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Abstract - Previously, apaper is suggested to reduce the 
chattering of sliding mode conhwl by on-line a4usting 
the widrh of the boundaiy layer based on the state norm 
of an uncertain linear system. It is claimed that the new 
design can effectively eliminate chattering while at the 
same time ensuring almost perfect control accuracy In 
this note, simulations are presented to show that the 
state-dependent boundary layer design is effective only if 
the system is subject to state-dependent uncertainties and 
no external disturbance. 

Keywords : variable structure system, sliding mode 
control, boundary layer control, chattering, control 
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1 Introduction 
Sliding mode control is known to be robust against 

parameter uncertainties and external disturbances [1,2,3]. 
However, for the sliding surface to be attractive, a 
switching function must be used in the control law, 
which causes chattering of the control signals. In order to 
reduce chattering, one can introduce a boundary layer 
[4,5] around the sliding surface. Inside the boundary 
layer, the discontinuous switching h c t i o n  is 
interpolated by a continuous function to avoid 
discontinuity of the control signals. The width of the 
boundary layer is normally constant, and the larger the 
boundary layer width, the smoother the control signal. 
Even though the boundary layer design alleviates the 
chattering phenomenon, it no longer drives the system 
state to the origin, hut to a small residual set around the 
origin. The size of the residual set is determined by the 
width of the boundary layer: the larger the width of the 
boundary layer, the larger the size of the residual set. As 
a consequence, there exists a design conflict between 
requirements on the smoothness of control signals and on 
the control accuracy. For smoothness of the control 
signals, a large boundary layer width is prefemd but for 
better control accuracy, a small boundary layer width is 
preferred. 

For a review of the various designs that aim to 
reduce chattering of sliding mode control, one can refer 
to [6]. In Particular the authors in [6] propose scheduling 

the boundary layer width based on the system state; 
forming a "closed-loop'' tuning of the boundary layer 
width. It is shown that under certain design parameter 
considerations, the closed-loop system can still be 
exponentially stable with this state-dependent boundary 
layer design conhol. However, it is recently found that 
the simulation results in [6] are not correct because of the 
wrong use of integration algorithm. In [6], the authors 
use the Matlab ODE45 (ODE solver) to simulate the 
continuous plant and the controller, for which the 
integration time step is variable (self-adjusted). 
Unfortunately, this self-adjusted time step scheme led us 
to an incorrect observation that the control chattering 
gradually disappears when the state approaches the origin 
along the sliding surface. In this note, we re-run the 
numerical examples, simulating more realistic situations : 
digital implementation of the sliding mode control for the 
continuous plant, in which the continuous plant dynamics 
is simulated with a4" Runge-Kutta scheme with a fix3ed 
integrated time step At = 0.001 second, and the sampling 
time for digitally implementing the sliding mode control 
is T=o.o5second. With the new simulations, it is found 
that the control chattering does not disappear as the state 
approaches the origin when there is persistent external 
disturbance. The chattering will gradually disappear as 
the state approaches the origin only when the system has 
state-dependent uncertainties but void of external 
disturbances. As a result of this finding, we need to 
modify OUT claim, although all proofs in [6] remain 
correct, as follows: The state-dependent boundary layer 
design proposed in [6] is able to eliminate the control 
chattering while ensuring almost perfect control 
accuracy only under the condition that there are 
state-dependent system uncertainties but void of external 
disturbances. 

The remainder of this paper is organized as follows. 
Section 2 reviews the switching sliding mode control for 
linear uncertain systems. Section 3 examines the 
constant-width and decaying-width boundary layer 
controls. Section 4 introduces the state-dependent 
boundary layer control in [6], and presents the new 
simulation results. Section 5 gives the conclusions. All 
the proofs of lemmas and theorems can he found in [6]. 
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2 Switching Sliding Mode Control 

Consider a switching' sliding mode control design 

X =  AX+ B(u+ A& + d ) ,  x(O)= xo, (1) 
for a linear system with "matching" uncertainties [7], 

where x E R" is the system state, u is a scalar control 
input, A €  R""" and B E R "  are nominal system 
matrices satisfying the controllability condition [XI, 
uncertainty is possibly timevarying, and d 'an 
unknown disturbance. The system uncertainties are 
bounded by two known constants : 

Note that one can always perform a state transformation 
such that the controllahle pair 
(A, B)  is in the controller canonical form [SI: 

The objective of sliding mode control is to regulate 
the state x in ( I )  to zero, and this is achieved by a 
two-stage control design. 
Stage I : design of the sliding variable. 
augmented state 

First define an 

v=x, ,or  v =  [x,dr (4) 

and choose the sliding variable as 
s = CX+C,V,C = [ C I , C 2 , C ,  ,......) 11, ( 5 )  

= x,  +c,_,x,_, f ..... + clxl + co [ x , d r ,  

- - xy" +c "-1 X ( n - 2 )  I +.....+ C , X l + C , ~ X , d ~ . ( 6 )  

where the coefficients cis are chosen such that the 
differential equation (6) is stable (has only left-half plane 
characteristic roots). The purpose of adding an integral 
term in (6) is for the special m e  when the system 
dimension n = 1. Note from (3) and ( 5 )  that CB = 1. 

The differential equations (4)  and (6) can be cast 

into a state space form : 

E R", (7) 

and matrices F and G are in controller canonical form : 

Since the differential, equation (6)  is stable by the choice 
of the coefficients cis , the matrixF in (7) is stable. 

Several results regarding (7) that will be repeatedly 
used in later sections are listed below. Firstly, given the 
stable matrix F in (X), there exist positive constants m 
and CL such that 

where a is treated as a control design parameter since its 
value is determined by the choices of c,s in (6) .  
Secondly, given any positive constant 
u 2 - Re[A (F) ]  > 0 , where Re[A, ( F ) ]  denotes the 
real part of eigenvalues of F, there exists a positive 
defmite matrix PER""" satisfying the following 
Lyapunov inequality: 

( - F - U Z T P + P ( - F - U Z ) S  0, 

u t - Re[A, ( F ) ]  > 0,Vi. . (10) 
Finally, from linear system theory [8], the state in (7) 
satisfies 

z( t )  = e"z(O)+ Ie"'l-r)Gs(=)dr. 0 (11)  

Stage II : design of the conhol input Thestable state 
space equation (7) suggests that if the sliding variables 
can be driven to zero by some control design, the state z 
will decay to zero. Therefore, one chooses the following 
"switching" sliding mode control to drives to zero: 

11 = - u s  - C& - CAX - p(x)f ,  (s), (12) 

Where u > 0,s is the sliding variable,- - 
p(x)=p,(E xl+E) ,p,> 1, with E and D given 
by (Z), and lo 1s) a switching function: 

Lemma 1 131: If the switching sliding mode control (12) 
is applied to the uncertain system (I), there exists a finite 
time To such that Is(t)l= 0 for all 1 > To . 

Once s(t) becomes zero according to Lemma 1, the 
state z in (7) starts to decay exponentially, and so does 
the statex ili (1). 

Theorem 1 131: Ifthe switching sliding mode control (12) 
is applied to the uncertain system (I) ,  the system statex 
will converge to zero exponentially. 
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3 ConstantLDecaying-Width 
Boundary Layer Control 

In practical implementation of the switching control 
(12), the imperfect switching of the discontinuous 
function f,,(s) = sgn(s) causes the control signal to 
chatter [3]. Such chattering may bring damage to the 
actuator or excite high-frequency unmodelled dynamics. 
To alleviate the problem, a boundary layer around the 
sliding surface s = 0 is suggested to smooth the control 
signal. The result is the so-called boundary layer control: 

where the discontinuous function f,, (s) = sgn(s) in 
the switching control (12) is now replaced by a 
continuous function 

u = - ~ s - c , , x , - c A x - p ( x ) f , ( s )  (14) 

in which E,, e?' is the width of the houndary layer, 
which decays exponentially to zero whenz # 0, and 
remains constant when IT = 0. 

Lemma 2 : If the boundary layer control (14) is applied 
to the system ( I ) ,  then 

IfITchosen to he positive, it is a decaying-width 
boundary layer design. In this case, exponential stability 
of the controlled system is guaranteed by the wntrol 
(14). 

Theorem 2: If the decaying-width boundary layer 
control (14) (72 > 0) is applied to the uncertain system 
( I ) ,  the system state x will converge to zero 
exponentially. 

If IT is chosen to be zero, it is a constant-width 
boundary layer design. In this case, the so-called 
practical stability is guaranteed in the sense that given 
any small neighborhood of the origin, there always exist 
control design parameters in (14) such that the state will 
eventually be trapped in the specified neighborhood. 

Theorem 3: If the constant-width boundary layer control 
(14) (72 = 0) is applied to theuncertain system ( I ) ,  the 
system state x will asymptotically approach a residual set 
aroundthe origin, with the size of the residual set 
proportional to E,, /(Po - l),p0 > 1 . 

4 State-Dependent Boundary Layer 
Control 

In [6], a new boundary layer design is proposed for 
the sliding mode control, in which 
the width ofthe boundary layer is proportional to the 
state normllxll. Hence, it is called a state-dependent 

boundary layer wntrol: 
u = -(rs -cg, -cAx - p(x)f2(s) 

+7;GrPz i gfllGrPe,, 
where Pis as in (IO), G as in (8), z the state in(7), 

r,ll=El I @ , , - l ) > O , q o = E , / @ , - l ) > O ,  

in which El > 0 and I .  Since E,,= 0, the boundary 
layer width in (18) is approximately proportional to the 
state nornllzll, . The reason for adding this small E,, in 
the boundary layer width is to prevent f (.) liom 
degenerating into the discontinuous sign (.) function 
when the state z has decayed practically to zero. Note 
that there are two extra feedback terms (tbe last two 
terms) in the new control (17), which serve to ensure that 
the inequality (19) in Lemma 3 below holds. 

Lemma 3 : If the new boundary layer control (17) is 
applied to the uncertain system ( I ) ,  the sliding variable s 
will be bounded by, for all t > 0, 

Is(t)j 5 7, I I ~ ( f ) l l ,  +'lo +Js(O)le-"', 

71 =%/(Po-I).flo = & o ~ ( P o - l )  (19) 

Lemma 4 (Bellman-Gronwall's Lemma) [18]: If a 
continuous function f(t) t 0 satisfies 

f ( t ) s b ( r ) +  lk(r)f(r)dr , t lr  21, 

where and are continuous and non-negative for all t >- to, 
then 

Substituting the result of Lemma 3 into (Il), and 
using the above Bellman-Gronwall's Lemma, one can 
establish the following stability result for the 
state-dependent boundary layer control. 

Theorem 4: Consider the uncertain system (1) and the 
state-dependent boundary layer control (17). If the 
control design parameters are chosen to satisfy 
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where a and m are as in (9), C p i s  the maximum 
singular value of P in (IO), F is given by (S), then the 
system statex will asymptotically approach a residual set 
around the origin, with the size of the residual set 
proportional to E ~ .  

As mentioned in the Introduction, the variable 
integration time step used for solving the controlled-plant 
dynamics in [6] is not correct. Hence, in the following 
simulation examples, the system dynamics is simulated 
with a 4" Runge-Kutta scheme with a fixed integration 
time step At = 0.001 second, and the sampling time for 
digitally implementing the sliding mode control is T = 

0.05 second. 

Example I : state-dependent boundary layer width with 
no disturbance 

Consider an open-loop unstable system with 
uncertainties 

(21) 
f, = x2 

f2 = u + A E x ,  
where the parametric uncertainty 4E= 3 .  Figure 1 
shows the simulation results of the digital 
implementation of a constant width boundary layer 
design(l5) in [ I ]  with = 0.001.n = O,E= 5 ,  

= 0. pa = !.c = Zand c0 = I. c1 = 2.c, = I in (6). It is 
seen from Figure 1 that Chattering does show up because 
of the large sampling time (0.05 second), and the 
chattering amplitude dwindles as the state approaches the 
origin. To remove this chattering, one has to increase the 
boundary layer width up to a value E, = 0.5. However, a 
large value of E~ results in a large steady state error of 
r(t)lJ as shown by Figwe 2, where 1im,+- x(q 1 0.34 . 

h e  third simulation shows the digital in&eientation 
(still a 0.5 second sampling time) of the proposed 
state-dependent boundary layer design (18) with 
E~ = 0 . 0 0 1 , ~ ~  = 0.4. All the other design parameters and 
simulation conditions are the same as the contant-width 
boundary layer design. The results are plotted in Figure 3, 
which clearly shows that our proposed design has 
successfully eliminated the chattering in this case, and 
most importantly the system state approaches almost zero 
exponentially. 

Example 2 : - with persistent external disturbance 

Cinsider another system 
i, =x2 

f, = u + d  
where the disturbance d(f )=s in( t )  . In the mistaken 
simulation ( a variable integration time step) of the 
constant width boundary layer control (15) in [6] 
( E, =0.001 ), the control chattering gradually 
disappears as the state approaches the origin, as is shown 
in the upper plot of Figure 2 in [6]. Here, we re-run the 
simulation with a fixed integration time step as 

mentioned above. Figure 4 depicts the new simulation 
results of the digital implementation of the constant 
width boundary layer control (15) with all control 
parameters the same as in [6]. It is seen that under the 
correct simulation condition, the control chattering 
persistently exists in the case of a non-vanishing 
disturbance. Figure 5 then show the new simulation 
results of the state dependent boundary layer design (1 8) 
with E~ = 0.001,~, = 0.4. Comparison of Figures 5 and 4 
shows that the state dependent boundary layer design 
cannot remove chaffering effectively in the case of a 
non-vanishing disturbance. 

5 Conclusions 

The new simulation results in this note indicate that 
removing the control chattering and acquiring almost 
perfect control accuracy at the same time is achievable 
for the sliding mode control when the system is subject 
to state-dependent uncertainties only. However, this goal 
becomes much more difficult when the system is subject 
to persistent external disturbances.Further research is still 
required to solve this dilemma. 
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Figure 1 ,  small boundary layer width design 
(&, = 0,001) 

Figure 3. State-dependent boundary layer design 
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Figure 4. Constant-width boundary layer design 
(with disturbance) 

Figure 5. State-dependent boundary layer design 
( with disturbance ) 
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