitness effects among spontaneous mutations (Dillon and

Cooper, 2016).

The majority of the studies described above employ a custom bio-

informatic pipeline to identify mutations from MA lines. In the widely

used ‘consensus’ approach (Ossowski et al., 2010), a putative mutant

is called if the majority of reads mapped to a given site differ from the

most common base at that site across all samples. In an alternative ap-

proach, putative mutations can be identified by using variant calling

software to call the most-likely genotype for each MA line and the an-

cestral line at every site in the genome. In this approach, samples that

are inferred to have a genotype that they could not have inherited

from the most-likely ancestral genotype are considered mutants

(Zhu et al., 2014). Because these approaches produce many false posi-

tive mutations, they are usually coupled with post-analysis filtering

(based on sequencing coverage, the frequency of rare bases or quality

scores) to produce a final set of putative mutations.

In this article, we describe accuMUlate, a mutation caller designed

for MA experiments. Our approach can replace the custom pipelines

and filtering processes currently used to analyze MA experiments with

a unified approach to mutation calling. In addition to saving researchers
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time in developing custom pipelines, accuMUlate will increase the

reproducibility of bioinformatic analyses of MA lines.

2 Approach

accuMUlate uses the probabilistic approach to mutation detection

described by Long et al. (2016). The probability that a given site in a

genomic alignment contains at least one mutation is calculated from a

model that directly reflects the design of MA experiments. In particu-

lar, we directly model the transition of alleles from an ancestral strain

to descendant MA lines and account for the possibility of heterozygous

sites in all lines. Our model also accommodates the noise associated

with next generation sequencing data by using a Dirichlet-multinomial

model to calculate genotype likelihoods (Wu et al., 2017).

For each putative mutation identified by accuMUlate, we calcu-

late a suite of statistics that might be used to identify false-positive

mutation calls (Li, 2014). In addition to statistics commonly used in

existing approaches to mutation detection, this information includes

the results of statistical tests for differences in quality control meas-

ures between sequencing reads containing apparently mutant bases

and those that contain ancestral bases.

MA experiments are frequently undertaken in order to estimate the

rate of mutation in a particular strain or species. Accurate estimates of

mutation rates require both a numerator (the number mutations de-

tected) and a denominator (the number of sites at which a mutation

could have been detected if one were present). Our probabilistic ap-

proach to mutation calling provides a straight forward means to esti-

mating this denominator. Mutations can be simulated for a given

sample at a given site by altering bases in sequencing reads from that

sample. Only those sites that generate a mutation probability greater

than the threshold used for mutation detection and pass all additional

filtering criteria used in a particular analysis should count towards the

denominator for mutation rate calculations (Long et al., 2016).

3 Implementation

The accuMUlate package is written in Cþþ and contains two execut-

able files. The main program, accuMUlate is a command line program

that takes a single genomic alignment (in BAM format) with sequenc-

ing reads from the ancestral line (if they are available) and all MA

lines as input. A number of additional arguments can be passed to

accuMUlate to customize an analysis to a particular experiment. These

arguments can be passed via the command line or through a simple

text file. accuMUlate writes information for each site found to have a

mutation probability higher than a user-set threshold. A second execut-

able, denominate can be used to calculate the number of sites at which

mutation could have been detected if one was present using the same

parameters and filtering criteria used in mutation calling.

4 Demonstration

We demonstrate the use of accuMUlate by reanalysing data gener-

ated from a previously published MA experiment. Shaw et al.

(2000) allowed several lines of Arabidopsis thaliana to accumulate

mutations. These lines have been the subject of two sequencing ef-

forts. Ossowski et al. (2010) sequenced individuals from five lines to

identify putative mutations, which they then validated by Sanger

sequencing. Subsequently, Becker et al. (2011) generated longer

sequencing reads from individuals representing 12 MA lines for an

analysis of DNA methylation. We downloaded sequencing data

from five of the lines Becker et al. (2011) sequenced, including two

lines analysed by Ossowski et al. (2010). By comparing mutation

calls generated by accuMUlate with the location of validated muta-

tions (Wei et al., 2014), we are able to demonstrate both the sensi-

tivity of accuMUlate and the degree to which the various summary

statistics reported for each site differ among validated mutations

and other putative mutants.

A summary of this demonstration is described in a document pro-

vided as a Supplementary Material. We show accuMUlate was able to

recover all validated mutations along with a number of putative muta-

tions that were not reported by Ossowski et al. (2010). The mapping

quality and insert-size statistics reported by accuMUlate differ substan-

tially between validated and non-validated mutations. We were able to

use these statistics to filter likely false positives from all lines and, using

denominate, to estimate the number of callable sites under these filter-

ing criteria. Analysing this data further produces results similar to

those reported by Ossowski et al. (2010). Our point-estimate of the

mutation rate is slightly higher (8.3 � 10�9 base substitutions per site

per generation compared 7 � 10�9 in the published work), but both

studies show a mutational spectrum that is strongly biased toward

G:C > A:T transitions. These results show that accuMUlate accurately

identifies mutations from MA experiments. The statistics reported for

each putative mutation provide researchers with a straightforward way

to detect potential false positives and denominate can generate a direct

estimate of the number of callable sites in a given experiment. The re-

producible data analysis in Supplementary Material shows how the

files produced by these programs can be used to produce the sorts of re-

sults usually reported from MA experiments. The accuMUlate distribu-

tion thus allows all of the key steps in the analysis of sequencing data

from an MA experiment to be undertaken in a single framework.
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