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Abstract

Theoretical derivation of the minimum zone criteria of sphericity error based on the principle of minimum potential energy is proposed
All the measured data points are enclosed by two concentric spherical surfaces between which a fictitious spring is assumed to be plac
These two concentric spherical surfaces can be mathematically determined by five active data points. When the spring contracts,
potential energy of the simulated mechanical system tends to reduce which yields two new concentric spheres with smaller radial separat
and new active data points. Finally, a stable state will be reached to the condition of minimum potential energy. The criteria conformin
to such a state can be derived. A direct search scheme to the global minimum solution is also proposed. The clearance between such
concentric spherical surfaces is the minimum zone of spherical form error. © 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction straightness and flatness form error based on the control

line, or control plane, rotation scheme (CLRS or CPRS)
Sphericity is a kind of form error which is broadly used which could result in the exact solutions. In this article, we

in industry for the geometrical measurement of precision have not only derived some lemmas for finding the criteria

balls. Any defects on the surface, such as surface roughnessf minimum zone sphericity error, but also proposed a fast

and form error, may result in the life reduction, wear, and computational algorithm, starting from the least squares

run-out rotation. Therefore, effective and precise evaluation result, which can direct search to the minimum zone state.

of the sphericity is an important issue.

There are various kinds of form errors, such as straight-

ness, flatness, roundness, sphericity, and cylindricity. There2. Mechanical model of minimum zone spherical

are also many kinds of evaluation techniques. Cheraghi [1] form error

formulated the straightness and flatness errors by nonlinear

optimization problems with a linear objective function and A simulated mechanical system is used to model the

nonlinear constraints. Wang [2] applied the theory of non- problem of minimum zone spherical form error. A group of

linear constrained optimization to evaluate straightness, supports are fixed at positions of measured data points and

flatness, roundness, and cylindricity. Kanada [3] computed enclosed by two fictitious concentric semi-rigid spherical

the minimum zone sphericity using iterative least squares surfaces. These supports are assumed to withstand compres-

and the downhill simplex methods. Carr [4,5] proposed sion only. The concentric semi-rigid spherical surfaces

minimum zone searching algorithms that solved a sequenceshould observe the law that they remain concentric and

of linear problems and converged to the solution of the spherical when deformed. A fictitious spring is assumed to

nonlinear one. Huang [6,7] evaluated the minimum zone be placed between them, as shown in Fig. 1, and is the only
component of the mechanical system that can store the
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Outer Spherical Fictitious center of the concentric sphere be the origin of the coordi-
Surface ] nate system, the outer sphere be the unit sphere (radius
Spring R,=1), and the radius of the inner sphereRgR = R/«

= 1/a,a > 1). Let the coordinates of these active data points
Inner Spherical be Pi(X1.¥1,21), Pa(X2:¥212), Pa(X3¥312), Pa(Xa¥aizs) and
Ps(Xs,Y5,25). For mode M4-1 the equilibrium equations of

Surface . )
: reactions are:

SF=0

N,X; + NoX5 + NaXs + NuX, — Neaxs = 0 2
Support Fixed 1M 272 33 474 5 5 ( )
at Position of EFy =0
Data Point N1ys + Noys + Nays + Ngy, — Nsays = 0 (3)

Fig. 1. Mechanical model of minimum zone spherical form error problem. EFZ =0

N,z; + Nyz, + Ngzg + Nyzy — Ngazs = 0 (4)
at the same time. 'I_'hese five active_suppo_rts are located alyhere>F, = 0, SF, = 0, 2F, = 0 mean the sum of the
the corresponding five measured points which are contactedy y, and z components of all reactions should equal to zero
by the enclosing spherical surfaces. In other words, at leastat equilibrium condition.
five points must be in contact with the two enclosing con- Let [Eq. (5)]
centric spherical surfaces. When the spring contracts, these
active supports will be replaced by new contact points and P's = (X's, ¥'s, Z's) = a(Xs, Y5, Z5) (5)
_the_elastic energy of the syste_m_ will tend to r_educe. Finally, The corresponding data poiits(X's,y's,Z's) With respect to
it will reach astab_le_ state of minimum potential energy. The P, is on the outer unit sphere (shown in Fig. 2a). Assume
problem of the minimum zone sph_e_rlcal form erroris then (he center of these two concentric spheres and the inner
transformed into the problem of minimum potential energy spherical surface are fixed and the outer spherical surface is

Of_ tl_qe_ s_imulated mt—_zchanical_ system. It can be stated aS:given an admissible virtual displacemeit From the prin-
Minimizing the elastic potential energy ciple of virtual work, we have

1
— TR 1
Uu=5 ku @ N;8u + Nodu + Nydu + Nydu = 8(5 kuz) = kudu
subjected to all supports (measured data points) enclosed by o
the two concentric spherical surfaces. In Eq. ki3,the spring Ny +Nz+ Ny + N, =ku=C=0 (6)

constant of the fictitious spring andis its displacement. Similarly, Let the center of these concentric spheres and the
outer spherical surface be fixed and the inner spherical surface
be given an admissible virtual displaceméat We have

3. Formulation of system equations 1
Ngdu = 8(5 ku2) = kudu
From the geometrical point of view, there are four modes

of concentric spherical surfaces: (1) Mode M4-1, four data Ny = ku=C =0 7)

points on the outer sphere and the last data point on the o _
inner sphere; (2) mode M3-2, three data points on the outer ©0mpining Eq.(2) to (4) and (6), (7), the system equations

sphere and the other two data points on the inner sphere; (3)°f Mmode M4-1 can be represented in matrix form as [Eq. (8)]
mode M2-3, two dgta points on the outer. sphere and the X, Xo X3 X4 — X's ’Nl‘ (0)
other three data points on the inner sphere; (4) Mode M1-4,

one data point on the outer sphere and the other four datal Y1 Y2 Y3 Ya —¥'s||[ N2 0
points on the inner sphere. Assume the current active data|
points areP; to Pg and the active supports of the simulated
mechanical system are placed at these five positions respect 1 1 1 1 0 ||N, c
tively. When these supports are released the free body| g o o o 1 ||Ng C
diagrams are shown in Fig. 2 in which reactions on the - - ©
active supports oP; to P5 areN, to Ng respectively, andp, Similarly, from equilibrium equations and the principle of
is the corresponding point on the outer surface wWhda on virtual work we have the system equations of mode M3-2 as
the inner surface. Without the loss of generality, let the [Eq. (9)]

8)

Zl 22 23 Z4 - 2,5 N3 =<0
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Fig. 2. Free body diagrams of four modes of concentric spherical surfaces: a) Mode M4-1, b) Mode M3-2, ¢) Mode M2-3, d) Mode M1-4.

(X, % x5 — x4 —x's|[N,) (0] The system equations of mode M1-4 are [Eq. (11)]
B ! ! ! ! T( \ f \
Y1 Y2 ¥s —Ya —Ys||[N2 0 Xo =Xz = Xs =Xy =Xl 0
(9) _ ’ _ ! _ ’ _ !
2, 2,23 — 7, —Z5|{N3}={0 Y1 Y2 Y3 Ya Y's || N2 0 (11)
111 0 0 [|N, C 2y —7, —73 —7, —Z5|{N3gy =40
000 1 1 |(Ns) (C 10 0 0 O [[Na| |C
L - \ J
0 1 1 1 1 ](Ns) (€]

The system equations of mode M2-3 are [Eqg. (10)] B -

_ ) Solving the system equations for each mode, we obtain the
Xg X, —X'3 =X, —X5g (N; (0) corresponding reactions on each support for each mode.
YiY2 = Y3 —Ya —Ys||N:2 0 (10)
2,2z, =25 —2, —7Z5|{N3gy =40 4. Theorem of minimum zone spherical form error
t10 0 0 ||Na C In a stable state, the reactions at all active supports must be
00 1 1 1 ](Ns) .C) compression. If the reactions are tension then the spherical
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Fig. 3. Free body diagram with one active support released.

surface and the support will separate and the system will
not be stable. In this article, the sign convention of the
reaction is positive for compression, and negative for

. . r T( ) [ A)
tension. In other words, for reactions that act on the outer | x; x, X3 X, — X's|[N;

0
spherical surface with direction outward are positive and ,
reactions that act on the inner spherical surface with Vi Y2 ¥Ys Ya —Y's|| N2 0 (13)
direction inward are positive. It can be shown that when |z, 2z, zZ3 z, —Z'5|{N3} =4{0
all the active reactions are positive (i.e., compression), | 1 1 1 1 0 [|N, 1
the simulated mechanical system is in a stable state and
has minimum elastic potential energy. 10000 1 J{Ns) (1)

Lemma l.: The smulated mephamcal system s |n 2 From Equation (13), we haveg& 1, and this equation can
stable state if all reactions at active supports are positive. be simplified to [Eq. (14)]

Proof:
Let the support at data point P on the concentric spherical | X; X, X3 X4 le X5

surfaces be released and replaced by the reabsti@nown /

o , Y1 Y2 Y3 Ya|| N2 Ys

in Fig. 3) and all other supports remain unchanged. (14)
By Castigliano’s first theorem [8] we have [Eq. (12)] 2y Zp 73 74 ||N3| = | z5

5U = N- 60> 0 (12) 111 1f[Ny) (1

where 8U is the change of potential energy of the system Let

due to the displacemeidt of the outer spherical surface at Xy Xo Xa x4_ X's Xo Xz X4

P. For a stable system, the change of potential energy of the ,

system must be positive. D= Y1 Y2 Y3 Ya D, = Y's Y2 Y3 Ya (15)
Because all supports must be enclosed by the two 2, Z, Z3 24 7's 2, Z3 24

concentric spherical surfaces. The direction of admissible 11 1 1 111 1

displacemen®u must be outward if the released active
support is located at the outer spherical surface, andExpressing in vector form, Equation (15) becomes [Eq. (16)]
inward if it is located at the inner spherical surface. From L ~ ~

Eq. (12), we can also conclude that reactirand dis- D =T1a"N2za and Dy =Tss - Naay (16)
placementu must have the same direction (i.e., reaction where

N is positive). According to the above discussion, we _

reach the conclusion that when all reactions are positive i = (%i» ¥i» 2) or (Xi, ¥i, Z)

(compression), any further deformation of the two con-
centric spherical surfaces will lead to the increase of
elastic potential energy of the system. In other words, if Ny34= T2 X T34
all reactions are positive the system is then in a stable

Fij :Fi - FJ

and the last term of above refer to the normal of the plane

state. formed by points B, Ps, and B. From the Cramer’s rule, we
Lemma 2: Mode M4-1 and M1-4 are unstable. have [Eq. (17)]
Proof:

Let C = 1 for convenience, then the system equations of N — D_1 _ T54" Nogy

mode M4-1 are [Eq. (13)] 17D Fyur o (17)
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From Equation (17), we conclude that the sufficient and Substituting Equation (23) into Equation (22) yields: [Eq. (24)]
necessary condition fa¥, > 0 is [Eq. (18)]

- (

Xl X2 X3 X’S - X,4 Nl Xl5
F14°Ny3,>0 and Tg, Nyg,>0 )
R L Vi Yo Yz ¥Y's— Y4l Na _1]Ys (24)
Or T14°Np34,<0 and Tgz°Np34<O (18) N )
Zl 22 23 2/5 - 2’4 3 z 5
This implies that R and Pg should be on the same side of N 1
the plane formed by FP5,P, (shown in Fig. 4). Similarly, |1 1 1 o U7 |
e can also conclude that [Equations (19), (20), (21
w so conclu [Equations (19), (20), @11 | i e 05);
T4 N314> 0,754 N314> OF T, N31, <0, (%, Xy Xg X'g— X'4]
Fgyr N31,<0 19 , ,
R (19 - Y1 Y2 Y3 ¥Ys5— Y4
Fag Nypp>0,T54Nypg™> OF T34 N1, <0, B 2 2, 23 Ze—74|
547 N124<0 (20) 1 1 1 0
T41°Ngp1> 0,75y  Ngpy > OF T4y°N35, <0, r .
41 321 51 321 41 321 X,5 X2 X3 X/5 X,4
Fo1 Na2y < 0 D Ve v s VsV
According to the above relations, the necessary and . 752, 23 25— 74|’
sufficient condition for N > 0 is that B and P should
be on the same side of the plane formed QyPRP,; for |1 11 0 |
N;>0, P; and P should be on the same side of the plane r , , ,
. X1 X'5 Xz X'57 X4
formed by R,P,,P,; and for N,>0, P, and Pg should be
on the same side of the plane formed byM,P;. We Bz Y's V3 ¥Vs5—VYa
then have the following conclusion: the necessary and D, = B
sufficient condition for all reactions to be positive (com- 1o =25 74
pression) is that the point'Pshould be located inside the | 1 1 1 0 |
tetrahedron formed by /P,,P;,P,. However, since - -
P,,P,,P5,P,,P's are all on the same unit sphere, the con- X1 Xp X's X'5 = X4 Xp Xz X3 X5
clusion made above is impossible. In other words, Modes N A '
M4-1 is unstable. This situation can also be applied to D; = i ¥z ¥is Ysm Y . Dy= Yo ¥a Ys Vs
mode M1-4. 2y 2, 75 Z'5— 274 2, 7, 23 75
Lemma 3: Mode M3-2 is stable if and only if R and Py 1 1 1 0 11 1 1
are on the opposite sides of the plane formed bykP; - - (25)
and the line segment 'JP's intersects the triangle o _
AP,,P,,P;; Mode M2-3 is stable if and only if Pand R are ~ Expressing in vector form, Equations (25) become [Eq.
on the opposite sides of the plane formed by, Psand  (26)]
the line segment JP, intersects the triangle formed by e
' o D D= —Tss Ny3
AP 3,P 4,P 5
Proof: Dy = —Ts4 Npss
Let C=1, then the system equations of mode M3-2 are L
(X % X3 — X4 —x's|[N;] [0 S
e /4 ,5 Nl 0 D3 = —Ts4" Nizs
Y1 Y2 Y3 —Ya Y
toe ‘ ° ’ (22) Dy= —Ts1" Moz (26)
Zl 22 Z3 - 2’4 - 2,5 N3 - 0
where
111 0 0 [|N, 1
00O 1 1 \NSJ li I’i:(xi!yilzi) or (Xi!yiizi)
Fij = Fi - F]
We have
Nt Neo 1 Mig = Tieg X Ty = (T = T) X (T; = T})
N ° From the Cramer’s rule, we have [Equations (27), (28),
Ns=1-N, (23) (29), (30)]



70

Fig. 5. Solution of case | of Mode M3-2.

N, = D, _ F5q° Nygs N D, _ F5q° Ngis

1= '~ = = 2 "~ — = =

D Tss Nz D Tsar a3

N = Ds _ s Nyps N, = D, - Fsp° Mgy

3T T~ =T = AT < T =
D Tss Nayg D Tl Nagy (27)

Case |: Whertg, * Ny5; > 0

N, >0 ifandonlyif Tg,*Ny35>0 (28)
N, >0 ifandonlyif Tg,:Nz;5>0 (29)
N;>0 ifandonlyif Fg, Ny5>0 (30)
N,>0 ifandonlyif Tgy*hy3,>0 (31)

From Egs. (28) to (31), we conclude thdt,Bhould locate
on the spherical surface, 5 as shown in Fig. 5.
Hence,

F54®Np31™> Ts1* Npz >0

1>N,>0

From Equation (23), we have [Equations (32), (33), (34), (35)]
Ns=1-N,>0

(2)
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Case Il. Wherrg, - fy3; < 0

N, >0 ifandonlyif Tg, Ny55<0 (32)
N, >0 ifandonlyif Fg,°N35<0 (33)
N;>0 ifandonlyif Tg,N5<0 (34)
N,>0 ifandonlyif Tg;-hy5,<0 (35)

In this case, the solution that satisfies Egs. (32) to (35)
does not exist.

From the above discussions, we can see that mode M3-2
is stable, and all reactions are positive if and only'if &d
P's are on the opposite sides of the plane formed by
P.,P,,P; and the line segment jP’5 intersects the triangle
AP;P,P;. Similarly, mode M2-3 is stable if and only if,P
and B are on the opposite sides of the plane formed by
P3P 4, P's and the line segment; P, intersects the triangle
AP';P',P's. These are the criteria for the minimum zone
condition of sphericity error.

5. Computational algorithm

Let’s call those five data points that determine the con-
centric spheres are active data points contained in the set S.
From Lemma 1, we know that the reactions act on the active
points should be positive. If any of these reactions is neg-
ative, it means that the potential energy can be further
reduced. In the other words, the data point of negative
reaction can be removed from the set S and new searched
data point should be added in such that they can form two
new concentric spheres having less potential energy. In
general, there may be more than one negative reaction in the
beginning of the search process. In this computational al-
gorithm, we only exchange one active point each time and
the data point which has the most negative reaction is
chosen to be removed from S. This state is called the

(b)

Fig. 6. Generating new search direction: a) for Mode T1-3, b) for mode T2-2.
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Table 1 (a)
Sphericity data set and its result

(unit: mm)

No. X Y z

1 0.81814 —0.43615 —0.38525

2 —0.80885 —0.53045 0.27905

3 0.03749 0.90643 —0.42737

4 0.86935 —0.27403 —0.42518

5 -0.50786 -0.07441 0.86060

6 0.75348 —0.67012 —0.00610

7 0.05867 -1.00773 —0.00198

8 —0.17486 0.60442 0.78297

9 0.71121 -0.50123 —0.50042

10 —0.47493 —0.51466 0.71992

11 0.06016 —0.74129 —0.67432

12 0.05337 0.02006 1.00515

13 0.29869 0.87920 0.38988

14 -0.15488 —0.86697 0.48585

15 0.38994 —0.00060 —0.92592

16 0.00776 0.73922 0.68741

17 0.62090 0.52006 —0.59341

18 0.00952 —0.03493 -1.00376

19 —0.44592 0.76584 —0.47827

20 0.01069 0.99511 0.11265

21 -0.93371 -0.17351 —0.33160

22 -0.48121 —0.69836 0.53717

23 0.50394 0.86933 0.03322

24 0.80924 0.07332 —0.59398

25 0.84569 0.06876 —0.53570

26 0.36179 -0.07902 0.93410

27 —0.78624 0.20326 —0.59063

28 —0.46529 0.69616 —0.55167

29 —0.93402 -0.02267 -0.35813

30 0.43016 0.49319 -0.76122

31 —0.46929 0.11501 0.88119

32 0.60788 -0.41130 0.68580

33 0.70712 0.46598 0.53998

34 0.67398 —0.38068 —0.63956

35 —0.06245 —0.50544 0.86696

36 —0.09577 0.96216 0.26433

37 0.29318 0.79379 0.54237

38 -0.39873 —0.68009 0.61867

39 —0.30833 —0.07805 0.94937
40 —0.70424 —0.64359 0.31476
41 0.67010 -0.17187 —0.72841
42 -0.12359 —0.70688 0.70559
43 —0.09694 0.64820 —0.75729
44 -0.13014 0.04876 0.99815
45 —0.28485 0.86262 —0.43728
16 0.16745 -0.11142 —0.98603 Fig. 7. Distribution of data points of Table 1 on the a) X-Y plane, b) X-Z
47 0.00946 —0.00746 1.00873 plane, c) Y-Z plane.
48 0.15374 —0.33634 -0.93141
49 —0.44828 0.85926 —0.25853

50 ~0.61673 —0.28843 0.73859 1. Compute the least squares solution of sphericity er-
Minimum zone error 7.66Qm ror, and find the outer and inner enclosing spherical
Least squares error 8.436n surfaces G, C; and the corresponding active data
points R and R.

2. Randomly generate two virtual data points on the
transition mode. In the transition mode, we need to search inner surface (to form a temporary transition mode
one more new data point to form concentric spheres having T1-3.
less potential energy, by the use of the proposed search 3. Compute the plane equation and its normal vector
scheme as described below. formed by those three inner active points.

The algorithm for finding the minimum zone sphericity 4. Gradually move the current sphere center along the

is as follows. above mentioned normal direction, up or down, as
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shown in Fig. 6a, until the first new point is con- 7.66 um dominated by the mode M3-2 with data points 7, 16,
tacted by the new concentric spheres determined by and 45 on the outer spherical surface and 20, 39 on the inner
this point and original four active points, forming one. With the use of the proposed direct search scheme we
mode M2-3 or M1-4. need totally only five or six iterations to get the required

5. Compute the reactions of these five active points solution. The computer time for this example is only 1.3
with Eq. (10) for mode M2-3, or Eq. (11) for mode seconds with a PC/486, DX-266.

M1-4, and discard one virtual point which has the
most negative reaction, forming mode T1-3 or T2-2.

6. If the current mode is T1-3, repeat Steps 3 to 5 to 7. Conclusions
discard the remaining virtual point.

7. If the current mode is T2-2, generate a new search  An approach with minimum potential energy analogy to
line which is the intersection of two planes perpen- the minimum zone solution of spherical form error is pro-
dicular to the inner line (fP,) and the outer line  posed in this research. The problem of finding the minimum
(PsP,) respectively, as shown in Fig. 6b. A new zone sphericity error is transformed into the problem of
active point will be found together with a new mode. finding the minimum elastic potential energy of the corre-

8. Compute the five reactions and discard the active sponding mechanical system. The minimum zone solution
point having the most negative reaction, and search can be justified by the proposed comprehensive criteria.

a new point with current mode, T2-2, or T1-3, or In this report, we have derived three lemmas to prove the
T3-1 (similar to T1-3). sufficient and necessary condition of the minimum zone
9. Repeat Step 8 until all reactions are positive. criteria. They could be implemented to solve the problem of

10. The final mode must be M2-3 or M3-2, and the minimum zone sphericity error easily. A computer program
radial separation of the concentric spheres is the is developed which provides direct and rapid search algo-
minimum zone solution. rithm. This concept can also be extended to solve other

minimum zone form error problems. Actually, it is a unified

approach for finding minimum zone form errors, such as
straightness, flatness, roundness, sphericity, cylindricity,
etc. A series of reports in this respect will be forthcoming.

It should be noticed here that the search scheme of this
algorithm starts from the result of the least squares solution
which is already very close to the minimum zone solution. The
criterion of the minimum zone solution has been proven by the
three Lemmas in this paper. In addition, from the geometrical
point of view, we will never find two groups of concentric
spheres in space both conforming to the minimum zone crite-

rion. Therefore, the proposed algomhm can be guarameed as[1] Cheraghi SH, Lim HS, Motavalli S. Straightness and flatness tolerance
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