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However, when the control input of the dyadic bilinear system ihe proposed control is applicable even if the control magnitude is sub-
multiplicative only @, = 0 in (3)), achieving asymptotic stability be- ject to a constraint
comes a very challenging problem especially when the open-loop dy- 11|
namics of (3) is unstable. The previously mentioned division controller [w(®)] € tmax, With = < Umax. @)
(4) can no longer achieve asymptotic stability for the following reason. ) ¢ ) ) )
When the control input is multiplicative only{ = 0in (3)), the origin However, when the control magnitude constraint.. is too tight,
& = 0 will fall inside the dead zone region defined py < ¢, where Fhere may not exist cgntrol parametérande that satisfy the second
according to the control law (4), no control is applied to change tf@duality in (7), especially when the open-loop system matrbas far
local stability of the origin. Hence, if the open-loop dynamics of (3) i§Way right-half-plane eigenvalues, which require large state feedback

unstable at the origin, it will remain locally unstable under the divisiofi@in# to makeA — bk stable.

controller (4). The resultant closed-loop dynamics are given by
The goal of this note is to find a new division controller to asymptoti- i y
cally stabilize a dyadic bilinear system with only multiplicative control T = [A - Fo (W) b"“’] x, where
inputs @o = 0in (3)). In a broader sense, the goal is to redesign the Ll
division controller (1) so as to ensure asymptotic convergence to the F <L) . m > € (8)
targeted equilibrium point even if this targeted equilibrium point is a ||| 0, % <e

singular point of (1). To achieve this goal for dyadic bilinear systems,
this note proposes to cascade the division controller with a modified
dead zone whossze is proportional to the modulus of the system state
It will be proved that the new design can ensure not only asymptoticin this section, one will establish exponential stability for the
stability but also exponential stability of the closed-loop dyadic biline@losed-loop system (8). The analysis consists of two steps. In the first
system. step, it will be shown that (8) iasymptoticallystable. In the second

Itis interesting to note that for the bilinear system (3) with= 0,a  step, it will further be shown that the system is in fagponentially
quadratic state feedback conti@]—[7] has been proposed to achievestable.
asymptotic stability, and recentlyrrmalizecdquadratic state feedback Definition: The state—spac®” is divided into two set® ~ and2™
control [8] is suggested to achieve exponential stability. However, alith a boundar2® (C Q™)
these controls are applicable only if the open-loop system is (neutrally) _
stable. When the open-loop system is unstable, but can be rendered Q7 ={z € R'[ly| < eI}
neutrally stable by a constant control, a switched controller is suggested ot ={x € R"|ly| > el|~||}
in [9]. In this note, the proposed division controller can be applied to Q° ={x € R"||y| = ||=|I}.
any open-loop-unstable system as long as it is controllable.

The remainder of this note is arranged as follows. Section Il intré€t {¢;} be a nondecreasing time sequence, whese denote time
duces the new division controller, which is cascaded with a state-destants when the statg(t) exits Q* to enterQ2~, andtz;4:'s time
pendent dead zone. Section IIl studies the stability property of tistants when:(t) exits2~ to enter{2". The time durations staying
closed-loop system. Section IV proposes two more division controlldfszone2~ and2* are given, respectively, by
to ensure not only exponential stability, but also smoothness of the con-
trol signals. Finally, Section V gives the conclusions. Throughout this
note,s{ A} ands { A} denote respectively the maximum and MiNiMUMHence,z(t) € 2~ whent € [ta, t2i11], anda(t) € QF whent €
singular value of a matrix.

lll. STABILITY ANALYSIS

A7 =taiqpr — to; al'\dA;r = tai42 — toit1.

(toiq41,t2it2).

The first lemma, whose proof can be found in [12, Prop. 1.4.1],
shows that the closed-loop state can grow or decay only exponentially
Il. NEwW DiviSION CONTROLLER fast.

. R . S . Lemma 1 [12]: The system state in (8) can grow or decay at most
Consider a dyadic bilinear system with a multiplicative control 'npuéxponentially[/ | 4 ® g y

& = Ax + byu, Yy =cx (5) ||I(T)||eiq(tif) <@ < ||4L'(T)||€q(tir) Vikr  (9)

whereq = || A|| + [|bF]].

where all variables and matrices are as defined in (3)c&nrd 0. As- The second lemma shows how the proportional constaffécts the
sume that the bilinear system (5) satisfies the controllability conditiQpe duration the closed-loop state can stay inside

[1], which can be easily verified by the following theorem.

Theorem 1 [10]: The dyadic bilinear system (5) is controllable if
and only if(A, b) is controllable and A, ¢) observable. H(A) = 1 /At GATT T Lo AT
This note proposes the following division controller for the control- TTAL [leA||2
lable system (5):

Lemma 2: Define a matrixH (At) as
dr (20)

and denote { H (At)} the minimum singular value af (At).

_ { —%k«’l‘, ly| > el|]] ©) )] If ¢ can be chosen such that
0, ly| < ellx| 0< e <a{H(AH} (11)
where the division controller is cascaded with a dead zone whose size is the closed-loop state will not stay insifle longer thanA¢;
proportional tg|z|| with a sufficiently small proportional constanto thatis, A7 < At.

ensure exponential stability of the closed-loop system. The controlla-l) If e can be chosen such that
bility condition in Theorem 1 ensures arbitrary eigenvalue assignment 2
[11] and stabilization oft — bk by the state feedback gain Note that 0<e < N o{H(A)} 12)
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the closed-loop state will not stay insife forever. In other
words,{)~ is not an invariant set for the closed-loop system
(8) under (12).

If € approaches zero, the time duration the closed-loop state
can stay inside2™ also approaches zero. In other words,
lim._o A (¢) = 0 forall <.

Proof: Part I) Assume the contrary; that is, the closed-loop
statez(t) stays insidel2™ for a time span longer thav¢. Hence,
one hase(t) € Q7,t € [ty, tr + At] for somet,.. Over this time
interval, u(t) 0 according to the control law (6) and, hence,
w(t) = e p(ty,) andy(t) = ce (). By definition, one
hase > |y(¢)|/||=(?)|| insideQ2™ . Taking the square of this inequality,
and integrating front;, to ¢;, + At, one obtains

1)

a(tk) x(tr)

¢z <||x<n~>||>r 130 () 2 ooy >0 @)

where H(-) is the matrix in (10), and one has used the inequality
lle*™2(t)]) < lle?™|| - ||=(x)] to derive the first inequality in (13).
However, (13) contradicts the hypothesis—(11). Hence, one concludes
thatz(¢) can not stay insid€ ~ for a time span longer that¢.

Observe that the matrid (At) in (10) is, in fact, the observability
grammian matrix of the pait4, ) with a scaler weighting /|| ||*.
Since(A, ¢) is observable according to Theorem 1, the observability
grammian matrix and hend&(At) are positive definite matrices [11].
Therefore, the minimum singular valudg H (At)} is bounded above
from zero for anyAt¢ > 0. This guarantees the existencecah (11)
given anyAt.

Part Il): If (12) holds, there exists some\¢* such that
€ < o{H(At")}. From part 1) of the lemmaz(¢) cannot stay
longer thamA¢™ inside€2™, and hence can not stay forever insi¢ie.
Consequently§2™ is not an invariant set for the closed-loop system
(8) under (12).

Part Ill) : Note thatlima; o H(At) = ¢" ¢ is a singular matrix,
and hencer{H(0)} = 0. Sinceg{H (At)} is greater than zero for
anyAt > 0, and is equal to zero fakt = 0, one concludes from (13)
that At must approach zero asapproaches zero. O

Lemma 3: If ¢cb = 0 in (5), there exists a lower bound > 0 of
AT (e) for sufficiently smalle; that is,lim. g AT (¢) > m > 0, for
all .

Proof: Assume the contrary; thatis, there exists a subsequgnce
of i such thatim._.o A: = 0 asi, approaches infinity. From part I11)
of Lemma 2, one has bothm. o A} (¢) = 0 andlim. o AT (¢) =
0. This suggests that once the state enfers it will immediately re-
turn to2~, andvice versaFor this to take place, the sign of the inne
product(c, &)|, .+ must be different from that ofc, )|, when
evaluated at neighboring pointsii™ andQ~ . However, sinceb = 0
by hypothesis{c, #)|,cq+ = ¢(A —bk)x = cAx —cb - kx = cAx =
(¢, &)|.eq—-, @ contradiction is reached. Hence, there exists a Iowélr

One can now establish the first stability property for the closed-loop
system (8). v
Theorem 2: The new division controller (6) globally arasymptot-
ically stabilizes the controllable dyadic bilinear system (5)ig suffi-
ciently small and satisfies the saturation condition (7).
Proof: One needs to discuss different cases.

Case A) The state stays it~ forever after some finite time. This
contradicts part Il) of Lemma 2 under (12). Hence, this case w
not take place it is sufficiently small.

Case B) The state stays if2™ forever after some finite time.
Since inQ2" the closed-loop dynamics is asymptotically stable by
the choice of state feedback gain«z(t) will converge asymptot-
ically to the origin in this case.
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Case C) The state switches betwe@n and2™ indefinitely. De-
fine a Lyapunov functio® () = 27 (¢)Pz(t) for the closed-loop
system (8), wher# > 0 is a positive—definite matrix in the Lya-
punov equation

(A=bk) P+ P(A—bk)=—-Q, Q>0. (14)
Fort € [t2i, t2:+1], z(t) € 7, and the Lyapunov function satis-
fies

Vir)<aV(r), x=2% H=A"P+PA  (15)
ap
Integrating (15) yields
V(tgi_;,_l) < V,(tzi)SWA: AL_ = to;41 — T2;. (16)

Fort € [tzit1,t2:42], the system—state falls in the other region
", and the Lyapunov function satisfies

- - 99
Vir) < =V(7r), == 17
ap
where(@ is from (14). Integrating (17) yields
. _ +

V(taire) < Vitgiz)e ™0 AT =toirg — tairs. (18)
Combining (18) and (16) yields

V{t2ige) < "/Y(fzi)C_vAj+rA; (19)

According to Lemma 3 and part Ill) of Lemma 2, given any small
number( < ~m, there exists ar" such that for alk < ¢*, one
has

—AT () + 7AT() < —ym +C. (20)
Substituting (20) into (19), one has
Vitaigs) < Vitai)e ™ ym > (21)

Since the time instants;’s are not equally spaced, one concludes
from (21) thatV (¢2;) approaches zero onlgsymptoticallybut

notexponentially Finally, using Lemma 1, one can show that the
continuous state(t) also approaches zero asymptotically in Case

C)

After considering all the aforementioned cases, one concludes that
the state trajectory:(t) must converge to zero asymptotically, and
Ihence the closed-loop system is asymptotically stable.

To prove that the controlled system is in fact exponentially stable,
observe that the closed-loop state equafios f(x) in (8) is homo-
geneous of degree one; that f§\») = \f(x) for any real number
# 0. One can, therefore, quote the following stability result from
bound forlim, o A7 (¢). O 1 . . )

Lemma 4 [13]: If the state—space origin of the system= f(x),
x € R",is asymptotically stable, anlis homogeneous of degree one,
the system is globally exponentially stable.

An immediate consequence of Theorem 2 and Lemma 4 is that the
proposed division control actualgxponentiallystabilizes the system.

Theorem 3: The new division controller (6) globally arekponen-
tially stabilizes the controllable dyadic bilinear system (5) under the
ﬁlaturation condition (7).

To verify the new division controller design, one presents a simula-
tion example.

Example: Consider an open-loop unstable dyadic system (5) with

O

a=[2 0] e=[4] emnnn
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! which results in a closed-loop dynamics
T = {A - B <ﬁ> bk] x, where
&€
2 p > €
F (7lli||> :{ L (23)
‘ Sl Tl = €
D L
The seconaontinuouddivision controller is given by
05¢ U = — #k:v (24)
y* + e*f|x]]?
which results in a closed-loop dynamics
18 06 w04 02 0 02 04 05 08 1
i o &= [4 -F ( > bk] x, where
Fig. 2. Phase portrait with new controller (6). (||

2
and the initial condition:7 (0) = [10, 10]. For the purpose of compar- Il v* +ellel
ison, one first tests the division controller (4) with = 0 in [4], in Notice that the control signal from the controller (22) is continuous at
which the dead zone has a constant width 0.1, and the state feed- || = ¢||z||. However, the time derivatives of the control signal are still
back gaink = [3.25 1.25] is chosen to place eigenvaluesdf- bk discontinuous aly| = €||z||. This situation is improved in the second
at—0.5+ 2j. The phase portrait in Fig. 1 shows that the controller (Qontroller (24), which generates control signals that have continuous
with do = 0 drives the system state to approach a limit cycle. Thefime derivatives up to any order af| = «||]].
one tests the proposed division controller (6) in this note, which usesThe same stabilizing property as in Theorem 3 can be established for
the same design parameters as in (4) except that the size of dead zoftsisbove two continuous division controllers. Instead of presenting te-
now proportional to the modulus of the state witk= 0.1. The phase dious stability analysis for the continuous division controllers, one can
portrait in Fig. 2 shows that the new controller (6) can now drive thgse a simple graphical comparison of fig-), F (-), andFs(-) in (8),
system state to zero asymptotically (in fact exponentially). (23), and (25) to motivate the continuous control designs in (22) and
(24). Itis seen from Fig. 3 thaf (-) and F»(+) are simply continuous
interpolation functions in replacement of the discontinuous dead zone
V. CONTINUOUS DIVISION CONTROLLERS function Fy (-), and the smaller is, the bette; (-) andF(-) approx-
Even though theliscontinuoudivision controller (6) proposed in imateFy(-). Therefore, it is not surprising that the continuous division
Section Il successfully stabilizes the system, it has a disadvantagentrollers (22) and (24), which udé (-) and F»(-), respectively, to
the control generates discontinuous signallg/pt= ¢||z|| due to the replaceFy(-), will have the exponentially stabilizing property fis
discontinuity of the dead zone. Since discontinuous control signalsmall.
not acceptable in many practical applications, teatinuougdivision

controllers are suggested as follows to ensure continuity of the control V. CONCLUSION

signal at any time instant. . L . _—
The firstcontinuoudivision controller is given by . This note pre;ents new d|y|3|on COI’]tI.’0||eI’ designs fd'yadl.Cbl_ .
linear system with multiplicative control inputs only. Conventional di-

, vision controller design uses a constant-width dead zone to avoid the
) = _Jk,‘”’ lyl > el (22) singularity problem. This note proposes using a dead zone whose size
— byl < el is proportional to the modulus of the system state. Such a control design
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successfully achieves exponential stability under the controllability as- A Result on Common Quadratic Lyapunov Functions
sumption of the bilinear system.

The future work is to extend the control design in this note to division ~ Robert Shorten, Kumpati S. Narendra, and Oliver Mason
controllers for more general nonlinear systems when the targeted equi-

librium point is a singular point of the division controller. Such cases Abstract—in this note, we define strong and weak common quadratic
can be found in the feedback linearization control when the nonlin@af,unov functions (CQLFs) for sets of linear time-invariant (LTI) sys-

system does not have a well-defined relative degree. tems. We show that the simultaneous existence of a weak CQLF of a special
form, and the nonexistence of a strong CQLF, for a pair of LTI systems, is
characterized by easily verifiable algebraic conditions. These conditions are
found to play an important role in proving the existence of strong CQLFs
[1] M. VidyasagarNonlinear Systems AnalysisUpper Saddle River, NJ: for general LTI systems.

Prentice-Hall, 1993. : i e ; ;

P ) . Index Terms—Quadratic stability, stability theory, switched linear sys-

[2] R. R. Mohler, Bilinear Systems Upper Saddle River, NJ: Prentice- tems —< vy y 24 4

Hall, 1991, vol. II, Applications to Bilinear Control. '
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1989.
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Automat. Contr.vol. AC-26, pp. 917-921, Aug. 1981. . Theexistence or nonexistence of common quadratic Lyapunov func-
[5] M. Slemrod, “Stabilization of bilinear control systems with application

to nonconservative problems in elasticit&IAM J. Control Optim.vol. Yions (CQLFs) for two or more stable linear time-invariant (LTI) sys-
16, pp. 131-141, 1978. tems is closely connected to recent work on the design and stability of

[6] J.P.Quinn, “Stabilization of bilinear systems by quadratic feedback coswitching systems [1], [2]. In this context, numerous papers have ap-

- EOE"RJ- MathaAN”aJ'- /SPPL-,VO'-h75’ 9%- 66-80, %9?0-” abilizing (geared in the literature [2]-[6] in which sufficient conditions have been
. P. Ryan and N. J. Buckingham, “On asymptotically stabilizing feeds . . - .
back control of bilinear systems|EEE Trans. Automat. Contrvol. erived under which two stable dynamical systems

AC-28, pp. 863-864, Aug. 1983. _ e _

[8] M.S.Chen,“Exponential stabilization of a constrained bilinear system,” Yagx= Az, A eI, i €{1,2}
Automaticavol. 34, no. 8, pp. 989-992, 1998.

[9] Z.G.Li,C.Y.Wen, and Y. C. Soh, “Switched controllers and their aphave a CQLF. If the matri® = P” > 0, P € R"*", simultaneously

plications in bilinear systemsAutomaticavol. 37, pp. 477-481, 2001. i ofi ikl A — —O). 5 1 9
[10] M. E. Evans and D. N. P. Murthy, “Controllability of a class of dis-SatISerS the Lyapunov equationts L + P4, Qi € {12},

REFERENCES

. INTRODUCTION

’ T . .
crete-time bilinear systems|EEE Trans. Automat. Confpp. 78-83, WhereQ: > 0, thenV (x) = 2~ Pz is said to be a strong CQLF for
Jan. 1977. Y4, andZ,4,. If Qi > 0fori € {1,2} thenV (z) is said to be a
[11] F. Callier and C. A. Desoerlinear System Theory New York: weak CQLF. This technical note considers pairs of stable LTI systems
12 gprsingter-Ver(lja’a, égzl- Adaptive Control, Stability, C dfor which a strong CQLF does not exist, but for which a weak CQLF
[12] Rbbﬁzt%zg Upbe(r)szoddlj %i'\\,/:r Nog rgr’emﬁ:é_'Hyé” ig\ggence’ aNlexists where-(); and—Q)- are both negative semidefinite and of rank
[13] W. Hahn,Stability of Motion New York: Springer-vér|ag’ 1967. n — 1. We derive a result that can be used to determine necessary and

sufficient conditions for the existence of a strong CQLF for certain
classes of stable LTI systems.

Il. MATHEMATICAL PRELIMINARIES

In this section, we present some results and definitions that are useful
in proving the principal result of this note. Throughout, the following
notation is adopted

IR andC fields of real and complex numbers, respectively;

R" n-dimensional real Euclidean space;

R™>" space of» x n matrices with real entries;

x; ith component of the vectarin IR";

aij entry in the(4, j) position of the matrix4 in R™*™.

Where appropriate, the proofs of individual lemmas are presented in
the Appendix.

i) Strong and weak common quadratic Lyapunov functionSon-
sider the set of LTI systems

Yagd = A, i€{L1,2,...,M} @

Manuscript received February 11, 1999; revised October 19, 2000, May
19, 2002, and August 13, 2002. Recommended by Associate Editor V. Bal-
akrishnan. This work was supported by the European Union funded research
training network Multi-Agent Control under Grant HPRN-CT-1999-00107
and by the Enterprise Ireland Grant SC/2000/084/Y. This work is the sole
responsibility of the authors and does not reflect the European Union’s opinion.

R. Shorten and O. Mason are with the Hamilton Institute, NUI Maynooth,
Co. Kildare, Ireland (e-mail: Robert.Shorten@may.ie; Oliver.Mason@may.ie).

K. S. Narendra is with the Center for Systems Science, Yale University, New
Haven, CT 06520 USA (e-mail: Kumpati.Narendra@yale.edu).

Digital Object Identifier 10.1109/TAC.2002.806661

0018-9286/03$17.00 © 2003 IEEE



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


