FAST COMPUTATION ALGORITHM FOR ROBOT
DYNAMICS AND ITS IMPLEMENTATION

Han-Pang Huang

Dyi-Rong Duh

Robotics Laboratory

Department of Mechanical Engineering

National Taiwan University
Taipei, Taiwan 10764, China

This paper proposes an architecture of parallel processing to increase
the computational speed of the matrix/vector operation for robot dynam-
ics. The system is formed by nine processor elements with X-bus and
Y-bus. This array processor is able to achieve zero data transfer time by
using data sharing on the bus. The multiplication of 3x3 rotation matrices
requires only three multiplications and two additions. The vector inner
products and vector additions can be performed in one multiplication and
two additions (or one addition), respectively. It will be shown that the pro-
posed architecture is more economic and mote efficient than other existing
approaches. Furthermore, the above architecture has been implemented on
three IBM-PC boards by using Intel 8088 CPU.

1. Introduction

The robot dynamic equation requires a large amount of elementary
operations, such as additions, subtractions and multiplications. In partic-
ular, the complexity of the robot dynamics computation is due to many
vector and matrix operations. In general, these operations are inevitable
and cannot be efficiently computed by a general-purpose computer with a
uni-processor. In order to achieve fast computation, two approaches. can
be adopted: (1) use of efficient algorithm for the robot dynamics, such as
Newton-Euler [1,2]; (2) use of the high-speed computer. The second ap-
proach can be achieved by either improving the manufacturing technology
of computer chips so that the processor can operates at high clock rate, or
using multiple processors, or using both. This paper aims to develop a par-
allel processing architecture for the robot dynamics based on the efficient
Newton-Euler formulation.

The parallel processing technique can be fallen into pipelined architec-
ture and multiple processors. Lathrop [8], Lee and Chang [9] proposed a
systolic piplined architecture for the computation of the robot dynamics.
They are conceptually implemented on VLSI devices. In their approaches,
although only 15 multiplications and 38 additions of the initial delay time
and 1 multiplication and 2 additions of the: pipelined time are required
for a six degree-of-freedom robot, a lot of processors, e.g. 530, and delay
buffers should be used. Thus, it is very expansive and impratical for current
technology. In addition, their architectures are unique for a specific robot
and make them less flexible. Also, the architecture proposed by Lathrop
[8] and Lee [9] does not consider the time delay due to data transfer and
the computation for the trigonometric functions. Alternatively, Kazanzides
[7] proposed a SIERA architecture in terms of multiple processors. Basi-
cally, SIERA is a trade-off between the loosely-coupled architecture and
tightly-coupledsarchitecture. It also takes into accourit the flexibility of
applications. However, the number of required processors and the number-
of links are still considerably large.

» In order to overcome the above drawbacks, this paper develops a par-
allel processor to increase the computation speed of the matrix and vector
operations with limited amount of processor elements and great flexibil-
ity. It will be shown that the multiplication of two n by n matrices can
be computed in O(n) time (e.g., the multiplication of two 3 by 3 rotation.
matrices only requires 3 multiplications and 3 additions) and without local
data transfer delay. The proposed architecture is implemented on three PC
boards by using nine Intel 8088 CPU to demonstrate its feasibility. The
robot dynamics of the PUMA 560 are also performed on this architecture.

2. Hardware Architecture
Robot dynamics characterize the motion behavior of the robot. In
general, the robot dynamics can be classified into direct dynamics and
inverse dynamics. Given generalized torque/ force find the robot motion,
i.e. the position, velocity and acceleration, is referred to as direct dynamics.

On the other hand, given the robot motion find the generalized torque/force
is referred to as inverse dynamics. We will focus on the inverse dynamics
problem by using the efficient Newton-Euler algorithm.

The efficient Newton-Euler algorithm includes trigonometric, matrix
and vector operations. ‘The major computational load arises from matrix
and vector operations. These operations are: addition of vectors, scalar
product of vectors, cross product of vectors, multiplication of vector and
matrix, addition of matrices, multiplication of matrices, and multiplica-
tion of vector and scalar. In particular, the computation time of matrix
multiplication is considerable. For a uni-processor, i.e., SISD {Single In-
struction Single Data) architecture, the multiplication of two nxn matrices
is described as

n-1
cij=y auby for0<i<n—1, 0<j<n—1
k=0
or equivalently in pseudo code as [4]

for i—0 to n-1 do

for j—0 to n-1 do begin

cij ~— 0; //initialization//

for k+0 to n-1 do)

cij « cij + aigbyj; //scalar operation//

end;

The complexity of this method is O(n®), but only one processor is required.
Alternatively, an array processor can be used to perform the same opera-
tion with less computational complexity. An array processor is composed
of several similar processors to perform operations simultaneously. It is
also called a SIMD (Single Instruction and Multiple Data) computer. The
structure of an array processor includes a control unit (CU), a control
unit memory (CUM), processor elements (PEs), processor element mem-
ories (PEMs), and communication network. CU is dedicated to process
program. It fetches instructions from CUM and passes data to PEMs for
PEs. The data transfer between PEMs is through communication metwork.
Theoretically, an array processor made of n PEs can achieve n times com-
putational speed in contrast to a uni-processor. However, the n times upper
bound is usually restricted by data transfer time.

Consider the above matrix multiplication example. The SIMD-LA
(Linear array) -structure [3,4] is of computational complexity O(n?) and
n processors_are used. The total data transfer is 2n(n-1). The SIMD-
MC (Mesh-Connected SIMD model; 2 dimensions) structure [4] requires
n? processors and 2n? links. The total data transfer is up to n?+n-2
But, its complexity is only O(n). The SIMD-CC (Cube-Connected SIMD
model) structure [3,4] requires n® processors with complexity of O(logz n).
The multiplication is performed only once. However, it requires 5logzn
data transfér, 4logen bit functions, 4logan bit-complement functions, and
%nslog;n links. It is clear that these array processor structures can greatly
reduce the computational complexity at the expense of increasing” data
transfer and processor links. *

In order to design an efficient array processor, the compromise between
computational complexity, the number of processors, the data transfer and
the processor links should be taken into account. We propose a new ar-
ray processor structure, as shown in Fig.1. The architecture looks like
a two dimensional array processor; however, there are no communication
networks and common memories in the structure. All processor elements
transfer their data through X buses and Y buses. Data on each X bus
or Y bus can be simultaneously shared by n processor elements; but only
one processor among these n processors can have outgoing data. It will
be shown that the multiplication of two n by n matrices can be computed

—352—

-

in O(n) time (e.g., the multiplication of two 3 by 3 rotation matrices oniy
requires 3 multiplications and 3 additions) and without local data transfer
delay. Since the matrices and vectors considered in the robot dynamics are
3x3 or 3x1, n is equal to 3 in the following development, The proposed
structure only requires n? processors. Each processor element can be a
32 bit (or other) processor. Its structure is shown in Fig.2. AR register
is used to store operand A (matrix, vector or scalar); BR register is used
to store operand B; and CR register is used to store the result. CMR
is the command register. It stores the executable commands. Since each
PE has its own command register, each PE can perform different opera-
tions simultaneously. In addition, each PE has a floating-point adder and
a floating-point multiplier. Thus, the addition and multiplication can be
concurrently processed.

The floating-point adder in each PE is shown in Fig.3. The operation
of the adder is as follows: (1) Compare the size of two exponents; the
smaller exponent is shifted right so that the two exponents are equal. (2)
Add the fraction parts of the two nunibets; the resultant exponent is set to
the exponent obtained from step 1. (3) Shift the resultant exponent until
the MSB is equal to 1; add the number of shifted bits (positive for right

" shift and negative for left shift) to the exponent.

The floating-point multiplier in each PE is given in Fig.4. The opera-
tion of the multiplier is as follows: (1) Add the exponent parts and subtract
the fraction parts of the two numbers. (2) Shift the resultant fraction part
until the MSB is equal to 1. (3) Add the number of shifted bits (positive
for right shift and negative for left shift) to the resultant exponent.

The proposed array processor can be implemented on a single chip by
using current semiconductor technology. Although the systolic pipelined
structure proposed by Lathrop [8] and Lee [9] could be implemented by
using advanced semiconductor technology in the future, it suffers from less
flexibility. For example, the structure for solving the inverse kinematics
of the PUMA arm [9] is applicable only for PUMA arm. Whereas our
structure can be applied to different robots.

3. Algorithms

The Newton-Euler formulation of the robot dynamics mainly involves
the operations of addition of vectors, scalar product of vectors, cross prod-
uct of vectors, multiplication of vector and matrix, addition of matrices,
multiplication of matrices, and multiplication of vector and scalar. We use
the proposed array processor to perform these operations. The algorithm
of each operation is described in the following.

Matrix Multiplication

The multiplication of two nxn matrices, A and B, is still an nxn
matrix C. Namely,

Q0,0 ag,1 ag,n-1

a0 a1 a3 n-1 .
. . . X

An-.1,0 CGn-1,1 Gn-in-1
b0 by o ben-1

[bio by byn-1]

bao1,0 ba11 ba_in-1
€o,0 (Y e Con-1

[€10 €11 Cln-1]

Cn=1,0 Cn-1,1 Cn-1,n-1

The memory allocation of this operation is given in Fig5. All matrix
elements are equally placed in the lotal memory of each processor. Note
that the memory allocation is exactly the same; as the element location of
the matrices. The elements of matrices A and B are stored in registers AR
and BR, respectively. The result is stored in register CR.

The algorithm of the matrix multiplication is as follows.

par for i~0 to n-1 do

par for j—0 to n-1do

cj —0; -

for k0 to n-1 do

par for i—0 to n-1 do

par for j«—0 to n-1 do

¢ij — Cij + aikbej;
where par denotes parallel processing. The procedures of the parallel pro-
cessing are shown in Table 1. The data appeared on X bus and Y bus are
given in Table 2. At the kth operation, the data on the X; bus, a;&, can be
simultaneously used by processors PE; g, -+, PE;n_1; and the data on the
Y; bus, by;, can be simultaneously used by processors PEq j,- - JPE,_1;-
Thus, the multiplication of two nxn matrices exists no time delay for data
transfer. That is why we call it "zero time data transfer.” Obviously, the
computational complexity of the proposed structure is O(n). The struc-
ture requires n? processors and 2n buses. Since the adder and multiplier in
each processor element can be processed in a pipelined way, only n+1 flops
computational procedures are required, as shown in Table 3. For n=3, the
matrix multiplication only takes 3 multiplications and 3 additions. If the
pipeline is used, only 4 operations are required.

The memory allocation for vector addition is given in Fig.6. The al-
gorithm is as follows. .

par for j—0 to 2 do

¢; — aj +bj;
The array processor can perform addition for three different sets of vectors
simultaneously but only one addition is required.

Scalar Product of Vectors

The memory allocation for scalar product of vectors is given in Fig.7.
The algorithm is as follows.

par for j—0 to 2 do

cj — aj X bj;

for j—1to 2 do

co « Cg + €55 .
The array processor can perform scalar product for three different sets of
vectors simultaneously but only one. multiplications and one addition are
required.

Cross Product of Vectors

The memory allocation for cross product of vectors is given in Fig.8.
Although the allocation is not in order, the required time for the data
transfer from host to the register of the matrix processor does not increase.
The algorithm is as follows.

par begin

coo = @1 X ba;

cop — az X by;

¢10 — az X bo;

c11 — ag X ba;

cg0 — ap X by;

€21 «— a1 X bo;

end;

par for i—0 to 2 do

cio +— ¢io — cil;
After execution, the values of cp,c1,co are stored in coo, co1,Co2, respec-
tively. One rhultiplication and one subtraction (it can be achieved by
changing the sign bit) are required for this operation. .

Vector Multiplying Matrix

The memory allocation for vector multiplying matrix is given in Fig.9.
The algorithm is as follows.

par for i+~0 to 2 do

par for j—0 to 2 do

Cij +— a5 X bij;

for i+1to 2 do

par for j«0 to 2 do

coj = Coj + Cij3
After execution, the values of cg,c1,ca are stored in coo, co1,Co2, respec-
tively. One multiplication and two additions are required for this opera-
tion.

—353—

Matrix Multiplving Vect

The memory allocation for matrix multiplying vector is given in Fig.10.
The algorithm is as follows.

par for i—0 to 2 do

par for j—0 to 2 do

¢ij — aij X by;

for j—1to 2 do

par for i—0 to 2 do

€io + Cio + Cij;
After execution, the values of cg,¢;,c; are stored in cog, €o1, oz, Tespec-
tively. One multiplication and two additions are required for this opera-
tion.

Matrix Additi
The memory allocation for matrix addition is given in Fig.11. The
algorithm is as follows.
par for i—0 to 2 do
par for j—0 to 2 do
cij — aij + bij;
Only one addition is required for this operation.

The memory allocation for matrix addition is given in Fig.12. The
algorithm is as follows.

par for i—0 to 2 do

6 —a;+b
Only one multiplication is required for this operation.

. entation d le i

In order to demonstrate the feasibility of the proposed array proces-
sor, the Intel 8088 CPU is chosen. The reason for choosing 8088 is that
8088 is very cheap and it requires the least external components. Although
the data bus of 8088 is only 8 bits, it can process 16-bit data internally.
For the robot application, nine 8088 CPUs are used to construct the array
processor. The array processor is implemented on three PC boards and
each board contains three 8088/8MHz CPUs. The array processor can be
plugged into IBM. compatible PC. The relevant interconnection circuitry
and driver are also developed. All programs are written in C language.
The picture of the array processor is shown in Fig.13. Table 4 is the com-
patrison of computation time between with and without the proposed array
processor. The values in the table are the average values of 10000 runs.
Also the valiies include the time for data read/write.

The array processor is then applied to the computation of the robot
dynamics. For a six degree-of-freedom PUMA rgbot, the Newton-Euler
formulation requires only 306 additions and 162 multiplications for the
proposed array processor in contrast to 1314 additions and 1242 mul-
tiplications for a uni-processor. The speed improvement ratio is equal
to (1314+1242)/(3064162)=5.46. If we use it to compute the forward
kinematics of the PUMA robot, the speed improvement ratio is equal to
(234+4216)/(36+24)=7.5. Clearly, if all the operations are matrix opera-
tions, then the array processor shows the best performance.

3. Conclusion

This paper has proposed an array processor so that the multiplication
of two 3x3 matrices only requires 3 muitiplications and 2 additions. The
array processor is useful for the robot applications. Although the imple-
mentation is based on Intel 8088 processors, the 16-bit or 32-bit processor
(e.g. TMS 32020, Intel 80386, 80486) can be used to construct the array
processor. The performance of the array processor is expected to consider-
ably increase.

References

{1]. K.S. Fu, R.C. Gonzalez and C.S.G. Lee, Robotics Control, Sensing,
Vision, and Intellignece, New York: McGraw-Hill, 1987.

2]. J.M. Hollerbach, ” A Recursive Lagrangian Formulation of Manipulator
) grang p
Dynamics and a Comparative Study of Dynamics Formulation Com-
plexity, "IEEE, Intl. Conf. on Robotics & Automation, pp.730-736,
1980.

[3). E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms,
Computer Science Press Inc., 1978.

[4]. K. Hwang and F.A. Briggs, Computer Architecture and Parallel Pro-
cessing, New York: McGraw-Hill, 1984.

5).
).

Intel, iAPX 286 Hardware Reference Manual, 1983.

Intel, iAPX 286 Programmer’s Reference Manual Including The iAPX
286 Numeric Supplement, 1985.

[7). P. Kazanzides, H. Wasti and W. A. Wolovich, ”A Multiprocessor Sys-
tem for Real Time Robotic Control: Design and Application,” IEEE,
Intl. Conf. on Robotics & Automation, pp. 1903-1908, 1987:

{8]. R‘H. Lathrop, ”Parallelism in Manipulator Dynamics,” IEEE Intl.
Conf. on Robotics & Automation, pp.772-778, 1985.

C.S.G. Lee and P.R. Chang, "Efficient Parallel Algorithm for Robot
Inverse Dynamics Computation,” IEEE Trans. Sys., Man, and Cy-
bern., Vol. 16, No.4, pp.532-542, 1986. X

{10]). C.S.G. Lee, C.L. Chen and E.S.H. Hou, "Efficient Scheduling Algo-
rithms for Robot Inverse Dynamics Computation on A Multiprocessor
System,” IEEE Intl. Conf. on Robotics & Automation, pp. 1146-1151,
1988. .

[11]. J.Y.S. Luh, M.W. Walker and R. P.C. Paul,”On-Line Computational
Scheme for Méchanical Manipulators,” J. of Dynamic Systems, Mea-
surement, and Control, Vol. 102, pp. 120-127, June 1980.

[12]. Motorola Inc., WC68020 32-Bit Microprocessor User’s Manual, 2nd
edition, Prentice-Hall, 1985.

[13]. M.J. Quinn, Designing Efficient Algorithms For Parallel Computers,

Ch.1-3, Ch.6, McGraw-Hill, 1987.

[14]. Texas Instruments Inc., TMS32020 User’s Guide, 1986.

[15}. M.W. Walker and D.E. Orin, ”Efficient Dynamic Computer Simulation
of Robotic Mechanisms,” J. of Dynamic Systems, Measurement, and
Control, Vol.104, pp.141-147, September 1982.

(9).

fteh — [i — siquarear]

o — N n LA
o —

| Bl | B |-
WA — -

ind LTI B 0O R o3 P
wite— {1

o : : :

o B
S {x

Fig.1 Structure of the proposed array processor

e

Locsl Date B

' Fig.2 Internal'structure of PE

—354—

-

Cavxroacs

Fig.3 Floating-point adder 4]

a*BeC

%a-T

Fig.5 Mémory allocation for matrix multiplication

e

ag
by

€20

EEIEl
O]

Fig.8 Memory allocation for cross product

[T Anaszars

Batsgasa

Cadatans

Heere G = Laten

3

] B

iR
N
0

Fig.6 Memory allocation for vector addition

—355—

Fig.7 Memory allocation™for scalar product

0] T [boo Bar bo2 [ca} T
AT RN LTI RRLIT: B)
22 20 21 Y22 2

Yo

v

Fig.9 Memory allocation for vector multiplying matrix

Fig.10 Memory allocation for matrix multiplying vector

200
=10
220

201 202) oo
[SRRCST! B J1
421 222)

210 213 332

00 €01 ©0;
10 €11 €1
20 €21 €22

Yo

20 b21 B2z

200 201 202 00 01 Bo2
hd 10 By 12
20 221 82

4

0 PR — aj g ™ bg,j
1 PR — ag 7 v by, j
2 PR — aj 2 * b2 j

.

a-1 PR — aj .7 ¥ bn-1,3
n

— . . e
- DN P v -
* "o “ox “aa A R 1.0 ‘x_- ‘l.l
s “omt it taieer ot St -0 Lt LI B et
Table 2. Data on X-bus and Y-bus
loop

ci,j_ — Ci-lj + PF'!
Cj,j — Ci,j * PR

¢i,j —ci,j+PR
i,y — C3,j+ PR

Table 3. Pipelined processing

—356—

Fig.12 Memory allocation for vector multiplying scalar

Fig.11 Memory allocation for matrix addition

Table 1. Procedures for parallel processing

80286/6MHz 80286/10MHz

opr without with without with

Vec+Vec 1.511 1.477 0.873 1.169
Vec*Vec 2.417 1.955 1.406 1.577
VecxVec 3.262 2.021 1.890 1.555
Vec*Mat 7.184 2.268 4.158 1.746
Mat*Vec 7.552 2.279 4.37% 1.763
Mat+Mat 4.502 2.213 2 .60; 1.599
Mat*Mat 22.733 3.109 [13.160 T2.395
Vec*Sca 1.581 0.950 0.917 0.654
Sca*Sca 5.034 1.741 2.916 1.104

Table 4. Coniparison between

with and without array processor (mg)

