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Abstract

An application of recursive covariance lattice filter to
the adaptive estimation and stochastic control of a robotic
manipulator with one flexible link is presented. Not only
the effective order, but also the corresponding parame-
ters of an AutoRegression Moving Average with a Bias

ARMAB) prediction model of the manipulator are up-
ated by a set of pure order recursive lattice algorithms.
The reduced-order prediction model that represents sig-
nificant dynamics of the plant is used to generate opti-
mal control sequences by minimizing the expectation of a
weighted cost functional. In the simulations, the manipula-
tor is modeled by the finite element method and Lagrange’s
equations. The performance and robustness of the variable
order stochastic adaptive controller are demonstrated by
numerical results.

Introduction

The design and control of light weight robotic manipu-
lators attracted much attention in the past decade. Plenty
of research has been conducted on the adaptive control of
manipulators with flexible links [1-4]. Recently, some liter-
ature dealt with the stochastic adaptive control of robotic
manipulators with flexible links [9,10]. All but a few pub-
lications mentioned the order updating of the prediction
model in the adaptive control of a flexible structure. Sun-
dararajan and Montgomery (7] were first to apply lattice
filters to the identification and adaptive modal control of
flexible structures. This class of lattice algorithms has fast
convergence rate and has many advantages over conven-
tional least-squares algorithms. Besides its recursive prop-
erty in both time and order, there exist orthogonalizing
property, good tracking performance, rapid start-up capa-
bility, fast convergence and easy implementation due to its
high repetitive structure. The extension of the original AR
lattice form to the ARMA models by the embedding tech-
nique makes the lattice filter a very promising perspective
in the control framework [8,9].

This paper presents an application of the recursive co-
variance lattice filter [10] to the stochastic adaptive control
of a robotic manipulator with one rigid link and one flexi-
ble link in the gravitational field, considering various mea-
surement noises. The adaptive control scheme is indirect;
i.e., the control signal at each sampling instant is based on
an output prediction model of the plant. This prediction
model is in a linear ARMAB form with time-varying pa-
rameters. The recursive covariance lattice filter is applied
to estimate the effective order of the ARMA part of the pre-
diction model to reflect the most significant dynamics (or
modes) of the plant, as well as to estimate the correspond-
ing parameters. The most attracting feature of this filter is
that the algorithm structure is a pure order recursive lattice
of a set of generalized residual energy matrices. Therefore,
the round-off errors will not propagate in the time direc-
tion as the conventional lattice filter does through time up-
date of a cross-residual energy matrix. Thus the numerical
inaccuracy and instability problems [11] caused by round-
off errors are absent. The other important aspect of the
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proposed adaptive estimation process is the vector-channel
embedding technique [12] to treat the moving average part
of the ARMA model as an additional measurement chan-
nel. The bias in the ARMAB model is regarded as the en-
semble average or the expectation of the output prediction
error process, and is approximated by passing this random
process through a low-pass filter.

The adaptive controller is designed to minimize the
expectation of a weighted measure of control effort and the
error between the system predicted output and the output
of a reference model obtained from an optimal linear regu-
lator problem. This error is made to decay according to an
error dynamics model. Owing to the noncolocated sensors
and actuators on the manipulator, the transfer function of
the linearized plant model is non-minimum phase. There-
fore, the plant becomes unrobust and sensitive to the per-
turbation of control parameters, for example, the weight-
ing matrices of the cost functional. We found that a PD
controller in an inner loop can augment the plant to pro-
duce stable discrete-time transmission and channel zeros.
thereby improving robustness.

2. Manipulator Dynamics Model

The two-link manipulator to be controlled in a verti-
cal plane of the gravity field is displayed schematically in
Figure 1. Centered at 0, and o; are two actuators mod-
eled as rigid discs with the same mass M,. Both of these
actuators are ideal with infinity bandwidth and constant
gain. The first link of mass M, and length L is uniforn,
rigid and clamped to the first disc; the second link of the
same mass and length is a uniform Euler-Bernoulli beam,
clamped to the second disc. Them end-effector and the
payload are modeled as a point mass M; at the other end
of the second link. A control torque u, acts on the first
disc, and a control torque u; acts between the second link
and the second disc.

We use the finite element method to model the flex-
ible link, which is approximated with three elements of
equal length and cubic B-splines as interpolation functions.
With the two rigid-body degrees of freedom, there are 5
degrees of freedom in the simulation model. The gener-
alized displacement vector in the finite element model is
n = [ay a2y y2 y3|T € R® where a; and a, are rigid an-
gles and yi, y2, y3 are the transverse elastic displacements
of node 1, 2 and 3 on the second link. The cross section
of the flexible link is rectangular with wider length in the
out-of-plane direction so that the flexible link is relatively
rigid in the out-of-plane motion, which is then negligible.

It is straightforward to write the kinetic energy, strain
energy and gravitational potential energy for the finite ele-
ment model of the manipulator, including the strain energy
due to the inertial axial load. Lagrange’s equations for the
finite element model are derived as follows [13]:

M(n)i + Di + [K + Ka(n, 7,%) i
‘Ma(d1+dq)2]n+N(r],i)) = Bu )

where M{n} is a positive definite symmetric mass matrix,
including the conventional consistent mass matrix and the



nonlinear inertia matrix involving second-order derivatives
of the system coordinates, K is the nonnegative symmetric
stiffness matrix due to bending stiffness of the flexible link,
N(#,9) is a vector containing nonlinear functions of vari.
ous gravity, inertial torques and Coulomb frictions, B is the
input influence matrix with 0’s and 1’s, and u = uy ug)7.
The matrix K, (7, 7, 7j), namely the geometric stiffness ma-
trix, represents the effect of the inertial axial load on the
transverse vibration of the second link, which is obtained
from the virtual work done by the nonconservative axial
load, and is then an explicit function of rigid angular ve-
locities and angular acceleration s of the manipulator links.
The term M, (&, + c;)? is derived from part of the kinetic
energy of the second link, which accounts for the effect of
the centrifugal force component in the direction perpendic-
ular to the undeformed position of the flexible link, thereby
reducing the stiffening effect of the inertial axial load. The
damping matrix D is 10~¢ times the part of the mass ma-
trix that corresponds to the flexible link if «; and a, are
held constant; this means that we model small proportional
structural damping for the flexible link. System parameters
are listed in Table 1.

Table 1: System parameters

! = length of each link = 1.5 m

r = radius of each joint = 0.05 m
m = mass of each link = 1.2465 kg
M, = mass of each disc = 62.325 ¢
M, = mass of payload

ET of the flexible link = 399 Nm?
@ = cross section height = .015 m
b = cross section width = .020 m

3. Output Prediction Model

Consider a digital control of (1) with zero-order sam-
ple and hold devices with a sampling time h. The output
vector y(k) € R™ (m=3) is measured at the beginning of
the kth sampling interval (k=0,1,2,...) or at time kh, and
the constant control vector u(k) € R” (r = 2) is applied for
the duration of the kth sampling interval. We take

y(k) = [a1(k) oz (k) ya (k)] (2)

where a; and a; are the rigid-body angles and y; is the
transverse elastic tip deflection, measured from the unde-
formed position, of the flexible link that holds the payload.

To simulate the measurement noise process, we assume
various measurement error model in measuring the tip dis-
placement of the fexible link and rigid angle of each joint.
The tip displacement measurement Sensor, a camera or a
laser displacement meter, is corrupted with additive ran-
dom white Gaussian noise Sy, characterized by mean 0 and
covariance ¢?. The angular displacement of each joint is
measured by digital encoder of P pulses per revolution,
whose measurement error ¢,; (i=1, 2) is modeled to be
+1, 0 or -1 pulse with equal likelihood (1/3). That means
the probability density function of the measurement error
of each encoder is discrete. Thus the actual measurements
model is

yr () = [a1(t) aa(t) y3(8)]™ + ¢() 3)

where {y3(t)} is a sequence of the filtered output of {va(t)},
passing through a low-pass filter, and ¢ = [¢41, ¢uz, 6|7 is
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a 3-vector of measurement noise which is assumed inde-
pendent of the process noise v and of the system initial
states.

Based on the standard linear system theory, the corre-
sponding input/output model for (1) and (3) with digital
input and output has the form of the multivariable autore-
gression moving average with a bias (ARMAB) model

yr (k) = Alk, ¢~ )yr(k) + Bk, g~V )u(k) + my (k)

1

(4)

where g7 ! is a backward shift operator, m,, accounts for the
modeling bias due to gravity effects and unmodeled dynam-
ics, and A(k,¢"') and B(k, g™ !) are polynomial matrices
of order N((S 10).

For any completely observable linear system, prop-
erly located sensors observe the same dynamics of the sys-
tem. Therefore, the matrices A;’s in (4) can be replaced
by scalars a;’s which are coefficients of the system charac-
teristic polynomial. In this paper, however, the two-link
robotic manipulator with a flexible arm is very nonlinear.
This motivates us to use two vector-channel auto-regressive
models for two independent estimation channels, each for
one link.

The first estimation channel for the rigid link consists
of the first rigid angle a; and two inputs u, and u,; the
second estimation channel for the flexible link consists of
the second rigid angle a-, filtered tip displacement y4 and
the two inputs. Both estimation channels have the same
AR model form with bias, i.e.,

N a (k) B, (k) ) my, {k]
z(k) = ,‘L—? [C‘,Jj(k) D‘,i(k)} (k=) + [ nul(k] ]
;’ . (5)
=Y A (k)a(t-5) + &), =12
J=1 -
where ’
az Y;
a) Uup 0
2] = u; , 29 = Uz 0 (6}
Uz 0 uy
0 u,

and Ci; and Dy; are two auxiliary matrices. It is apparent
that the first rows of A, y; contain all the original ARMA
coefficients, and & represents the prediction error vector of
the lattice filter.

4. The Recursive Covariance Lattice Filter
4.1 General Description of Lattice Filters

Let the Hilbert space H,(k) be spanned by the his-
tory process {z (k) € RP**™} where the p; x m; ma-
trix z; amounts to p; subchannels, each of which contains
my scalar measurements. The subscription [ denotes the
ith main estimation channel, for link /. Without loss
of generality, we omit the subscription { for simplicity.
For each estimation channel of the robot arm, we fur-
ther let Hj (k) be a closed subspace of H(k) spanned by
27, ={z(k~n),..,z(k—i—1),2(k=1)), 1< . <n In
this subspace we define P; (k) as the orthogonal projection
operator onto H} (k) [12]. The basic idea of the lattice al-
gorithm is to construct a set of orthogonal basis vectors for
H_ (k) to replace the original history process {z(k)}.



Then, we define the forward and backward residual
error vectors for each main estimation channel (Actually,
the ‘vector’ is an p X m matrix or vector array) :

folk = n) & z(k - n)
filk=n+4d) & [I- PP % (k) |2(k —n+1), i=1,

...,(7)
and

bolk — 1) £ z(k — 1)

bi(k—1) 2 (I - P K)|2(k~i-1), i=1,.,n—1
(8)
These can be readily achieved by using the Gram-Schmidt

orthogonalization of the history space. It has been shown
in [10? that the lattice equations for residual errors are

fasr(k) = falk) + KL, (K)bn(k = 1), fo(k) = z(k) (9)

ba+1(k) = balk = 1) + K211 (k) fa k), bo(k) = 2(k) (10)

where KZ and K’ are respectively called the forward and
backward reflection coefficient matrices of dimension p X p.
These reflection matrices are so obtained that they mini-
mize the residual energy matrices

RL(k) £ fa(R)fT (k) (11)
and
RE (k) £ b (k)bT (k). (12)

Likewise, the cross residual energy matrix is defined by

Calk) & falk)bT (K - 1). (13)

Thus the reflection matrices can be adjusted through some
algebra:

Kl(k) = =Cp-1(k)R;E (kK -1) (14)
Kb(k) = ~CT_,(k)R;., (k). (15)

Substituting (9), (10), (14) and (15) into (11) and (12)
yields order update equations for R/ and R’ as follows:

R, (k) = RL(k) + KL (K)CT (k) (16)
Ry, (k) = RY(k ~ 1) + K5 (k)Cn (k). (17)

However, there exists no order update for the cross resid-
ual energy matrix C,, (k). To close the lattice filter loop, we
need to derive the time-update equation for Cn(k). This
causes the accumulation of round-off errors from calcula-
tion of the forward and backward error vectors in the time
direction. To avoid this defect, Strobach EIO] proposed a
generalized covariance lattice technique called the pure or-
der recursive lattice algorithm method.

4.2 Pure Order Recursive Covariance Lattice Al-
gorithm

The pure order recursive lattice algorithm method is
developed for AR system identification problems by ex-
panding the residual matrix (11)-(13) to the generalized
residual energy matrices in block matrix forms as follows:

R, (K) = falk —4)f7 (k- 5) (18)
Ry, (k) =balk—i-1)8T(k—7-1)  (19)
Cnij(k) = falk - )6 (k - 7 - 1). (20)

Since symmetric properties and shift invariance proper-
ties holds for the generalized residual matrices, substitut-
ing (9)-(10) into (18)-(20) leads to four recursive equations
which complete the order-recursive covariance lattice loop:

At the sampling instant k,

forn=1,N-1,

forj=0,N—-n-1,

N: order of the algorithm or order of the autoregression
with bias model (5),

R, (k)= RI_, o (k) + KL(R)CT_, ;oK)

+ Ca-vr05(k) KL (k - 5)

+ KL (KR, o, ()KL (k- 5) (21)
RS, i(K) = R_ o (k= 1)+ K8(k = 1)Ca-r05(k - 1)

w0 olk=)EY (k=5 -1)

+ K8k - 1)RL_, o ;(k~ DKY (k- j - 1)(22)
Ca0,5(k) = Ca-1.0,5+1(k) + Kl{(k)R’r,l—l..O.j+l(k)

+ B 01 (RES (k-7 -1)

+ KL (K)CT_, j110lK)KE (k-5 —1)  (23)

Crsrrolk) = Cacrjol = 1) + RL_, . (k- VKL (k1)
+ Kl(k-5-1)R_, ok~ 1)
+ KLk~ 5~ 1)CT_ o ;(k - 1KY (k - 1)24)

The convergence conditions for the lattice algorithm are
the same as those for the recursive least squares method,
as investigated in [14].

4.3 AR Coeflicients and Order Determination

The coefficients ai; (k) and By; (k) in the autoregression
part of (5) with an effective order are required to gener-
ate optimal adaptive control signals. Recall that f,(k) is
the error remaining after orthogonal projection of the data
taken through time k onto the history space H}(k), i.e.,

falk) = 2(k) - Z Ans(K)z(k - ) (25)

and the coefficient matrices 4,, ; (k) minimize the H;} norm
of fu(k) over all AR models of order n. Similarly,

n—-1
ba(k) = =Y Bnj(k)z(k - 3) + z(k —n).  (26)
=0

Manipulating (9)-(10) with (25)-(26), we obtain the follow-
ing equations

Anik) = An-yj(k) + KL(K)Bao1joalk - 1) (27)
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Bnj(k) = Bn-1.j-1(k — 1) + K} (k) An-1 5(k)  (28)
n=2,.,N, 7=1..,n~-1
given the initial and terminal conditions
Anolk) = I Annilk) = —KL(K) 2
Baol(k) = —K3(k) Banlk) =1

It is apparent that the estimates of a;, and B; are in the
first rows of Anj, 7 = 1,..,n. From (4) and (5), the
output prediction §(k + 1) at one-step ahead of k can then
be expressed as

N
gr(k+1) = 3 [Ak)yr(k -1+ 1) + Bi(Bu(k — i + 1)]
t=1
+ ﬁlb(k + 1),
(30)
where
) a; 0 0 . ?1-’.1 1?16,2
A; = 0 62( 0 B = ?2)'.1 B2i.2 )
0 0 &y Byis Baig

By;; denotes the jth element of the row vector Bj;.

The bias my(k + 1) = Elyr(k + 1) — yp(k + 1)) is
estimated by passing the filtered output prediction error
through a first-order low-pass filter of corner frequency at
5 Hz. In our adaptive control process, the effective order
of the ARMAB model at time &k is N if

In Ry oo(1,1) <e (31)

where ¢ is chosen as a small positive real number.
s

5. Adaptive Controller Algorithm

The reduced-order controller is based on the certainty
equivalent principle. The adaptive control signal is deter-
mined by setting the predicted output from the reduced-
order prediction model (30) equal to a desired output. The
desired output yq is defined so that the error between the
desired output and a reference signal y, decays according
to an error dynamics model

yd(k + l) = yr(k + 1) - ae(k)[yF(k] - yr(k)]

where

(32)

a.(k) = (a0 — as)B* + a4 (33)
with ag, a; and § positive scalars less than 1. The optimal
one-step-ahead control u, is obtained by minimizing the
quadratic functional
J(k) = E{llyr (k + 1) =y (k + 1) + a. (k) [y(k) - v (K)]I3,

+ lua(k)%, + llwalk) = ulk = 1)[|Z, | %}

34
where Q is a nonnegative diagonal matrix; R, and Rz(lc;
are positive definite diagonal matrices with

Rz(k) = Rzo’ik (35)

for some nonnegative «y less than 1; 7 dewwwes the sigma
algebra generated by {yr(k),yr(k — 1),...,y#(0)}. The
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time-varying Rs(k) is very important to prevent control
chattering as discussed in [3].

The first two components of the reference signal y,
are computed off-line. These components are the outputs
of two second-order reference models chosen to ensure that
Y, represents a reasonable response for a system with two
rigid-body modes. The authors solved an optimal linear
regulator problem for each of the two uncoupled second-
order systems to obtain two uncoupled linear reference
models that produced the reference signal a), and oy, in
Figures 3 and 4. The third component of y, is an estimated
static tip deflection under gravity; i.e., the measured tip de-
flection 1s fed into a first-order low-pass filter with a corner
frequency at 4 Hz and the output of this filter is used as the
tip reference signal. The discrete-time transfer function of
the low-pass filter is

T(z)= 11—«

z—x' (36)

where k = exp(—w.h), h = sampling time = 0.01 sec, and
the corresponding corner frequency w, is 4 Hz. Robustness
can be improved, by augmenting the plant with an inner
continuous-time PD control loop with the transfer function
TpdS:) as shown in Figure 2. The total control signal u(k)
is, therefore, the combination of the adaptive control signal
ua(%cl) and the proportional and derivative control signal
upa(k).

6. Simulations

The nonlinear response of the robot motion was sim-
ulated on IBM 3090 supercomputer by solving the equa-
tions of motion in (1) with a fourth-order Runge-Kutta
algorithm with variable step size. The flexible link of the
manipulator is modeled by three finite elements, thus the
system order is 10. The adaptive controller drives the ma-
nipulator in the vertical plane under gravity through two
working phases. For the first working phase, the manipula-
tor moves from the horizontal position (a; = 90°, a; = 0°)
to the position a; = 135°, az = 45°, grasping a payload;
then the manipulator is moved to the position a, = 180°,
az = 90° in the the second working phase. A learning pe-
riod about 45 samples was found essential before the robot
motion for a converged set of parameters in the prediction
model, in which the control torques were constrained not
to exceed 1.5 times the magnitudes of the initial torques
holding the links at the horizontal position; but no more
learning was necessary for the second working phase.

The inner loop PD controller design is based on gravity
torques and a rigid-body mass matrix that are 40% greater
than their correct values for no payload. The proportional
and derivative gain matrices, designed according to (15],

o

K= |
This PD controller alone cannot guarantee consistently
good control performance for large motions of the manip-
ulator. Therefore, most of the control effort has been pro-
vided by the adaptive control law u, (k).

The covariance of the measurement noise for the tip
displacement is .001%. The digital encoder on each joint has
1000 pulse per revolution, then the accuracy is +2x/1000
rad. Other control parameters in (32)-(35) are

266793 82267
82267 49114

806862 27234

27234 13807] - (8T)

Q = diag|35, 30, 0.07], R, = diag[3.5x107°, 3.5x 1079

(38)



Dm;ing the learning period:

=098, a; =07, =1

39
o = diagl6.5x 1072, 3.5 x 1072, v =1 (39)
After learning period:
=098, a; =0.7, =00
ag ay ﬂ (40)

Ry = diag[2.0 x 1073, 2.0 x 1074}, v =0.1%"

Based on the physical realization of robot system dy-
namics — nonlinearly coupled rigid-body and flexible mo-
tions, the minimum and maximum effective order of each
lattice estimation channel can be assigned before the adap-
tive parameter estimation. The minimum effective order
for both channels is fixed as 4, which accounts for two rigid
body modes. The maximum effective order is 6 for chan-
nel one and 8 for channel two, each including extra excited
flexible modes. The upper bound ¢ in (31) for the order
determination is set at -5 and -4 for the first and second
channel, respectively.

Figures 3 and 4 show the adaptive control performance
for the manipulator without payload mass in the first work-
ing phase, but with a payload weighing 40 percent of the
flexible link mass in the second working phase. Initially, the
orders of tw: main estimation channels are both assigned
at 4. At the steady state of the first working phase, the
order of the first estimation channel settles at 6, while the
order of the second channel varies up to order 8, then re-
ducing to 6 as the first flexible mode dominates. After the
robot grasps a payload, the order remains at 6 in the first
channel, but rises to 8 in the second channel. This implies
that the payload mass reduces the system stiffness, and so
more modes are required to describe the system response.

7. Summary and Conclusions

An application of adaptive lattice estimation and
stochastic control scheme to a two-link robotic manipulator
with one flexible forearm has been presented. Though the
simulation model of the manipulator is highly nonlinear,
the stochastic adaptive digital controller that is based on a
variable-order time-varying prediction model gives robust
performance in response to changes in the plant dynam-
ics corrupted with measurement noises. The combination
of elastic vibrations and nonlinearities due to fast large-
angle rigid-body motion necessitated two vector estimation
channels and a bias compensation for the controller pre-
sented in this paper. The recursive covariance lattice filter
with the vector-channel embedding technique has a pure
order recursive property, which enables the lattice filter to
identify the effective order of the prediction model for the
plant and the corresponding parameters. Implemented in-
side the stochastic adaptive control loop were an error dy-
namics model, a time-varying weighting matrix on control
variations, a continuous-time PD controller, a bias estima-
tor and a low-pass filter used to estimate the steady-state
static tip deflection. The simulations showed a fast con-
vergence rate of the recursive covariance lattice algorithm,
and fast tracking ability of the proposed stochastic adap-
tive controller. The numerical results also showed that the
resulting 2277 loop system was robust to the unmodeled
dynamics and measurement noises.
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Fig. 2 Closed-loop control system
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Fig. 4 Control performance of flexible link, M,=0 before 3
sec., M2=0.4 m from 3 to 5 sec.



