On the Secondary Resonance of a
Spinning Disk Under Space-Fixed
Excitations

We investigate the possibility of secondary resonance of a spinning disk under space-fixed
Chin-Yi Hua excitations. Von Karman's plate model is employed in formulating the equations of motion
Graduate Student of the spinning disk. Galerkin's procedure is used to discretize the equations of motion,
and the multiple scale method is used to predict the steady state solutions. Attention is
Chia-Min Sun focused on the nonlinear coupling between a pair of forward (with frequengy and
Graduate Student backward (with frequencw,,,) traveling waves. It is found that combination resonance
may occur when the excitation frequency is close 0,8+ wmn, ©mn*+2®0mn, OF
Department of Mechanical Enginesring, 1/2(wyn+ @mp). When the combination resonance does occur, the frequencies of the free
National Taiwan University, Taipei, Taiwan 10617 oscillation components are shifted slightly from the respective natural frequengigs
and w,,,- The final response is therefore quasiperiodic. However, in the case when the
excitation frequency is close to Yi2,;7— wnn), N0 combination resonance is possible. In
the case when the excitation frequency is close tw}/3and 1/2wn—wmn,) Simulta-
neously, internal resonance between the forward and backward modes can occur. The
frequencies of the free oscillation components are exactly three times and five times that of
the excitation frequency. In this special case both saddle-node and Hopf bifurcations are
observed[DOI: 10.1115/1.1760562
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Introduction between a pair of forward and backward traveling waves. The
The dynamic response of a spinning flexible disk under spa stgaa_dy state solutions are pred|<_:ted by multiple scale method and
' e . 4 . erified by Runge-Kutta integration.
fixed excitation has been under intensive research in the past dé-
cades, partly due to its potential applications in many mechanical
design problems such as circular saws and modern disk drives.

Benson and Bogyl] and Cole and Bensof2] investigated the Equations of Motion

steady state response of a spinning disk under a space-fixed pOirU\Ie consider an elastic circular disk spinning with constant
force. Ono and Maen(8] and Jiang et al.4] studied the response 4. Th i £ moti fth Pin % Kint f
of a spinning floppy disk under space-fixed harmonic excitatiofc oo g. eqlua 'On;w? n&o |ton 0 ; € ?_plnnlng bls |r_1tterms 0
Chen and Hsl5,6] considered the transient response as well %ansverse Isplacementand stress functiogb can be written as
steady state deflections of a spinning disk under space-fixed st [J

forces and couples.

These aforementioned analyses all used linearized plate equa-
tion. In some cases when the disk deflection becomes excessive
the stiffening effect due to membrane stretching has to be taken =h
into account. This nonlinear stretching effect is commonly treated

Ph(W 420w (,+ Q%W 45) +cew + D V4w

-1 -2 -1 -2
W,rr(r ¢,r+r (]5'99)4‘([' W,r_‘_r W,HH)d’,rr

by adopting von Karman'’s plate modél]. Tobias and Arnold8] r

studied the influence of imperfection on the nonlinear vibration of —2(r_1W,a),r(r_l¢,e),r—P92r(§V2W+ W )
rotating disks. Maher and Adanf8] calculated the steady state

point-load deflection of a disk spinning near a base plate. Torii +q(r,6)cosyt 1)

et al. [10] investigated analytically and experimentally the pri-

mary resonance of a spinning disk under both rotating and spac§4¢= — E[w,”(rflw,ﬁr*2w,99)+2r*3w,r0w,97r*2(w,rg)2

fixed loads simultaneously. Raman and Mpté&] and Cher{12] 4 ) 5

studied the nonlinear oscillation of a disk spinning near its critical —1 (W) ]+ 2(1-w)pQd 2
speed. These researches mainly dealt with the primary resonance . .

of a spinning disk, i.e., the excitation frequency is close to one &f: ¢) aré space-fixed polar coordinates. The parame{ersE, v,

the natural frequencies of the spinning disk. On the other harffldD are the mass density, thickness, Young's modulus, Poisson
the secondary resonance of a spinning disk under space-fixed &0: and flexural rigidity of the disk, respectively. represents a
citation has not been studied in the literature. When the disk is ieace-fixed homogeneous damping due to the surrounding air.
spinning, however, subharmonic resonance was reported by NGyt #)Cos#t is the space-fixed harmonic loading. In writing Eq.
feh and Vakakig13]. the in-plane inertia is neglected. The disk is assumed to be

In this paper we investigate the possibility of secondary resg-’artia"y” clamped [1] at the inner radius=a and is free at the

o ; ) o ter radiug =b.
nance of a spinning disk under space-fixed excitations. The eq@4:€! . . .
tions of motion are formulated by using von Karman's plate It is noted that while Eqs1) and(2) are nonlinear in terms of

model. Galerkin's method is then employed to discretize the equ- 1€y are linear inp. Therefore we can divide the stress function
tions of motion. Attention is focused on the nonlinear coupling N Ed- (2) into homogeneous solutiop, and particular solution
®,. ¢, accounts for the stretching effect due to the centrifugal

Contributed by the Technical Committee on Vibration and Sound for publicatiofIQrce’ and¢2 involves nonlinear terms of. After SUbStltuung the

in the DURNAL OF VIBRATION AND ACOUSTICS Manuscript received June 2001; '€lation ¢= ¢+ ¢, in Egs.(1) and(2) and introducing the fol-
Revised Dec. 2003. Associate Editor: J. P. Cusumano. lowing dimensionless quantities,
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Fig. 1 Natural frequency loci of a freely spinning disk

t D ph ph
*— — * — 24/ * — 2~ [
t bz\/ph, Q=025 7 =92\,
r*—L w* = \/7 B
_b1 - h3!
¢* ¢h f il 12(1- %)
=¢p=, Ci=C————F—=, &= —v%) =,
D' " o41-12)ph°D b

_a
b

b9
7 TN o

1

. hp?
=

the rotation speed varies. The clamping ratids 0.5, and the
Poisson ratiov is 0.27. Only the modes with less than four nodal
diameters are shown here. The subscripts andr of the mode
label (m,n) represent forward, backward, and reflected modes,
respectively[6].

Discretization

In this paper we focus on the secondary resonance of a pair of
forward and backwardni,n) modes excited by the space-fixed
load and assume that the influence of other modes on this specific
pair is negligible. The solutiom(r, 6,t) of Egs.(3) and(4) can
then be approximated in terms of eigenfunctiong,(r, ) as

©)

Bothcp,y(t) andwp,(r, 6) in Eq.(9) are complex functions, while
the displacemeniv(r, 6,t) is a real functionw,,, represents the
complex conjugate o#,,,. In order to solveg, in Eq. (4) we
introduce a set of eigenfunctiong,,, satisfying the following
differential equation,

V4 bmn— Brmndmn=0 (10)

dmn Satisfy the same boundary conditions és does. After ex-
pressing¢, in terms of eigenfunction serieg,,, and following
Galerkin's procedure, we can discretize E@.and (4) into

w(r,0,t)= Cmn(t)Wmn+?mn(t)Wmn

Cnt 2iNQCHn+ KmnCmnT 26 CtCmnt &€ @|Crnl 2Cmn= Qmn COSYt

11)
where
Kmn™ @mn@mn (12)
2m 1 .
qmn:f f q(r,)Ry(r)e” "ordrd g (13)
9=0Jr=19

Equation(11) represents a gyroscopic system with two degrees of
freedom.w,, and o,y are the natural frequencies of the back-

we can rewrite the equations of motion in the dimensionless forgard and the forward modes, respectively. It is noted that is

after dropping the asterisks for simplicity,
W+ 20OW y+ QW gyt 2eciw + VW —r1 " Horw )
1720 W 4y
— -1 -2 -1 -2
—W'”(I’ d’z,r +r d’z,aa) + (r W,r +r W,BB) d’z,rr

=2(r7'w ) (r "ty +(r,0)cosyt ®3)

V4¢2: - S[W,rr(r 71W,r+ rizw,ﬂf)) +2r 73W,r0W,6)_ riz(w,re)z
174w )?] 4)
whereo, and o, are due to centrifugal force,
3+v
o =—g— Q¥(1-1?) 5)
1
00=§QZ[(3+ v)—(1+3p)r?] (6)

In the special case when=0, the solutione, in Eq. (4) is iden-
tically zero, and as a consequence Bj.for an undamped freely
spinning disk is reduced to
W+ 2QW oy Q2W o+ VAW —1 Yo rw ) (=1 20 4W 4y=0
7
The natural frequency of a mode withnodal diameters anth

equal tow,,+2n{). The excitation frequency is assumed to be
away from bothw,,, and w,,;;. In other words, we exclude the
case of primary resonance. The thickness paranseteassumed

to be small. It is noted that the damping and the nonlinear terms
are of order, while the forcing term is of order one. Without loss
of generality the load parametqy,, can be taken as real. Con-
stanta can be obtained via numerical integration involving eigen-
functions wy,,, and ¢, |Cmrl represents the absolute value of
complex numbec,,,.

Multiple Scale Method

In order to find the steady state oscillation we apply the method
of multiple scalg/14] to analyze Eq(11). The method of multiple
scale assumes an expansion of the solution in the form

Cr(t) = Cina(t, T1) + £Ci(t,T1) + O(e?) (14)

where T;=et. Substituting(14) into (11) and equating coeffi-
cients of like powers ot yields

g% DZcO+2inQDC! O+ kmCoh=0mncosyt  (15)
gli D +2inQDC I+ kmnClia=—2DDocio
—2inQD,c!0) - 2¢;Dc!%) — a|c9) 2¢O (16)

nodal circles is denoted hy,,,. The corresponding eigenfunctionwhere Dy=4d/dt, and D,;=4d/JdT,. The general solution of Eq.

is complex and assumes the form
W(r, 0)= Rmn(r)einﬁ

It is also noted that the eigenfunctiong,,, are orthonormal.
Figure 1 shows the natural frequency loci of a spinning disk

8)
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(15) can be written in the form

O =d,(T,)eimiTo+dy(Ty)e 1 “miTo+ A 6l 7o+ A e~ 1770
17

ashere
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Table 1 Six cases in which secular terms may occur in the
solution ¢} in Eq. (14)

Case Closeness condition

1
i 3 ®mn
1
V= § ®mn
Y=~20mnT Oy
Y=~ Onnt 200

1

a ~w N

1
i 5 (0t Omp)

1
6 i > (@nin— @)

— qmn
2(—¥*—2nQy+ k)

Ay (18)

qmn
A2:
2(—y?+2nQy+ kmp)
Substituting Eq.(17) into the right hand side of Eq16) we

(19)

After substituting Eqs(25) and (26) into Eqgs.(21) and(22) and
separating the real and imaginary parts, we obtain

a’mna:;.= —Ciompa; TH; (27)
8a,mnB; = aa,(a2+2a3+8A%2+8A3)+H, (28)
&)mnaé: _wamﬁa2+H3 (29)
8a,0mnBs=— ady(as+2a3+8A3+8A3)+H,  (30)

where the superposed prime denotes differentiation with respect to
T,. The termsH,, H,, H;, andH, are again introduced by the
closeness relation EqR0),

H,=H,=0 (31)
Hy=—aA ASsing (32)
H,=—8aA A% cosy (33)
where
y=3sT1+ B, (34)

We can conclude from E@27) that the steady state solution af
is always zero. On the other hand the steady state solutioas of
and ¢ satisfy the following conditions

Ciommas+ aA1A3sing=0 (35)

. s K 2 2 2 2 ~ —
observe that there are six cases in which secular terms may occur — @@z(8+8A7+8A35) —8aA A5 cosy+ 24wy sa,=0

in the solutionc{}). These six cases are listed in Table 1. Further
analysis will reveal that there are three possible outcort®es:

(36)
After eliminating ¢ from Egs.(35) and (36), we obtain the rela-

Single-mode resonance: In cagédg and(2) only a single mode tion betweera, ands as,

will be excited in the superharmonic manné&B) Combination

resonance: In casd8) to (6) the secondary resonance involves a
both the forward and backward modé§) Simultaneous reso- -
nance: In the event when cas@s and(6) occur simultaneously,

in other wordsw 5 is close to 5/3,,, and y is close to 1/3,,,

then internal resonance involving both modes will occur. In théhe steady state vibration of the spinning disk is then
following we will discuss these three possible outcomes one by, g )= Rmn(r)[a, cog —3yt+#+nd)+2A, cogyt+néo)

one.

Single-Mode Superharmonic Resonance

+2A,cog —yt+nh)]+0O(e) (38)

It is noted that the frequency of free oscillation component is
tuned exactly to 3 by the nonlinearity. Therefore, the final re-

We first consider the case when the excitation frequency $9onse Eq(38) is periodic.

close to 1/&,,,. We define the frequency detuning parameater

by

1

y= gwm;-i- es (20)

The secular terms of E¢16) can be eliminated if
2i &mpD101+i20mCed1+ ady(|d1|2+2]dy|?+2A%+2A3)+ G,

=0 (21)
2i D 1o+ i 2w mrCida— ady(|dy| 2+ 2|dy| >+ 2A24+ 2A2) + G,
=0 (22)

where ®pmn=1/2(wmn+ omn) - The termsG; and G, are intro-
duced because of the closeness relation(E@),

G,=0 (23)
Gy=—aAAde 13T (24)
We expresgl; andd, in the forms
1 .
dy(Ty)= Eal(Tl)elﬁl(Tl) (25)
1 iB2(T1)
dy(Ty)= zaZ(Tl)e 20 (26)

424 | Vol. 126, JULY 2004

The stability of the steady state solutions can be analyzed by
expressingd;(T,) andd,(T,) as

dy(Ty)=d +dy(Ty) (39)

do(Ty)=d5 +dy(Ty) (40)

d{® andd{® are the steady state solutions. After substituting Egs.
(39) and(40) intoAEqs.(Zl) anAd (22) and linearizing with respect

to the variationsd;(T;) and d,(T;) we can obtain a Jacobian
matrix. By solving the eigenvalues of the Jacobian matrix we can
determine the stability of the steady state solutions. For unstable
solutions there exists at least one eigenvalue with positive real
part. It is noted that the results for the case of single-mode super-
harmonic resonances are similar to the results of a single degree-
of-freedom Duffing oscillatof14]. Similar single-mode superhar-
monic resonance will also occur when=1/3w,, .

Combination Resonance

For combination resonance we first consider d&sén Table 1
when y is close t0 2+ w,y @and assume

(41)

The termsG; and G, in the solvability equation$21) and (22)
are modified to

v=2w0mpt ompt es

G,=2ad,d,A, €Tt (42)
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Gzz—adiAle_iGTl (43) 30 |

It is noted that there always exists trivial solutidp=d,=0 in 25F
this case. To examine whether nontrivial solution exists, we fol-

low the same procedure as before to obtain EZ@#), (28), (29), o 20 B
and(30) with H,, H,, H;, andH, being modified to mﬂ 15+
o
1 =
5 -
H,=4aa,a,A, cosy (45) 0'.| NP SN HEPU PR SN E EOP
1, )
H3:—Zaa1Als|m// (46) 30
H4=—2aaiA; cosy 47) 25F e
where 20
Y=sTi+B2—2B (48) 9_ 1.5 \
By the same procedure as before we can conclude that the noi 1.0 ¥
trivial steady state solutions;, a,, and s must satisfy the fol- :
lowing three equations, 05[
. . TR IO B
1 - OO 1 1 ! t | 1
Cromnt 5 @dpAysing=0 (49) 012345678910
ACiwyray+ ad2 A siny=0 (50)

N

aay(5a5+4a%+24A 2+ 24A2) + 2a A (a5 +4a3)cosy
R Fig. 2 Steady state solutions as functions of s when y=2wg3
—8swmn@,=0 (1) 4 wys+es, where wes=11.94, wys=25.74, and £=0.001. Other
From Eqgs.(49) and (50) we note that the steady state amplitudeBarameters are =2.3, a=0.4, o3=10,000, and ¢;=0.2.
a, anda, are related by

af _ 20mn
; " @mn ®52)  from multiple scale method. Satisfactory accuracy is ensured. Fig-
o2 o o ure 3b) shows the Poincare map of the Runge Kutta solution
The steady state vibration of the spinning disk is then recorded fromt =35000 to 40000 with the sampling rate equal to
_ the excitation frequency. The sampling points form a closed
w(r,0,t)=Rqyn(r)[a,co t+B.(t)+no Lo = S
( )= Rmn(1)[81 COS oot + A1V ) curve, which implies the quasiperiodic feature of the response.
+a, coy — wypt + Bo(t) +no) The analysis and the result for cage y~ wm,+ 2wmare similar
to case(3).
+2A,cogyt+nb)+2A,cogd—yt+nh)]+0O(e) For combination resonance ca& in Table 1, we assume that
(53)
It is noted that the frequencies of the free oscillation components ¥= 5 (@mnt @) + &5 (56)

in Eq. (53) are not exactlyw,,,, andw,;;. Instead, the frequencies ) N ‘
are shifted by small amountd o, and Aw,;, respectively, The termsG,;, andG, in the solvability equation21) and(22),

where and the termsH,, H,, H;, andH, in Egs. (27) to (30) are
modified to

&
Awomy=ga—[a(ai+2a5+8A1+8A%) + 4aaz), cosy] Gy=2ad,A;A €25 (57)
(54) G,=—2ad;AjAe 25T (58)

2
—& a _ .
Aop=gz— a(a§+2a§+8A§+8A§)+2aa—lAlcos¢ Hi=—aaAiApsing (59)
m 2 (55) H,=8aa,A A, cosy (60)
Consequently, the final responsdr,d,t) in Eq. (53) is quasi- Hy=—aa;AjA,sing (61)
periodic.

Figure 2 shows the steady state amplitudesa,, and phases Hy4=—8aa A A, cosy (62)

of a pair of(0,3) modes as functions &f The parameters used in\yhere
the calculation aree=0.001, wyz=11.94, wy3=25.74, Qo3
=10000,c;=0.2, ande=0.4. The solid and dashed lines repre- $=25,T1+B2— b1 (63)

sent the stable and unstable solutions, respectively. It is obseryed 5 consequence, the nontrivial steady state solutignsa,,
that secondary resonance is possible when frequency detuning gy # satisfy the following three equations

rameters is greater than 3.63. The bifurcation at this critical point

is of the saddle-node type. To examine the accuracy of the ap- Ciwmndy T adA A, sing=0 (64)
proximate solutions predicted by the multiple scale method, we
use Runge-Kutta method to integrate Etfl) ats=8 with initial
conditionscyy(0)=9.98 andcy3(0)=121.57. The solid line in aa,a,[3a3+3a%+ 16(A2+ A2)]+8aA A ,(a2+ad)cosy
Fig. 3(@ shows the response history of the real partgfafter a

long period of time. The dashed line represents the prediction —16s®mna18,=0 (66)

Cfﬂ)mnﬂz"l‘ aalAlAz Sln l//:O (65)
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Fig. 3 (a) Time history and (b) the corresponding Poincare Fig. 4 Steady state solutions as functions of s when y
map when =8 for the combination resonance case in Fig. 2. =1/2(wpz+wo3)+es, where wg=11.94, wy,35=25.74, and
The initial conditions are  ¢43(0)=9.98 and cq3(0)=121.57/. £=0.001. Other parameters are 2=2.3, &=0.4, gy3;=3000, and
Cf=0.2.
From Eqgs.(64) and(65) we note that the steady state amplitudes
a, anda, are related by 1
, Hl=§aa2A§sin¢ (74)
4 _ O (67)
a;  ®mn H,=4aa,A3 cosy (75)
The phase/ is independent of the excitation frequency, 1
phase/ P duency Hy=— = aa;A3sinyg (76)
y= —sin~ 1| STV Kmn (68) ’
ah A, H,=—4aa A5 cosy (77)
The final responsw(r, 6,t) is in the same form as in E@53). =26T,+ Bo+t By (78)

Figure 4 shows the steady state amplitudesa,, and phaser o )
as functions ofs. The parameters used in the calculation ards a consequence, the nontrivial steady state solutignsa,,
£=0.001, woz=11.94, wy3=25.74, 0y3=3000, c;=0.2, and andy satisfy the following three equations
a=0.4. It is observed that pitch-fork bifurcations occur at 1
s=0.805 and 2.324. After studying the behaviors of the eigenval- CiOmB1— = aazAg sing=0 (79)
ues of the trivial solutions one can predict these two bifurcation 2
frequencies analytically as

1
+ - 2siny=
a(Ai-}—A%) azAlAz , (69) wamﬁaz 2 aalAz slnl,// 0 (80)
Sc= = * Ct
¢ Omn Kmn aa,ay(ai—a2)+4aA3(ai—aZ)cosy+ 165 mmaia,=0
From Eq.(69) we can also predict that the combination resonance (81)
of the summed type can occur only when the excitation amplitug®om Eqs.(79) and (80) we note that the steady state amplitudes
Omn Satisfies the following condition, a, anda, are related by
U= 4C1 Vi 4029207 = (kn= ¥2)?] (70) 2= — 22w (82)
For the final cas¢6) in Table 1, we assume that Therefore, the combination resonance of the difference type is
1 impossible.
Vzi(wmn_ Oy T es (71)
The termsG,, G,, H;, H,, Hz, andH, are modified to Simultaneous Resonance
G,= aEZAge’Z“Tl (72) Simultaneous resonance occurs when any two of the six close-
— 2 it ness conditions in Table 1 are met at the same time. A careful
Gy=—adiAZe™ 751 (73)  examination of all possible combinations reveals that simulta-
426 / Vol. 126, JULY 2004 Transactions of the ASME
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0412345678910
1

Fig. 5 Steady state solutions as functions of s; when y=1/3wpt£s;, @w3=14.13, wy3=23.55,
£=0.001. Other parameters are Q=1.57, @=0.4, gy3=10,000, and c;~=0.2.

neous resonance is possible only when cdggsand (6) occur 8mn(sp— 5s1)ay+ aay(az+2a2+8A%+8A2)
simultaneously. In other wordsy,,; is close togwmn and y is

2 —
close towp,,. In this case we assume that +4aa,A; cosy,=0 (95)
1 2Ci Ay — ad A2 sing,=0 96
y= 3 Omt e51 (83) f@nindlp 1A SNy, (96)
It is noted that botta; anda, have to be nonzero if a nontrivial
5 solution exists in Eqs(93) through(96). In other words, single-
wm?gwmﬁ €S, (84) mode resonance is not possible in this case. A straightforward

solution procedure to solve Eq93) to (96) for solutionsa,, a,,
wheres; ands, are two independent detuning parameters. Thé,, and ¢, is described briefly in Appendix. The steady state

termsG,, G,, Hy, H,, Hs, andH, are modified to vibration of the spinning disk is then
Gy= aAZA 31T+ ad,A 252 20 Ti=0 (85)  w(r,0,t)=Rpp(r)[a; cog3yt— i +nb)
Gz=aEIA§e”92*291>T1=O (86) +a, cog —5yt+ i — i+ n6)+2A, cog yt+no)
1 +2A,cog—yt+nh)]+0O(e) (97)
Hi=- aAiAZ SNy = EaazAg siny; ®7) It is noted that the first term with frequency ®n the right hand

side of Eq.(97) is a backward mode excited directly by the exter-
nal force in a superharmonic manner. The second term with fre-
1 quency % is a forward mode excited internally by the vibration of
Hy== aa;A3siny, (89) the backward mode.
2 Figure 5 shows the amplitudes and phases of the steady state
(90) solutions as functions of detuning parameserfor the internal
resonance between a pair @3 modes at)=1.57. The param-
where eters used in the calculation are=0.001, wyz=14.13, wgz
U1=35,T,— B (91) =23.55, (¢3=10,000,c;=0.2, anda=0.4. The excitation fre-
1meeii P quencyy=1/3wy;+es,. The stable solution branch from =0
Yo=(s—2s)T1—B1— B2 (92) undergoes a saddle-node bifurcations at3.99 (point A), creat-
. - . .ing an unstable branch BA. At point B the unstable branch under-
Following a similar procedure we can conclude that the nontnwét)es another saddle-node bifurcation creating a stable branch BC.
steady state solutions @y, B;, a;, and B, must satisfy the The pranch BC then undergoes a super-critical Hopf bifurcation at

H,=8aA?A, cosy, +4aa,A3 cosi, (88)

H,=—4aa A5 cosy,

following four equations, point C, creating a quasiperiodic solutiegs, which cannot be
240518, — aay(a2+2a3+ 8A2+8A2) —8aA?A, cosy, shown in Fig. 5. Point D is a saddle-node bifurcation point for
additional branch of solutions.
—4aa,A3cosy,=0 (93) To demonstrate the existence of Hopf bifurcation predicted by

) ) ) . the multiple scale analysis we use Runge-Kutta method to inte-
2Ciompar+ 2aA A, sinyg+aapAssing, =0 (94) grate Eq.(11) at s;=7 with initial conditions co= —4.96
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Fig. 6 (a) Time history and (b) the corresponding Poincare

map when s;=7 for the simultaneous resonance case in Fig. 5.
€3(0)=—4.96+i2.15 and cy3(0)

The initial conditions are

=—130.26+50.83.
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Fig. 7 (a) Time history and (b) the corresponding Poincare
map when s;=7 for the simultaneous resonance case in Fig. 5.

The initial conditions are

C3(0)=0 and cq3(0)=0.
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Fig. 8 Steady state solutions of simultaneous resonance as functions of loading parameter Jos

when s;=4
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+i2.15 andcye=—130.26+150.83. Figure @) shows the re- (5 In the case when the excitation frequency is close to
sponse history of the real part of; after a long period of time. 1/3wm, and 1/2¢nn—wpy) simultaneously, internal resonance
Figure b) shows its Poincare map recorded fram45,000 to between the forward and backward modes can occur. The frequen-
50,000 with the sampling rate equal to the excitation frequenc§es of the free oscillation components are exactly 3 times and 5
The sampling points fill up a small strip around a closed curvémes that of the excitation frequency. In this special case both
which implies the quasiperiodic feature of the response inducggddle-node and Hopf bifurcations are observed.
by a Hopf bifurcation. If the initial conditions are changed to
Co3= 0 andcys=0, the response then settles to the stable branchAzknowledgments
the right of point D in Fig. 5, as shown in Fig. 7. The Poincare
map in Fig. Tb) records the sampling points frois= 20,000 to : : :
25,000, which indicates clearly that the response is periodic. Itf‘g;gzpsuutﬁﬂogfegr%: grant from the National Science Council of
noted that the amplitude of the quasiperiodic solution branch after '
point C grows withs;. We also take note of the closing 9apAppendix
between the unstable branches following points C and D. At cer- L .
tain point ofs, the domain of attraction of the quasiperiodic so- BY eliminating ¢, from Egs.(93) and (94) we can derive an
lution touches the stable manifold of the saddle point in the neigBquation involving onlyg=a$ andf=aj in the form
borhood. Beyond this, the quasiperiodic solution will no longer 2 -
exist. We estimate numerically that it occurs arowner 19. p2(f)g°+pi(f)g+po(f)=0 (A1)

Figure 8 shows the steady state solutions as functions of loalfith use of Eqs(93) and(94), Egs.(91) and(92) can be reduced
ing parameteny; whens,;=4. Other parameters are the same a®
those used in Fig. 5. The stable branch undergoes saddle-node 2 3 P _
bifurcation at point A and another saddle-node bifurcation at B. da(F)g*+as(H)g*+ax(f)g®+as(f)g+ae(f)=0  (A2)
The stable branch starting from point B then undergoes a suppr-andg; are functions of only. EquationgAl) and(A2) can then
critical Hopf bifurcation at point C creating an unstable periodibe reduced to the following equation in termsfpf
solution and a quasiperiodic solution. The unstable branch CD 2 B
undergoes a super-critical Hopf bifurcation at point D. Points E  (M2Po™MoP2)+ (M2P1 =My p2) (MoPy — My Po) =0 (A3)
and F are two saddle-node bifurcation points. It is noted that alhere
the stable periodic solutions predicted in Figs. 5 and 8 can be
realized by integrating Eq11) numerically. M= Po(P203~ P104)

It is interesting to note that when the closeness condiifdmn _ _ 2
Table 1 is met alone, we predict that combination resonance of the My = Po(P2d2~ Poda) ~ P2Mo
difference type is impossible. However, when conditi¢Asand M= PoP291— P1P200
(6) in Table 1 are met at the same time, complicated response, i

induced and both the backward and the forward modes are excigzEr solving a, from Eq. (A3), a, can be calculated from Eq.
via internal resonance. )-
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