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ABSTRACT

Fatigue crack propagation data of a batch of AISI 4340 steel specimens are released in the present

paper.
model is introduced to analyze the data.

The statistical nature of the data is specially emphasized, and a probabilistic fracture mechanics
The stochastic differential equation associated with the model

is then solved. The solution gives us the crack exceedance probability as well as the probability

distribution of the random time to reach a specified crack size.
reliability assessment of structures made of the tested material.

These quantities are useful in the
Comparing the analytical result with

the experimental result, it is found that the proposed probabilistic fracture mechanics model can

reasoniably explain the experimental data.

For those data that cannot be fitted well by the proposed

model, methods of improvement are proposed in the present paper as well.

Keywords : Fatigue crack growth, Probabilistic fracture mechanics, Random process, Stochastic

analysis.

1. INTRODUCTION

The scatter of fatigue data either in the initiation
phase or in the propagation phase has been observed for
a long time. Along with the development of fracture
mechanics, the study of fatigue scatter in the
propagation phase has been emphasized for the past two
decades. The need of reliability or risk assessment for
some important structures such as nuclear power plant
components has furthermore enhanced the development
of the so-called “probabilistic fracture mechanics™ [1].
One of the important issues in the probabilistic fracture
mechanics analysis lies in the probabilistic modeling of
fatigue crack growth phenomenon. Many probabilistic
models have been proposed to capture the scatter as
well as random outcome of the crack propagation data.
Some of the models are purely based on direct curve
fitting of the random crack growth data, including their
mean value and standard deviation [2]. These models,
however, have been criticized by some researchers that
less crack growth mechanisms have been included in
them. To overcome this difficulty, many probabilistic
models adopted the crack growth equation proposed by
other fatigue researchers and randomized the equation
by including a random factor into the equation [3~8].
The random factor may be a random variable, a random
process of time, or a random process of space. It then
creates a random differential equation. The solution of
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the differential equation reveals the probabilistic
structure of the crack growth data.

To justify the applicability of the above-mentioned
probabilistic models, fatigue crack growth data are
usually needed. However, it is rather time-consuming
to carry out experiments to obtain a set of statistical
meaningful fatigue crack growth data. To these
writers’ knowledge, there are only a few data sets
available so far for researchers to verify their
probabilistic models. Among them, the most famous
data set perhaps is the one produced by Virkler,
Hillberry and Goel more than twenty years ago [9].
Other data sets available are those released by the Flight
Dynamics Laboratory of the US Air Force, and
frequently used by Yang and Manning [10]. In fact,
many probabilistic models are either lack of
experimental verification or just verified by only one of
the above data sets. It is suspected that a model may
explain a data set well but fail to explain another data
set. The universal applicability of many probabilistic
models still needs to be checked carefully by other
available data sets.

There are two major objectives for the present paper.
The first objective is to release a fatigue crack growth
data set. These data are the preliminary result of a
project related to the reliability and quality assurance of
structural materials. Although the number of data may
not be enough for an analysis from strict statistical point
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of view, its amount is compatible to that employed by
Yang and Manning [5], and is still believed to be
engineering meaningful. The second objective of the
present paper is to employ our experimental data to
verify a probabilistic fatigue crack growth model
proposed by Yang and Manning [11]. The major
reason for adopting Yang and Manning’s model lies in
its generality. The logarithm distribution of our data
as verified by a descriptive statistical analysis
furthermore endorses the adoption of their model.
Once this model is verified to be useful, it will be
employed extensively furthermore in our project. On
the other hand, if the model fails to explain our
preliminary data appropriately, it will be modified or
even discarded in our later study.

2. FATIGUE CRACK GROWTH EXPERIMENT

Our experimental setup consists of a dynamic testing
machine, a crack closure measurement system, a crack
size measurement system, a spectral analysis system,
and a computer controlled systems. Compact tension
(CT) specimens were made for the study. The original
dimensions of the specimens were 62.5mm wide,
60.0mm long, and 12.0mm in thickness before they
were cut and tested. Both constant-amplitude and
random loads were applied to the specimens. In
performing the tests, series of oscillating loads were
generated and then converted into analog signals
through an IEEE-488 GBIP card and an arbitrary
waveform function generator. The controller then
controlled the dynamic testing machine and transferred
the analog signals to the specimen. To examine
whether the input loads equal the oscillation loads we
desired, the peak and trough values of each loading
cycle were recorded and a spectral analyzer was used to
analyze the input signals.

The crack opening load and crack size were
measured by compliance method and direct current
potential drop (DCPD) method, respectively. The
resolution of the DCPD method was set to be 0.01mm.
During the testing process, the crack size and
crack-opening load were monitored continuously and
discrete data points were extracted from time to time.

Several kinds of material including 2024-T351
aluminum alloy, 7075-T651 aluminum alloy, AISI 304
stainless steel and AISI 4340 high strength steel have
been tested in our study. Of them, the experimental
result of the AISI 4340 high strength steel will be
reported and analyzed furthermore in the present paper.
The chemical compositions of the material were C (0.37
~ 0.45), Mn (0.60 ~ 0.95), Si (0.20 ~ 0.35), Ni (1.50 ~
2.00), Cr (0.65 ~ 0.95) and Mo (0.20 ~ 0.30). Some
mechanical properties were found as follows. Young’s
modulus: 200GPa, yield strength: 1065MPa, tensile
strength: 1160MPa, ratio of elongation: 2%, ratio of
area reduction: 2%, mode I fracture toughness: 52MPa,
and hardness: 400HB.

Constant-amplitude fatigue tests were performed in
advance to obtain some elemental material constants.

After that, random loading fatigue tests were carried out.
The generation of random load was based on the
superposition of stationary random fluctuating
components to a selected mean load. The random
fluctuating components were generated from a given
probability density function. Each randomly generated
load representing the amplitude of the peak -was
followed immediately by another independently
generated load representing the amplitude of the trough.
The peak was added to and the trough was subtracted
from the mean load to construct a cycle of the random
loading. For a selected probability density function,
several specimens drawn from the same batch of
material were tested according to the procedure
mentioned above. These specimens were subjected to
different random loading histories which, howewer,
possessing the same statistical property. In our study,
Rayleigh, uniform, normal and triangular probability
density functions have been used to generate the
random fluctuating loads. However, only the resul¢ of
Rayleigh loading will be reported herein for the sake of
simplicity.

Following the procedure stated above, several
different loading conditions were employed for our
constant-amplitude fatigue -tests. They included (1)
Prax = 5.5kN, R = 0.1; (2) Ppax = 5.5kN, R = 0.3; and (3)
Prax = 6.0kN, R = 0.5; in which P_,, is the maximum
load (peak load) and R is the maximum to minimum
load ratio (stress ratio). During the experiment, both
crack size and crack opening load were measured and
recorded.  After completing the constant-amplitude
fatigue tests, random loading fatigue tests were then
performed. The mean load was set to be 4kIN and the
fluctuating random components were chosen to have a
mean value of 1.43kN and a standard deviation of
0.75kN. Ten specimens were tested for each loading
condition. All fatigue crack tests were continued until
fracture occurred.

3. STOCHASTIC MODELING

As mentioned previously, many probabilistic models
of fatigue crack growth are based on the deterministic
crack growth equations. The most well-known fatigue
crack growth equation is the Paris law represented by

da -

v (K ) (1)
in which a is the crack length, NV is the number of stress
cycle, ¢ and m are material constants, and AK is the
stress intensity factor range that is related to the applied
load and material "geometry. For CT specimens,
special formulas can be found in a stress intensity factor
handbook for the calculation of AK. Another famous
fatigue crack growth equation is the one proposed by
Elber and is sometimes called Elber’s law [12],

da

w2 (AK )™ @
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in which ¢’ and m' are material constants, and AK.g is
the effective stress intensity factor range that is useful to
open the crack and cause the crack tip to grow.

In Yang and Manning’s probabilistic fatigue crack
growth model, in order to be general enough, the
above equations have been modified to be

ii% = X()) g(AK, R, Koo @) = X(2) (MK ) (3)

In the above equation, g indicates a general and
deterministic crack growth law that can be Paris law,
Elber’s law or any other law, R is the stress ratio, Ky, 18
the maximum stress intensity factor in a stress cycle.
It is noted that the discrete stress cycle N in Egs. (1) and
(2) has been replaced by a continuous time variable # in
Eq. (3). The reason for doing so is to make the
equation an ordinary differential equation. Physically,
it is justified for a high cycle fatigue crack growth
process in which the number of stress cycles can be 10°
or even higher, to which the discrete cycle interval is
almost negligible. Another thing to be noted in Eq. (3)
is that a random factor X(¢) is added into the crack
growth equation, which makes the equation to be a
stochastic differential equation as stated before.

To make the calculation easier, Yang and Manning
have further suggested the following simpler form of
the above equation to be used for a first trial {11],

“0 _ X Q1a)Y @

in which Q and b are constants to be evaluated from the
crack growth observation. The independent variable ¢
can be interpreted as either stress cycles, flight hours, or
depending on the applications. It is noted that the
power-law form of Qa(#)° at the right hand side of Eq.
(4) can be used to fit most fatigue crack growth data
appropriately and is also compatible with the concept of
Paris law. If it indicates the crack growth behavior in
an average sense, then the randommness of the crack
growth comes directly from the other factor X(¢) that
should have a mean value of one. After extensive
study, Yang and Manning suggested that X(#) could
better be modeled as a stationary lognormal random
process having a mean value of 1 and a standard
deviation of oy. If this is the case, the following
normal random process can be introduced,

Z(t)=In X () 5)

which should have a mean value of 0 and standard

deviation of
G, = w/1n (1+c%) (6)

A general auto-covariance function of the following
form is assumed for the random process X(?),

Cov[X (1), X(t,) 1= G.%{ exp(—Glt, =4 1) ©))

in which ¢ indicates a measure of the correlation time
for X(¢) and will be called “correlation time” hereafter

for simplicity. = The reason for using the abowve
exponentially decaying auto-covariance function lies in
its generality. By selecting appropriate values of c,
different degrees of fatigue scatter can all be fitted by
the proposed probabilistic model.

Based on the above modeling and assumptions, if the
deterministic part at the right hand side of Eq. (4)
indicates the median crack growth rate, then the median
service time for a crack to grow from size a; to a can be
obtained by performing the necessary integration to
obtain

da  [a;®" —a®]

Qa’ o(b-1)

To take the random part into consideration, the
following integration of Eq. (4) can also be performed

H@)= [ (8)

a(t) dv t
—= | X(©) dr 9
J, o= x® ©)
It indicates the crack grow from size a, at time O to size
a at time ¢, but at a random manner. If now, a new
random process W(¢) is defined as the integration of X(%),
that is

W)= I;X(r) & (10)

then W(f) can also be assumed appropriately as a
lognormal random process. Under this circumstance,
the following associated normal random variable Y{(?)
can be defined,

Y() =W () (11)

which is assumed to have a mean value py(f) and
standard deviation oy(f). Their values are related to
the mean value and standard deviation of W(f) and will
be discussed more latter.

The distribution function of crack size a(?) at the
service time ¢ can be related to that of W(r) through Egs.
(8) to (11) as follows

F, (@)= Pla(t) < a]= PV (1) <t(a)] = Fy [t (@)] (12)

Instead, the probability that crack size a(f) will exceed
any given crack size a in the service interval (0, ¢) can
be derived and expressed as

Pae(r)(a) = Pla(t) > a]=1 _Fa(t)(a) =1- FW(;)[t-(a)]

oy (t)

The above probability is frequently called crack
exceedance probability [11].

In addition to the probability distribution of crack
size, the probability distribution of time for a crack to
grow from size g to a can also be found based on the
above model. In fact, the probability that service time
T(a) will be within the interval (0, #) for crack size to

reach a is identical to Py, (a). Thatis,
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FT(a)(t) =P[T(a)<t]= P:(r)(a) =1- FW(:)[t_(a)]
o {uy(o—ln[f(a)]} 14)

oy(?)

The above probability is, in fact, the probability
distribution of random time to reach a given crack size
a and, therefore, the notation Fry,(f) was used in the
equation. To summarize the concept of the above
derivation, the readers can refer to Fig. 1.

To perform the calculation of Eqgs. (13) and (14), the
mean value and standard deviation of W{(f) have to be
found in advance. As stated before, they are related to
the statistics of X(¢) which, in turn, can be estimated
from the real observation or experimental result. To
this end, it is noted, from Eq. (10), that

by = EOP @)1= [ BIX@]dr=pet  (15)
and

Oy = E{IW ()~ by '}
= [ [, covix (), X (s )1dr v, (16)

where Cov [X(#)), X(#,)] indicates the covariance
function of X(7) as introduced previously in Eq. (7).
Substituting Eq. (7) into Eq. (16), carrying out the
integration and then taking the square root one obtains

oyy2(e +gt-1)
Swuy = X c (17)

where c¢ can be interpreted as the service time f¢
normalized by the correlation time ¢~ and therefore can
be named as the “normalized service time.” Moreover,
the coefficient of variation of W(f) can be determined
from Eqs. (15) and (17) as follows

v S _ Ve +gt-1 (18)

w{t) —
) ct

where V, is the coefficient of variation of X(¢).

Based on the assumption of Eq. (11) and lognormal
properties, the mean value and standard deviation of ¥(¢)
can be obtained as follows

R:(:) (@)

Crack size

R

Cycle N

Fig. 1 Schematic diagram of crack size distribution
and random time distribution

20
y@O = ——= 19
Hy(2) T (19)
oy (1) = [1+V5 ] (20

The use of uy(¢) and oy(?) instead of pyy and oy, in the
above two equations should not create any ambiguity
since the random process considered is a stationary one.
Based on the assumption of unit value of X(¢) and
lognormal properties, the mean value and the coefficient
of variation of X(f) are determined from Eq. (5) as

follov_vs
02
Ly =¢€Xp [_ZJ (21)
2
Vy = \/exp(cé) -1 (22)

where the time variable ¢ is neglected for simplicity.
Substituting Egs. (21) and (22) into Eqs. (15) and (18),
and then into Egs. (19) and (20), one can obtain the
following mean value and standard deviation of ¥(z),

Ly()=Int+InA (23)
0y (0) =y/In [1+¢? exp(c2) - 7] (24)
where
b= N2(eF +et-1) 25)
ct
and

—exn| O L
k_e*p[ 2 j\/ e -¢

Substitution of Eq. (23) into Egs. (13) and (14) results
in the following equation for the probability of crack
exceedance as well as probability distribution of
random time to reach a given crack size,

mt—lnt(a)/x} @7
oy(®)

where #(a), oy(f) and A are given by Egs. (8), (24) and
(26), respectively.

It is of great interest to notice the two extreme cases
for the above stochastic crack growth model in view of
Eq. (7). For the first case, the correlation time ¢
approaches to zero, which indicates that X(¢) is a
lognormal white noise random process. Under this
circumstance, substituting ¢' = 0 into Egs. (24), (25)
and (26) yields oY) = 0, ¢ = 0, and A = exp(c,*/2).
Equation (27) then becomes

By (@)= Fyy () = U{t ~#(a)exp {— [%ﬂ} (28)

in which U is a unit step function. It indicates that
there is a sudden jump for the associated probability at

t=t(a)exp (-0 /2) .
statistical dispersion for the crack growth assumption.

Fn(@)=F, )= {

In this case, there is no
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Hence, it can be considered the most un-conservative
model.

For the second extreme case, the correlation time ¢~
approaches to infinite, which makes X{(¥) degenerate to a
lognormal random variable X.  Through Taylor’s
expansion, one has

2
e = 1—<;t+%+0(g3 £) (29)
in which O(¢® ’) are the higher order terms and will be
neglected. By letting ¢! — o and substituting Eq. (29)
into Egs. (24), (25) and (26), one can obtain cy(f) = 6
¢=1,and A=1. Equation (27) then becomes

z

Pl(@) = Fri ) =@ {m—";jm} (30)

which is identical to the result derived previously by
Yang and his associates by directly assuming the
random factor X(#) in Eq. (3) is a lognormal random
variable [10].

It indicates, from the above two extreme cases, that
the probabilistic fatigue crack growth model is very
versatile. Therefore, it will be used to analyze the
fatigue crack growth data we have obtained in the
~ previous section.

4. NUMERICAL RESULT

The experimental crack propagation curves of AISI
4340 steel specimens under random loading condition
are shown in Fig. 2. Selected discrete data are also
given in Tables 1 and 2. These data include (1)initial
crack lengths and crack lengths at specified loading
cycles, (2)numbers of loading cycle to reach specified
crack lengths, and (3)numbers of loading cycle at which
fracture occurs. The third item is considered to be the
fatigue lives of the tested specimens. In the last three
rows of both tables, n indicates the mean value, c
indicates the standard deviation, and Cov indicates the
coefficient of variation of the quantity shown in the

Rayleigh Distribution

85.00

]

)
o
]
S
.

25.00

Crack Length

20.00

cosoo Experiment Data

e Mean Curve
e~ One Standard Deviation

5.0E+005  1.0E+008 1.5E+006 2.0E+008
Cycle Number

15.00 =
0.0E+00

Fig. 2 Experimental result

Table 1 Distribution of crack lengths in millimeter
Test N 0 {300,000 (600,000(800,000 (1,000,000(1,200,0:00
1 15.16] 16.16 | 18.10 | 19.61 22.06 23.52
2 1561 17.17 | 19.22 | 20.67 22.40 2346
3 15.62 ) 17.21 18.98 | 20.44 22.31 23.74
4 1546 | 16.89 | 18.87 | 20.48 22.01 23.60
S 1531] 16.48 | 18.53 | 20.79 24.81 3083
6 1573 17.71 19.66 | 21.09 23.29 24.55
7 15.56( 17.15 | 19.70 [ 22.04 26.29 30.03
8 15.46( 16.80 | 18.84 | 20.49 24.32 2833
9 15.65[ 17.61 19.82 | 21.52 23.69 25.60
10 1586[ 16.82 | 18.59 | 20.05 22.27 2349
L 15.54( 17.00 | 19.03 | 20.72 23.34 25.92
o 0.193| 0.451 | 0.536 | 0.663 1.358 2.761
Cov 0.012] 0.026 | 0.028 | 0.032 0.058 0.107
Table 2 Distribution of cycles
Test B “117mm | 19mm |22 mm| 25mm | 30 mm | Fracture
1 425,801]721,802(996,238|1,178,354/1,316,852 1,338,530
2 245,3011573,719{972,019]1,198,3111,421,739(1,442,358
3 273,055(604,997(974,032(1,176,715]|1,308,969|1,312,509
4 315,701(618,908|998,757]1,215,876|1,360,871 (1,364,642
5 403,878(650,827(876,830(1,000,001{1,081,949{1,184,969
6 183,0931499,723{890,84511,130,820{1,315,023 1,336,820
7 278,308(521,299(789,370} 957,505 |1,099,7371,124,170
8 344,226(631,037|897,253|1,028,535|1,113,305]1,118,760
9 186,1521493,571|845,445]1,068,73911,230,021 (1,246,080
10 376,015(664,338{980,734(1,163,791|1,289,217(1,297,130
n 303,153(598,022(922,152(1,111,865|1,253,768|1,276,597
c 80,818 | 71,507 | 68,656 | 86,670 | 111,920 { 100,934
Cov 0.266 [ 0.120 | 0.074 0.078 0.089 0.079

respective column. They were obtained by descriptive
statistics and are needed for our probabilistic analysis.

Our preliminary analysis of the constant-amplitude
fatigue crack growth data indicates both Paris law and
Elber’s law can be used to model the crack growth rate
of the tested AISI 4340 steel specimens. Further
examination of the curves shown in Fig. 1 for the
random loading test result also suggests the
applicability of Eq. (3). Moreover, statistical analysis
of those data shown in Tables 1 and 2 also justify the
lognormal assumption needed in our probabilistic
analysis.  Therefore, the stochastic fatigue crack
growth model introduced in the previous section is
applied to analyze the fatigue crack growth data shown
in Fig. 1. The independent variable in Eq. (3) is
considered approximately the real stress cycle.

To begin with the stochastic analysis, the median
crack growth curve has to be known in advance. For
our case, it is found from the experimental data through
a certain numerical algorithm that Q = 5.8775 x 107!
and b = 3.999, which is needed for the modeling of Eq.
(4). If we assume the random factor X(¢) is a
stationary lognormal random process, then it is found
that Gy = ox = 0.24710 and hence, o5, = 07 = 0.24345.
Using a repeated trial-and-error process, the correlation
time of X(f) is selected to be ¢' = 10°. Having
obtained these values, the crack exceedance curve for
any given crack size can be found through the
application of Eq. (8) and Egs. (23) to (27). Some of
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the results thus calculated are shown in Fig. 3. The
time distribution for the crack to grow to a specified
value can be obtained from Egs. (23) to (27) as well.
Some of the results are shown in Fig. 4. In both
figures, the curve indicates the analytical result and the
solid circles indicate our experimental data.
Comparing the analytical results with the experimental
results, it is found that the stochastic fatigue crack
growth model can be used to predict the random crack
growth behavior rather well.

To check the influence of the correlation time on the
analytical result, different values of ¢™' have been
employed in the numerical calculation. A typical
result for the random time to reach the crack value of
19mm is shown in Fig. 5. It can be seen that the
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dispersion of the cumulative distribution function
decreases as the correlation time decreases. ‘The
continuous distribution curve will eventually become a
discontinuous unit step function when the correlation
time approaches to 0. On the other end, if the
correlation time becomes larger and larger, the curve
tends to approaches to a limit curve. The limit curve
indicates the result calculated based on a lognormal
random variable assumption rather than the lognormal
random process assumption. In the present case, it is
found when ¢' = 5 x 10’, the random process can
almost be considered as a random variable. Under this
circumstance, the simpler form of Eq. (30) rather than
the more complicated Eq. (27) can be used directly to
benefit.
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Fig. 3 Crack exceedance probability
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Fig. 4 Random time distribution to reach specified cracks sizes
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crack size= 19 mm
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Fig. 5 The effect of correlation time

5. CONCLUDING REMARKS

A batch of fatigue crack growth data of AISI 4340
steel is released in the present paper. With a view to
explain the fatigue data well, a simple stochastic
differential crack growth model is introduced. The
model can not only capture the average behavior of the
fatigue crack growth but also reveal the statistical
dispersion of the growth data. If it is proved to be
accurate enough, the model can further be used for the
reliability assessment of structures made of the studied
material.

After the study, it is found that Yang and Manning’s
stochastic fatigue crack growth model can be used to fit
our fatigue data rather well. Based on the established
model together with the already found parametric
values, we can predict the crack exceedance probability
at any given service time. We can also predict the
random time distribution for the crack to grow to a
certain size. Both quantities are helpful for the
reliability assessment of structures made of AISI 4340
steel.

In applying Yang and Manning’s model, if one is not
satisfied with the analysis as we have performed, he can
improve the analysis very easily. There are at least
two aspects for the improvement. The first one is to fit
the median crack growth rate more accurate using a
more complicated mathematical model. By doing so,
the first order statistic can be predicted to a rather
accurate degree but, of course, at the cost of increasing
the amount of computation. The second aspect for
improvement is to adjust the correlation length as we
have shown in the present paper. The adjustment can
increase or decrease the degree of scatter and, hence,
improve the prediction ability of the second order

statistic.  If both methods fail to improve the
prediction, a non-stationary random process model may
then be needed to replace the stationary lognormal
process assumption used in the present paper.

In our numerical calculation, the initial crack size
was assumed to be a deterministic value that was
obtained from the mean value of the tested ten
specimens. If the randomness of the initial crack size
has to be taken into account, the derived formulas can
still be applied except that conditional probability
concept has to be considered. And an integration
process is usually needed to obtain the answers.
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