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STRACT

An asymptotic observer is constructed for constrained robot
systems in this paper. Since a constrained robot, in general, involves
in a set of differential equations and a set of algebraic equations,
both differential and algebraic variables should be estimated. This
gives arise to difficulty in estimating the algebraic variables which
are the contact forces. The difficulty is eased by introducing the
reduced model of constrained systems developed by McClamroch
and Wang. By using this model, the observer design is similar to
designing an observer for an unconstrained nonlinear system. Since
both the contact force and the motion of the robot can be directly
estimated, our observer may be useful for the controller design of
the constrained robot system.

1. INTRODUCTION

For many operations of the robot, the robot end effector is
constrained by its environment. In that case, the direct control of
the contact force between the robot end effector and the constraint
surface can greatly expand the task capacity. The mathematical
model for the constrained robot, explicitly taking into account the
contact force, has been given in [3,6,8]. Several control schemes have
also been developed to directly control the contact force and the
robot motion based on this model §2,7,10]. However, all these control
schemes implicitly assume that all state and algebraic variables are
available. Unfortunately, this is not always true. Usually, some
states are very difficult to measured and some are too expensive
to be sensed. Particularly, the contact force variables may be very
expensive and inadequate to be measured. Thus, it is required that
we design an observer to estimate the contact force and the state
variables for the constrained robot systems.

Since a constrained robot system consists of differential equa-
tions and a set of algebraic constraint equations, the contact force
variables, which are the algebraic variables, may be regarded as
state variables without governing differential equations. The overall
system is referred to as an nonlinear singular systems [6,8]. Hence,
traditional design procedures for nonlinear observers such as the Lie-
algebra observer 1], the extended linearization observer E;Thau’s
observer [4], and the VSS (Variable Structure System) observer [9]
can not be directly applied.

In order to overcome the above difficulty, the McClamroch and
Wang’s method [7] is used to transform the constrained system into
reduced unconstrained subsystems. Then the observer is designed
in terms of the reduced subsyst The selection of our observer
structure is sort of combination of Kuo’s observer [4] and the VSS
observer. We use the concept of Kuo’s observer to determine the
convergent property of the observer and use the idea of the VSS
observer to cancel the effect caused by the nonlinear coupling in the
control input. Since a linear output is desired for applyinguﬁe Vss
observer technique, a linear output based on transformed system
will be constructed.

In this paper, we present an observer design for constrained
robot sytems. The constrained system and its reduced form are dis-
cussed first. Then a linear output generator is constructed. Finally,
the design procedure of the observer is presented.

1. PROBLEM FORMULATION

For a constrained robot, the motion of the robot end effector
is constrained by its environment. The Lagrangian dypamics of
the constrained robot systems, explicitly incorporating the effects
of contact forces, can be modeled as [6

1)
)

M(q)i+ Flg,d)=u+J7(q)
#(g)=0
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where ¢ € R™ is the generalized displacement; M(q) is an n X n
inertial matrix function; F(g, ¢) is an n dimensional vector function,
containing the Coriolis, the centrifugal and the gravitational terms;
u € R" is the generalized control input; ¢(g) is the m dimensional
3¢(q

constraint vector function; J(g) = is an m x n Jacobian

matrix; A € R™is the generalized contact force vector associated
with the constraints.

The constraints, given in Eq.(2), are assumed to be holonomic
and frictionless. Note that if ¢(g) is identically satisified then also
J(g)d = 0. Hence the motion of the robot end effector is constrained
in tlie constr}a.int manifold S ¢ R?" defined by S = {(g,4) : ¢(¢) =
0, J(q)d =0}.

’ S\)lppose the output of the constrained robot system is given by

@)

where y € R” is the output vector and C is a p X n constant matrix.
Our objective is to construct an observer such that the displace-
ment q and velocity ¢ of the robot and the contact force A can be
estimated. These estimated values can be used for controller design.

Since the constrained system, given in Eqns. (1) and (2), con-
tains a set of algebraic equations, it is not suitable for observer de-
sign. McClamroch and Wang [7] use an nonlinear transformation to
convert the constrained system into two reduced unconstrained sub-
systems at which the constraints are satisified automatically. Our
observer design will be based on these reduced subsystems. The
transformation method is briefly summarized in the following.

Suppose that there exists an open set V C R*~™ and a function
1:V — R™ such that

y=Cq

(4

If rank J(q)=m, then according to the implicit function theorem
Eq.(4) holds for some V = R*~™. Consider the nonlinear transfor-

mation e [::] - X(@)= [q1 —qf:(‘lz)] (5)

which is‘é‘ilferentiable and has a differentiable inverse transforma-
tion Q : R® — R" such that

- [g]-e0-[ 2]

Let the nonsingular Jacobian matrix of the inverse transformation

#(0(g2),02) =0 for all g€V,

(6)

be
1) = 298 = [ 52 0

Then the constrained system, given in Eqns. (1) and (2), can be
trandformed to reduced subsy,stems ™ @

E;M(ZQ)E(;EQ + Elp(tg,z.g) = EITT(IQ)(I

+ B\ TT (22)J7 (z2)A (8)
B M(25)ET i3 + E3 F(23,22) = B3 T7 (23)u 9
= )] (10)
where
M(z3) = T7 (22 ) M(Q(22))T(z2) (1)

F(za, £) = T7 (2) [F(Q(2a), T(3a)is) + M(Q(z2))T(22)ss]
(12)



Note that the partition of the identity matrix I, = [ET, E{ |, where
E, is an m x n matrix and E; is an (n — m) X n matrix, is used

T
to partition z as z7 [::f,zg']'r = [(El z)T,(E,a:)T] . The rela-

tion B;TT (23)J7 (z3) = 0 is used in deriving Eq.(9). Furthermore,
the constraint equation (2) is transformed to Eq.(10). Under this
trasnsformation, the output y becomes

y=CQ(z3)

which is an nonlinear relation.

Our problem turns out to design an observer for the trans-
formed system (8)-(10) and e313). Since the differential equation
(9) completely governs the reduced state vector z; and the output
equation (13) is only in terms of z,, the subsystem (9) (13) can be
treated as an ordinary unconstrained nonlinear system. The con-
tact force A can be determined from Eq.(8). The observability of
the constrained system depends on the observability of the subsys-
tem (9) (13). It can be easily verified that if the m x m matrix
B, T7 (z3)J7 ’ézg} is nonsingular for all z, € R*~™, then the over-

(13)

all system (8)(9)(10)(13) is observable if the subsystem (9)(13) is
observable. Throughout this paper, we assume that the system is
always observable.

As shown in Eq.(13), the output y now is an nonlinear vector
function of z;. In order to use the VSS observer technique..a linear

output is required. The generation of the linear output will be
discussed in the next section.

II. LINEAR OUTPUT GENERATOR

Consider the subsystem (9){13). Since there is nonlinear cou-
pling in control, the typical nonlinear observer design, such as the
Lie-algebra observer [1] and the Kou’s observer [4], can not be ap-
plied. The VSS observer [9] can handle the nonlinear coupling in
control for the system with linear output. Thus, in order to use the
;g;a(. of) the VSS observer a linear output will be constructed from
.(13).

Since C is a p X n matrix, by applying the singular value de-

composition, there exist two unitary matrices U and V such that

(14)

where ¥ = [D|0] is a p X n matrix and D is a p X p diagonal matrix.
Let n > p > m. We further partitiopn matrices X and V into

Cc=UTzv

Vu Viz
5= [Do" D g], V= {Vm Vn] (15)
2 Var Vs

where D;; € R™*™, Dy € Rp~m)Ixlp-m) 'y, € Rmxm V. ¢
Rmx(n-m) Vo, € Re—m) xm y, e Rlp-m)x (n-m) Va1 €
R(r=p)x m Vo, € R(P=—P)X(n—m) Premultiply both sides of
Eq.(13) by U, we have

Uy=3V [n(:,)

J - [DuVun(l’z)'{-Dan’v’:
2

D32V Q)23) + Dy Vg 2, ] (16)

It is convenient to use the partition of the identity matrix I, =
[Eg',Ef], where E3 is an m X p matrix and E, is a (p-m)xp
matrix, to simplify Eq.(16) as

EsUy = Dy Vi1 Q(2;) + D11 Viaz, (7
E Uy = Dy3Va10(2;) + DagVaozs (18)

Since D, V1, is nonsingular, {2(z;) can be solved from Eq.(17) as

0(z;) = (DuVia)™! [EsUy - Dy, Viazy] (19)

Substituting (19) into (18) gives

[E4 — Dj3Vyy (Dan)_lEs] Uy = [DasVaz — D33V Vi1 Via] 22

o (20)
For simplicity, we define

(21)
(22)

=[B - D2V V' D1 B3| Uy

]
¢= [Dzzvzz - DanVﬂle]
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Then, Eq.(20) is rewritten as

§=Cz;. (23)
The new output § is linear in state variable z; only. It will be used
in our observer design. However, the observability for the subsystem
(9)(23) must be re-checked.

IV. OBSERVER DESIGN

In this section, we construct an asymptotic observer for the
dynamic system (8)(9)(23). In order to carry our subsequent devel-
opment, we make the following assumption
Assumption 1

1) [By M(z,) BT "' E;TT (2;) = CTh(z5);
2 ]h(zg% | € H where H is a scalar.
Now we select the observer structure as follows

£y = &3 — G3C (25 — £3) (24)
B\ M(2:)EX 4, = —E, F(85, 5) + ByTT (&3)u 29)

+ By T7 (2:)J7 (22)4 + B, M(8,) BT G3C(z, — 25)
ExM(23)EX #; = — By F (82, 2) + EaM(22) EF G3(; - 2) (26)

R(z3,u)

where

—éTé(Zg - iz)

Blzs,w) =\ Clea - )]

0’

and G7,G?, and Gy are constant matrices.

We have the following results.

Theorem: Consider the system (8)(9)(23). H the following condi-
tions are satisfied

(1) Assumption 1 holds,

. -G3C
(2) V(z2,45) + [ G2C
some € > 0, where

Hlu|l, for C(z; — £;) #0; (27)

otherwise.

]Vz; is uniformly negative definite for

alz ’ az'g
P22, 52) = [(EM(%)EZ’ )_“Ezi(zz,ia)]

z2

(28)

(3) B\TT(z3)J7 (z;) and E,TT(%;)J7 (£,) are nonsingular for all
z3,%; € R*™™,
then the observer defined by Eqns.(24)-(27) is an asymptotic ob-
server; i.e.,
[|=(t) — (¢)]| < Ke=¢ Vt>0 (29)
where K depends on z(0) and £(0). In addition, the estimated

contact force A converges to A at the same rate as £(t) to z(t).
‘lfroof: Eqns.(9) and (26) can be conveniently expressed in matrix
orm as ’

[xz} - [—(Ezﬂ(xn)E{)‘lEzF(zz,iz)]

+ [(EzM (zz)EzTo)fg‘EaTT (22)] " (30)
and
[n] _ [—(E,M(z,)E;)—IE,F(zg,z',)]
£ T2
+ [_GC;{;]C_'(Q:Q — &)+ [R(’;"‘)] (31)
Let the estimate errror be e
=[2]= 572 @



Choose a Lyapunov function V as
1
Vi) = EeTe (33)

Then .
V(o) = ¢ {[p(es, ) — plaas )] + ['gf] (82 - 22}
~CT (2 — £2)Hllul|
+e [ 66 =211 ]

[ o4)

The last two terms in the right hand side can be further simplified
as follows
~CTC(z; — %) H||ul| N
— s = T
e [ IC(za — )l ] - [C h(z,)u]
0 0

= =T
< ~liCel|Hliull + le"C" A(=za)lllul

< ~||Cel Hllul + I1Ce| Hljul] = 0
where € = [C,0].
Thus, Eq.(34) becomes

V()< ¢T{[p(é,,:';,) - p(z,,z',)] + ['Gc?cfj] (22 — z2)}

<& [+ [ o | vmatweas

where w, = s[f’] +(@1- a)[f-’] and 0< s < 1.
3 EN
—G36

Since Vp(zs,%2) + [ )

]V:, i8 uniformly negative definite for

some ¢ > 0, we have
V(e) < —ellel® (35)
Then, Eq.(29) follows from Eq.(35).

Next, we consider the estimated contact force vector BV §
EyTT (2;)J7 (z2) and E,T7(2;)J7 (%) are nonsingular for all
24,82 € R™™, then X and A can be solved from Eqns. (8) and
(25). From Eq. (8), A is determined as

A= (BT (2a)07 (22)] " {Bu M(2) B (Ea M (22) B ) *
(~ BaF(2a,22) + By F(22,22)} + [T (22)I7 (z2)]
[By M(=,) Ef (B> M(=;) Ef ) B3 T (22) — BoT7 (25)] u
£ S (22,3) + Sz (22, &2)u (36)

Similarly, we have

X =8, (82, 2) + S (22, £2)u + [B1T7 (22) 97 (25)] (31)

B, M(z;)ET G3C(zz — £3)
Since #; converges to z; and Za converges to Z; as time ap-
proaches to infinity, functions S; (2,22 )and S; (3, Z2) will converge
to Sy (z3,%,) and S, (23, £3), respectively; moreover, C(z; ;) con-
verges to zero. Thus, the estimated contact force vector A converges
to A at the same rate as Z; to z;. QED

Remark: In the construction of the observer, the states of the trans-
formed system rather than the states of the original system are
estimated. This indicates that it is not necessary to estimate all
states for the constrained system. The complete information of the
original states can be obtained by the following transformation

ft-a-[P] w

and

i=[g]ren-5 B2 2] @

Another remarkable feature of the observer is that the contact force
) can be directly estimated rather than obtained by expensive force
sensors.

V. CONCLUSION

An asymptotic observer is constructed for the constrained robot
system. It has been shown that the converging properties can be
determined by the selection of the observer gain matrices G7,G3
and G3. The difficulty caused by the nonlinear coupling in the
controf has been overcome by introducing the VSS observer idea
at the expense of the requirement of linear output. Although the
estimate are based on the transformed reduced subsystems, the es-
timate of the original state can be recovered by applying the inverse
transformation. Since the contact force, which is usually not di-
rectly available in the constrained robot system, can be estimated
directly, the observer may be very useful for the controller design of
a constrained robot system. The controller may design on the ba-
sis of £, 22 or §, g; however, the stabilization problem of the overall
system should be carefully investigated. This result will be reported
in the forthcoming paper.
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