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On the Secondary Resonance of a
Spinning Disk Under Space-Fixed
Excitations
We investigate the possibility of secondary resonance of a spinning disk under space
excitations. Von Karman’s plate model is employed in formulating the equations of m
of the spinning disk. Galerkin’s procedure is used to discretize the equations of mo
and the multiple scale method is used to predict the steady state solutions. Atten
focused on the nonlinear coupling between a pair of forward (with frequencyvmn̄! and
backward (with frequencyvmn! traveling waves. It is found that combination resonan
may occur when the excitation frequency is close to 2vmn1vmn̄ , vmn12vmn̄ , or
1/2~vmn̄1vmn!. When the combination resonance does occur, the frequencies of the
oscillation components are shifted slightly from the respective natural frequenciesvmn̄
and vmn. The final response is therefore quasiperiodic. However, in the case whe
excitation frequency is close to 1/2~vmn̄2vmn!, no combination resonance is possible.
the case when the excitation frequency is close to 1/3vmn and 1/2~vmn̄2vmn! simulta-
neously, internal resonance between the forward and backward modes can occu
frequencies of the free oscillation components are exactly three times and five times
the excitation frequency. In this special case both saddle-node and Hopf bifurcation
observed.@DOI: 10.1115/1.1760562#
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Introduction
The dynamic response of a spinning flexible disk under spa

fixed excitation has been under intensive research in the pas
cades, partly due to its potential applications in many mechan
design problems such as circular saws and modern disk dr
Benson and Bogy@1# and Cole and Benson@2# investigated the
steady state response of a spinning disk under a space-fixed
force. Ono and Maeno@3# and Jiang et al.@4# studied the respons
of a spinning floppy disk under space-fixed harmonic excitati
Chen and Hsu@5,6# considered the transient response as well
steady state deflections of a spinning disk under space-fixed
forces and couples.

These aforementioned analyses all used linearized plate e
tion. In some cases when the disk deflection becomes exce
the stiffening effect due to membrane stretching has to be ta
into account. This nonlinear stretching effect is commonly trea
by adopting von Karman’s plate model@7#. Tobias and Arnold@8#
studied the influence of imperfection on the nonlinear vibration
rotating disks. Maher and Adams@9# calculated the steady stat
point-load deflection of a disk spinning near a base plate. T
et al. @10# investigated analytically and experimentally the p
mary resonance of a spinning disk under both rotating and sp
fixed loads simultaneously. Raman and Mote@11# and Chen@12#
studied the nonlinear oscillation of a disk spinning near its criti
speed. These researches mainly dealt with the primary reson
of a spinning disk, i.e., the excitation frequency is close to one
the natural frequencies of the spinning disk. On the other ha
the secondary resonance of a spinning disk under space-fixe
citation has not been studied in the literature. When the disk is
spinning, however, subharmonic resonance was reported by
feh and Vakakis@13#.

In this paper we investigate the possibility of secondary re
nance of a spinning disk under space-fixed excitations. The e
tions of motion are formulated by using von Karman’s pla
model. Galerkin’s method is then employed to discretize the eq
tions of motion. Attention is focused on the nonlinear coupli

Contributed by the Technical Committee on Vibration and Sound for publica
in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received June 2001
Revised Dec. 2003. Associate Editor: J. P. Cusumano.
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between a pair of forward and backward traveling waves. T
steady state solutions are predicted by multiple scale method
verified by Runge-Kutta integration.

Equations of Motion
We consider an elastic circular disk spinning with consta

speedV. The equations of motion of the spinning disk in terms
transverse displacementw and stress functionf can be written as
@7#

rh~w,tt12Vw,tu1V2w,uu!1cfw,t1D¹4w

5hH w,rr ~r 21f ,r1r 22f ,uu!1~r 21w,r1r 22w,uu!f ,rr

22~r 21w,u! ,r~r 21f ,u! ,r2rV2r S r

2
¹2w1w,r D J

1q~r ,u!cosgt (1)

¹4f52E@w,rr ~r 21w,r1r 22w,uu!12r 23w,ruw,u2r 22~w,ru!2

2r 24~w,u!2#12~12n!rV2 (2)

(r ,u) are space-fixed polar coordinates. The parametersr, h, E, n,
andD are the mass density, thickness, Young’s modulus, Pois
ratio, and flexural rigidity of the disk, respectively.cf represents a
space-fixed homogeneous damping due to the surrounding
q(r ,u)cosgt is the space-fixed harmonic loading. In writing E
~2! the in-plane inertia is neglected. The disk is assumed to
‘‘partially’’ clamped @1# at the inner radiusr 5a and is free at the
outer radiusr 5b.

It is noted that while Eqs.~1! and~2! are nonlinear in terms of
w, they are linear inf. Therefore we can divide the stress functio
f in Eq. ~2! into homogeneous solutionf1 and particular solution
f2 . f1 accounts for the stretching effect due to the centrifu
force, andf2 involves nonlinear terms ofw. After substituting the
relation f5f11f2 in Eqs. ~1! and ~2! and introducing the fol-
lowing dimensionless quantities,

ion
;
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t* 5
t

b2
AD

rh
, V* 5Vb2Arh

D
, g* 5gb2Arh

D
,

r * 5
r

b
, w* 5wA b

h3
,

f* 5f
h

D
, cf* 5cf

b3

24~12n2!Arh3D
, «512~12n2!

h

b
,

h5
a

b
,

s r* 5
hb2

D
s r , q* 5qA b9

D2h3
,

we can rewrite the equations of motion in the dimensionless fo
after dropping the asterisks for simplicity,

w,tt12Vw,tu1V2w,uu12«cfw,t1¹4w2r 21~s r rw ,r ! ,r

2r 22suw,uu

5w,rr ~r 21f2,r1r 22f2,uu!1~r 21w,r1r 22w,uu!f2,rr

22~r 21w,u! ,r~r 21f2,u! ,r1q~r ,u!cosgt (3)

¹4f252«@w,rr ~r 21w,r1r 22w,uu!12r 23w,ruw,u2r 22~w,ru!2

2r 24~w,u!2# (4)

wheres r andsu are due to centrifugal force,

s r5
31n

8
V2~12r 2! (5)

su5
1

8
V2@~31n!2~113n!r 2# (6)

In the special case when«50, the solutionf2 in Eq. ~4! is iden-
tically zero, and as a consequence Eq.~3! for an undamped freely
spinning disk is reduced to

w,tt12Vw,tu1V2w,uu1¹4w2r 21~s r rw ,r ! ,r2r 22suw,uu50
(7)

The natural frequency of a mode withn nodal diameters andm
nodal circles is denoted byvmn . The corresponding eigenfunctio
is complex and assumes the form

wmn~r ,u!5Rmn~r !einu (8)

It is also noted that the eigenfunctionswmn are orthonormal.
Figure 1 shows the natural frequency loci of a spinning disk

Fig. 1 Natural frequency loci of a freely spinning disk
Journal of Vibration and Acoustics
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the rotation speed varies. The clamping ratioh is 0.5, and the
Poisson ration is 0.27. Only the modes with less than four nod
diameters are shown here. The subscriptsf, b, andr of the mode
label (m,n) represent forward, backward, and reflected mod
respectively@6#.

Discretization
In this paper we focus on the secondary resonance of a pa

forward and backward (m,n) modes excited by the space-fixe
load and assume that the influence of other modes on this spe
pair is negligible. The solutionw(r ,u,t) of Eqs. ~3! and ~4! can
then be approximated in terms of eigenfunctionswmn(r ,u) as

w~r ,u,t !5cmn~ t !wmn1 c̄mn~ t !w̄mn (9)

Both cmn(t) andwmn(r ,u) in Eq. ~9! are complex functions, while
the displacementw(r ,u,t) is a real function.w̄mn represents the
complex conjugate ofwmn . In order to solvef2 in Eq. ~4! we
introduce a set of eigenfunctionsfmn satisfying the following
differential equation,

¹4fmn2bmn
4 fmn50 (10)

fmn satisfy the same boundary conditions asf2 does. After ex-
pressingf2 in terms of eigenfunction seriesfmn and following
Galerkin’s procedure, we can discretize Eqs.~3! and ~4! into

c̈mn12inV ċmn1kmncmn12«cf ċmn1«aucmnu2cmn5qmn cosgt
(11)

where

kmn5vmnvmn̄ (12)

qmn5E
u50

2p E
r 5h

1

q~r ,u!Rmn~r !e2 inurdrdu (13)

Equation~11! represents a gyroscopic system with two degrees
freedom.vmn and vmn̄ are the natural frequencies of the bac
ward and the forward modes, respectively. It is noted thatvmn̄ is
equal tovmn12nV. The excitation frequencyg is assumed to be
away from bothvmn and vmn̄ . In other words, we exclude the
case of primary resonance. The thickness parameter« is assumed
to be small. It is noted that the damping and the nonlinear te
are of order«, while the forcing term is of order one. Without los
of generality the load parameterqmn can be taken as real. Con
stanta can be obtained via numerical integration involving eige
functions wmn and fmn•ucmnu represents the absolute value
complex numbercmn .

Multiple Scale Method
In order to find the steady state oscillation we apply the meth

of multiple scale@14# to analyze Eq.~11!. The method of multiple
scale assumes an expansion of the solution in the form

cmn~ t !5cmn
~0!~ t,T1!1«cmn

~1!~ t,T1!1O~«2! (14)

where T1[«t. Substituting~14! into ~11! and equating coeffi-
cients of like powers of« yields

«0: D0
2cmn

~0!12inVD0cmn
~0!1kmncmn

~0!5qmn cosgt (15)

«1: D0
2cmn

~1!12inVD0cmn
~1!1kmncmn

~1!522D1D0cmn
~0!

22inVD1cmn
~0!22cfD0cmn

~0!2aucmn
~0!u2cmn

~0! (16)

where D0[]/]t, and D1[]/]T1 . The general solution of Eq
~15! can be written in the form

cmn
~0!5d1~T1!eivmnT01d2~T1!e2 ivmn̄T01L1eigT01L2e2 igT0

(17)

where
JULY 2004, Vol. 126 Õ 423
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L15
qmn

2~2g222nVg1kmn!
(18)

L25
qmn

2~2g212nVg1kmn!
(19)

Substituting Eq.~17! into the right hand side of Eq.~16! we
observe that there are six cases in which secular terms may o
in the solutioncmn

(1) . These six cases are listed in Table 1. Furth
analysis will reveal that there are three possible outcomes:~A!
Single-mode resonance: In cases~1! and ~2! only a single mode
will be excited in the superharmonic manner.~B! Combination
resonance: In cases~3! to ~6! the secondary resonance involv
both the forward and backward modes.~C! Simultaneous reso
nance: In the event when cases~2! and ~6! occur simultaneously,
in other wordsvmn̄ is close to 5/3vmn andg is close to 1/3vmn ,
then internal resonance involving both modes will occur. In
following we will discuss these three possible outcomes one
one.

Single-Mode Superharmonic Resonance
We first consider the case when the excitation frequency

close to 1/3vmn̄ . We define the frequency detuning paramete§
by

g5
1

3
vmn̄1«§ (20)

The secular terms of Eq.~16! can be eliminated if

2i v̂mnD1d11 i2vmncfd11ad1~ ud1u212ud2u212L1
212L2

2!1G1

50 (21)

2i v̂mnD1d21 i2vmn̄cfd22ad2~ ud2u212ud1u212L1
212L2

2!1G2

50 (22)

where v̂mn51/2(vmn1vmn̄). The termsG1 and G2 are intro-
duced because of the closeness relation Eq.~20!,

G150 (23)

G252aL1L2
2e2 i3§T1 (24)

We expressd1 andd2 in the forms

d1~T1!5
1

2
a1~T1!eib1~T1! (25)

d2~T1!5
1

2
a2~T1!eib2~T1! (26)

Table 1 Six cases in which secular terms may occur in the
solution c mn

„1… in Eq. „14…

Case Closeness condition

1 g'
1

3
vmn̄

2 g'
1

3
vmn

3 g'2vmn1vmn̄
4 g'vmn12vmn̄

5 g'
1

2
~vmn̄1vmn!

6 g'
1

2
~vmn̄2vmn!
424 Õ Vol. 126, JULY 2004
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After substituting Eqs.~25! and ~26! into Eqs.~21! and ~22! and
separating the real and imaginary parts, we obtain

v̂mna1852cfvmna11H1 (27)

8a1v̂mnb185aa1~a1
212a2

218L1
218L2

2!1H2 (28)

v̂mna2852cfvmn̄a21H3 (29)

8a2v̂mnb2852aa2~a1
212a2

218L1
218L2

2!1H4 (30)

where the superposed prime denotes differentiation with respe
T1 . The termsH1 , H2 , H3 , andH4 are again introduced by the
closeness relation Eq.~20!,

H15H250 (31)

H352aL1L2
2 sinc (32)

H4528aL1L2
2 cosc (33)

where

c53§T11b2 (34)

We can conclude from Eq.~27! that the steady state solution ofa1
is always zero. On the other hand the steady state solutions oa2
andc satisfy the following conditions

cfvmn̄a21aL1L2
2 sinc50 (35)

2aa2~a2
218L1

218L2
2!28aL1L2

2 cosc124v̂mn§a250
(36)

After eliminatingc from Eqs.~35! and ~36!, we obtain the rela-
tion betweena2 and§ as,

§5
a

3v̂mn
S 1

8
a2

21L1
21L2

2D6
1

3v̂mn
S a2L1

2L2
4

a2
2

2cf
2vmn̄

2 D 1/2

(37)

The steady state vibration of the spinning disk is then

w~r ,u,t !5Rmn~r !@a2 cos~23gt1c1nu!12L1 cos~gt1nu!

12L2 cos~2gt1nu!#1O~«! (38)

It is noted that the frequency of free oscillation component
tuned exactly to 3g by the nonlinearity. Therefore, the final re
sponse Eq.~38! is periodic.

The stability of the steady state solutions can be analyzed
expressingd1(T1) andd2(T1) as

d1~T1!5d1
~s!1d̂1~T1! (39)

d2~T1!5d2
~s!1d̂2~T1! (40)

d1
(s) andd2

(s) are the steady state solutions. After substituting E
~39! and~40! into Eqs.~21! and~22! and linearizing with respec
to the variationsd̂1(T1) and d̂2(T1) we can obtain a Jacobia
matrix. By solving the eigenvalues of the Jacobian matrix we c
determine the stability of the steady state solutions. For unst
solutions there exists at least one eigenvalue with positive
part. It is noted that the results for the case of single-mode su
harmonic resonances are similar to the results of a single deg
of-freedom Duffing oscillator@14#. Similar single-mode superhar
monic resonance will also occur wheng'1/3vmn .

Combination Resonance
For combination resonance we first consider case~3! in Table 1

wheng is close to 2vmn1vmn̄ and assume

g52vmn1vmn̄1«§ (41)

The termsG1 and G2 in the solvability equations~21! and ~22!
are modified to

G152ad̄1d2L1ei §T1 (42)
Transactions of the ASME

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



f

s

n

e

g
i

t

Fig-
ion
to
d
se.

t

Downlo
G252ad1
2L1e2 i §T1 (43)

It is noted that there always exists trivial solutiond15d250 in
this case. To examine whether nontrivial solution exists, we
low the same procedure as before to obtain Eqs.~27!, ~28!, ~29!,
and ~30! with H1 , H2 , H3 , andH4 being modified to

H152
1

2
aa1a2L1 sinc (44)

H254aa1a2L1 cosc (45)

H352
1

4
aa1

2L1 sinc (46)

H4522aa1
2L1 cosc (47)

where

c5§T11b222b1 (48)

By the same procedure as before we can conclude that the
trivial steady state solutionsa1 , a2 , andc must satisfy the fol-
lowing three equations,

cfvmn1
1

2
aa2L1 sinc50 (49)

4cfvmn̄a21aa1
2L1 sinc50 (50)

aa2~5a2
214a1

2124L1
2124L2

2!12aL1~a1
214a2

2!cosc

28§v̂mna250 (51)

From Eqs.~49! and ~50! we note that the steady state amplitud
a1 anda2 are related by

a1
2

a2
2

5
2vmn̄

vmn
(52)

The steady state vibration of the spinning disk is then

w~r ,u,t !5Rmn~r !@a1 cos~vmnt1b1~ t !1nu!

1a2 cos~2vmn̄t1b2~ t !1nu!

12L1 cos~gt1nu!12L2 cos~2gt1nu!#1O~«!

(53)

It is noted that the frequencies of the free oscillation compone
in Eq. ~53! are not exactlyvmn andvmn̄ . Instead, the frequencie
are shifted by small amountsDvmn and Dvmn̄ , respectively,
where

Dvmn5
«

8v̂mn
@a~a1

212a2
218L1

218L2
2!14aa2L1 cosc#

(54)

Dvmn̄5
2«

8v̂mn
Fa~a2

212a1
218L1

218L2
2!12a

a1
2

a2
L1 coscG

(55)

Consequently, the final responsew(r ,u,t) in Eq. ~53! is quasi-
periodic.

Figure 2 shows the steady state amplitudesa1 , a2 , and phasec
of a pair of~0,3! modes as functions of§. The parameters used i
the calculation are«50.001, v03511.94, v03̄525.74, q03
510000,cf50.2, anda50.4. The solid and dashed lines repr
sent the stable and unstable solutions, respectively. It is obse
that secondary resonance is possible when frequency detunin
rameter§ is greater than 3.63. The bifurcation at this critical po
is of the saddle-node type. To examine the accuracy of the
proximate solutions predicted by the multiple scale method,
use Runge-Kutta method to integrate Eq.~11! at §58 with initial
conditionsc03(0)59.98 andċ03(0)5121.57i . The solid line in
Fig. 3~a! shows the response history of the real part ofc03 after a
long period of time. The dashed line represents the predic
Journal of Vibration and Acoustics
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from multiple scale method. Satisfactory accuracy is ensured.
ure 3~b! shows the Poincare map of the Runge Kutta solut
recorded fromt535000 to 40000 with the sampling rate equal
the excitation frequencyg. The sampling points form a close
curve, which implies the quasiperiodic feature of the respon
The analysis and the result for case~4! g'vmn12vmn̄ are similar
to case~3!.

For combination resonance case~5! in Table 1, we assume tha

g5
1

2
~vmn1vmn̄!1«§ (56)

The termsG1 , andG2 in the solvability equations~21! and~22!,
and the termsH1 , H2 , H3 , and H4 in Eqs. ~27! to ~30! are
modified to

G152ad2L1L2e2i §T1 (57)

G2522ad1L1L2e22i §T1 (58)

H152aa2L1L2 sinc (59)

H258aa2L1L2 cosc (60)

H352aa1L1L2 sinc (61)

H4528aa1L1L2 cosc (62)

where

c52§1T11b22b1 (63)

As a consequence, the nontrivial steady state solutionsa1 , a2 ,
andc satisfy the following three equations

cfvmna11aa2L1L2 sinc50 (64)

cfvmn̄a21aa1L1L2 sinc50 (65)

aa1a2@3a2
213a1

2116~L1
21L2

2!#18aL1L2~a1
21a2

2!cosc

216§v̂mna1a250 (66)

Fig. 2 Steady state solutions as functions of § when gÄ2v03
¿v03̄¿«§, where v03Ä11.94, v03̄Ä25.74, and «Ä0.001. Other
parameters are VÄ2.3, aÄ0.4, q 03Ä10,000, and c fÄ0.2.
JULY 2004, Vol. 126 Õ 425
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From Eqs.~64! and ~65! we note that the steady state amplitud
a1 anda2 are related by

a1
2

a2
2

5
vmn̄

vmn
(67)

The phasec is independent of the excitation frequency,

c52sin21FcfAkmn

aL1L2
G (68)

The final responsew(r ,u,t) is in the same form as in Eq.~53!.
Figure 4 shows the steady state amplitudesa1 , a2 , and phasec

as functions of§. The parameters used in the calculation a
«50.001, v03511.94, v03̄525.74, q0353000, cf50.2, and
a50.4. It is observed that pitch-fork bifurcations occur
§50.805 and 2.324. After studying the behaviors of the eigenv
ues of the trivial solutions one can predict these two bifurcat
frequencies analytically as

§c5
a~L1

21L2
2!

v̂mn
6Aa2L1

2L2
2

kmn
2cf

2 (69)

From Eq.~69! we can also predict that the combination resona
of the summed type can occur only when the excitation amplit
qmn satisfies the following condition,

qmn
2 a>4cf Akmn@4n2g2V22~kmn2g2!2# (70)

For the final case~6! in Table 1, we assume that

g5
1

2
~vmn2vmn̄!1«§ (71)

The termsG1 , G2 , H1 , H2 , H3 , andH4 are modified to

G15ad̄2L2
2e22i §T1 (72)

G252ad̄1L2
2e22i §T1 (73)

Fig. 3 „a… Time history and „b… the corresponding Poincare
map when §Ä8 for the combination resonance case in Fig. 2.
The initial conditions are c 03„0…Ä9.98 and ċ 03„0…Ä121.57i .
426 Õ Vol. 126, JULY 2004
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H15
1

2
aa2L2

2 sinc (74)

H254aa2L2
2 cosc (75)

H352
1

2
aa1L2

2 sinc (76)

H4524aa1L2
2 cosc (77)

c52§T11b21b1 (78)

As a consequence, the nontrivial steady state solutionsa1 , a2 ,
andc satisfy the following three equations

cfvmna12
1

2
aa2L2

2 sinc50 (79)

cfvmn̄a21
1

2
aa1L2

2 sinc50 (80)

aa1a2~a2
22a1

2!14aL2
2~a2

22a1
2!cosc116§v̂mna1a250

(81)

From Eqs.~79! and ~80! we note that the steady state amplitud
a1 anda2 are related by

a1
2vmn52a2

2vmn̄ (82)

Therefore, the combination resonance of the difference typ
impossible.

Simultaneous Resonance
Simultaneous resonance occurs when any two of the six cl

ness conditions in Table 1 are met at the same time. A car
examination of all possible combinations reveals that simu

Fig. 4 Steady state solutions as functions of § when g
Ä1Õ2„v03¿v03̄…¿«§, where v03Ä11.94, v03̄Ä25.74, and
«Ä0.001. Other parameters are VÄ2.3, aÄ0.4, q 03Ä3000, and
c fÄ0.2.
Transactions of the ASME
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Fig. 5 Steady state solutions as functions of §1 when gÄ1Õ3v03¿«§1 , v03Ä14.13, v03̄Ä23.55,
«Ä0.001. Other parameters are VÄ1.57, aÄ0.4, q 03Ä10,000, and c fÄ0.2.
l

ard

te

r-
fre-
of

state

er-
BC.

n at

for

by
nte-
neous resonance is possible only when cases~2! and ~6! occur
simultaneously. In other words,vmn̄ is close to 5

3vmn and g is
close to1

3vmn . In this case we assume that

g5
1

3
vmn1«§1 (83)

vmn̄5
5

3
vmn1«§2 (84)

where§1 and §2 are two independent detuning parameters. T
termsG1 , G2 , H1 , H2 , H3 , andH4 are modified to

G15aL1
2L2ei3§1T11ad̄2L2

2ei ~§222§1!T150 (85)

G25ad̄1L2
2ei ~§222§1!T150 (86)

H152aL1
2L2 sinc12

1

2
aa2L2

2 sinc2 (87)

H258aL1
2L2 cosc114aa2L2

2 cosc2 (88)

H35
1

2
aa1L2

2 sinc2 (89)

H4524aa1L2
2 cosc2 (90)

where

c153§1T12b1 (91)

c25~§222§1!T12b12b2 (92)

Following a similar procedure we can conclude that the nontriv
steady state solutions ofa1 , b1 , a2 , and b2 must satisfy the
following four equations,

24v̂mn§1a12aa1~a1
212a2

218L1
218L2

2!28aL1
2L2 cosc1

24aa2L2
2 cosc250 (93)

2cfvmna112aL1
2L2 sinc11aa2L2

2 sinc250 (94)
ration and Acoustics
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8v̂mn~§225§1!a21aa2~a2
212a1

218L1
218L2

2!

14aa1L2
2 cosc250 (95)

2cfvmn̄a22aa1L2
2 sinc250 (96)

It is noted that botha1 anda2 have to be nonzero if a nontrivia
solution exists in Eqs.~93! through~96!. In other words, single-
mode resonance is not possible in this case. A straightforw
solution procedure to solve Eqs.~93! to ~96! for solutionsa1 , a2 ,
c1 , and c2 is described briefly in Appendix. The steady sta
vibration of the spinning disk is then

w~r ,u,t !5Rmn~r !@a1 cos~3gt2c11nu!

1a2 cos~25gt1c12c21nu!12L1 cos~gt1nu!

12L2 cos~2gt1nu!#1O~«! (97)

It is noted that the first term with frequency 3g on the right hand
side of Eq.~97! is a backward mode excited directly by the exte
nal force in a superharmonic manner. The second term with
quency 5g is a forward mode excited internally by the vibration
the backward mode.

Figure 5 shows the amplitudes and phases of the steady
solutions as functions of detuning parameter§1 for the internal
resonance between a pair of~0,3! modes atV51.57. The param-
eters used in the calculation are«50.001, v03514.13, v03̄
523.55, q03510,000, cf50.2, anda50.4. The excitation fre-
quencyg51/3v031«§1 . The stable solution branch from§150
undergoes a saddle-node bifurcation at§153.99 ~point A!, creat-
ing an unstable branch BA. At point B the unstable branch und
goes another saddle-node bifurcation creating a stable branch
The branch BC then undergoes a super-critical Hopf bifurcatio
point C, creating a quasiperiodic solutionc03, which cannot be
shown in Fig. 5. Point D is a saddle-node bifurcation point
additional branch of solutions.

To demonstrate the existence of Hopf bifurcation predicted
the multiple scale analysis we use Runge-Kutta method to i
grate Eq. ~11! at §157 with initial conditions c03524.96
JULY 2004, Vol. 126 Õ 427
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Downlo
Fig. 6 „a… Time history and „b… the corresponding Poincare
map when §1Ä7 for the simultaneous resonance case in Fig. 5.
The initial conditions are c 03„0…ÄÀ4.96¿ i 2.15 and ċ 03„0…
ÄÀ130.26¿ i 50.83.
428 Õ Vol. 126, JULY 2004
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Fig. 7 „a… Time history and „b… the corresponding Poincare
map when §1Ä7 for the simultaneous resonance case in Fig. 5.
The initial conditions are c 03„0…Ä0 and ċ 03„0…Ä0.
Fig. 8 Steady state solutions of simultaneous resonance as functions of loading parameter q 03
when §1Ä4
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Downlo
1 i2.15 and ċ0352130.261 i50.83. Figure 6~a! shows the re-
sponse history of the real part ofc03 after a long period of time.
Figure 6~b! shows its Poincare map recorded fromt545,000 to
50,000 with the sampling rate equal to the excitation frequen
The sampling points fill up a small strip around a closed cur
which implies the quasiperiodic feature of the response indu
by a Hopf bifurcation. If the initial conditions are changed
c0350 andċ0350, the response then settles to the stable branc
the right of point D in Fig. 5, as shown in Fig. 7. The Poinca
map in Fig. 7~b! records the sampling points fromt520,000 to
25,000, which indicates clearly that the response is periodic.
noted that the amplitude of the quasiperiodic solution branch a
point C grows with§1 . We also take note of the closing ga
between the unstable branches following points C and D. At
tain point of§1 the domain of attraction of the quasiperiodic s
lution touches the stable manifold of the saddle point in the ne
borhood. Beyond this§1 the quasiperiodic solution will no longe
exist. We estimate numerically that it occurs around§1519.

Figure 8 shows the steady state solutions as functions of lo
ing parameterq03 when§154. Other parameters are the same
those used in Fig. 5. The stable branch undergoes saddle-
bifurcation at point A and another saddle-node bifurcation at
The stable branch starting from point B then undergoes a su
critical Hopf bifurcation at point C creating an unstable period
solution and a quasiperiodic solution. The unstable branch
undergoes a super-critical Hopf bifurcation at point D. Points
and F are two saddle-node bifurcation points. It is noted that
the stable periodic solutions predicted in Figs. 5 and 8 can
realized by integrating Eq.~11! numerically.

It is interesting to note that when the closeness condition~6! in
Table 1 is met alone, we predict that combination resonance o
difference type is impossible. However, when conditions~2! and
~6! in Table 1 are met at the same time, complicated respons
induced and both the backward and the forward modes are ex
via internal resonance.

Conclusions
In this paper we investigate the possibility of secondary re

nance of a spinning disk under space-fixed excitations. Von K
man’s plate model is employed in formulating the equations
motion of the spinning disk. Galerkin’s procedure is used to d
cretize the equations of motion. Attention is focused on the n
linear coupling between a pair of forward~with frequencyvmn̄)
and backward~with frequencyvmn) traveling modes. Multiple
scale method is used to predict the steady state periodic solut
The secondary oscillations are classified into three types,
single-mode resonance, combination resonance, and simultan
resonance. The accuracy of steady state solution predicted by
tiple scale method is examined by direct integration with Run
Kutta method. Several conclusions can be summarized as foll

~1! When the excitation frequency is close to 1/3vmn̄ or
1/3vmn , then single-mode superharmonic resonance will be
duced. The response behavior is similar to a classical Duf
oscillator.

~2! In the case when the excitation frequency is close
2vmn1vmn̄ or vmn12vmn̄ , both the forward and the backwar
modes will be excited when the frequency detuning paramete
greater than a critical value. When the combination resona
does occur, the frequencies of the free oscillation components
shifted slightly from the respective natural frequenciesvmn̄ and
vmn . The final response is therefore quasiperiodic. The bifur
tion points in the bifurcation diagram are of the saddle-node ty

~3! In the case when the excitation frequency is close
1/2(vmn̄1vmn), again both the forward and the backward mod
will be excited. The bifurcation points in the bifurcation diagra
are of the pitch-fork type.

~4! In the case when the excitation frequency is close
1/2(vmn̄2vmn), no combination resonance is possible.
Journal of Vibration and Acoustics
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~5! In the case when the excitation frequency is close
1/3vmn and 1/2(vmn̄2vmn) simultaneously, internal resonanc
between the forward and backward modes can occur. The freq
cies of the free oscillation components are exactly 3 times an
times that of the excitation frequency. In this special case b
saddle-node and Hopf bifurcations are observed.
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Appendix
By eliminating c2 from Eqs.~93! and ~94! we can derive an

equation involving onlyg5a1
2 and f 5a2

2 in the form

p2~ f !g21p1~ f !g1p0~ f !50 (A1)

With use of Eqs.~93! and~94!, Eqs.~91! and~92! can be reduced
to

q4~ f !g41q3~ f !g31q2~ f !g21q1~ f !g1q0~ f !50 (A2)

pi andqi are functions off only. Equations~A1! and~A2! can then
be reduced to the following equation in terms off,

~m2p02m0p2!21~m2p12m1p2!~m0p12m1p0!50 (A3)

where

m25p0~p2q32p1q4!

m15p0~p2q22p0q4!2p2
2q0

m05p0p2q12p1p2q0

After solving a2 from Eq. ~A3!, a1 can be calculated from Eq
~A1!.

References
@1# Benson, R. C., and Bogy, D. B., 1978, ‘‘Deflection of a Very Flexible Spinni

Disk Due to a Stationary Transverse Load,’’ ASME J. Appl. Mech.,45, pp.
636–642.

@2# Cole, K. A., and Benson, R. C., 1988, ‘‘Fast Eigenfunction Approach
Computing Spinning Disk Deflections,’’ ASME J. Appl. Mech.,55, pp. 453–
457.

@3# Ono, K., and Maeno, T., 1987, ‘‘Theoretical and Experimental Investigation
Dynamic Characteristics of a 3.5-Inch Flexible Disk Due to a Point Cont
Head,’’ Tribology and Mechanics of Magnetic Storage Systems,3, SP.21,
~STLE!, pp. 144–151.

@4# Jiang, Z. W., Chonan, S., and Abe, H., 1990, ‘‘Dynamic Response of a R
Write Head Floppy Disk System Subjected to Axial Excitation,’’ ASME
Vibr. Acoust.,112, pp. 53–58.

@5# Chen, J. S., and Hsu, C. M., 1997, ‘‘On the Transient Response of a Spin
Disk Under a Space-Fixed Step Load,’’ ASME J. Appl. Mech.,64, pp. 1017–
1019.

@6# Chen, J. S., and Hsu, C. M., 1997, ‘‘Forced Response of a Spinning D
Under Space-Fixed Couples,’’ J. Sound Vib.,206, pp. 627–639.

@7# Nowinski, J. L., 1964, ‘‘Nonlinear Transverse Vibrations of a Spinning Disk
ASME J. Appl. Mech.,31, pp. 72–78.

@8# Tobias, S. A., and Arnold, R. N., 1957, ‘‘The Influence of Dynamical Impe
fection on the Vibration of Rotating Disks,’’ Proc. Inst. Mech. Eng.,171, pp.
669–690.

@9# Maher, J. F., and Adams, G. G., 1991, ‘‘The Point-Load Solution Using L
earized von Karman Plate Theory for a Spinning Flexible Disk Near a Ba
plate,’’ STLE/ASME Tribology Conference, St. Louis, Missouri, pp. 1–9.

@10# Torii, T., Yasuda, K., and Toyada, T., 1998, ‘‘Nonlinear Forced Oscillation o
Rotating Disk Excited at a Point Fixed in Space,’’ JSME Int. J., Ser. C,41, pp.
592–598.

@11# Raman, A., and Mote, Jr., C. D., 1999, ‘‘Non-linear Oscillations of Circu
Plates Near a Critical Speed Resonance,’’ Int. J. Non-Linear Mech.,34, pp.
139–157.

@12# Chen, J. S., 1999, ‘‘Steady State Deflection of a Circular Plate Rotating N
Its Critical Speed,’’ ASME J. Appl. Mech.,66, pp. 1015–1017.

@13# Nayfeh, T. A., and Vakakis, A. F., 1994, ‘‘Subharmonic Travelling Waves in
Geometrically Non-Linear Circular Plate,’’ Int. J. Non-Linear Mech.,29, pp.
233–245.

@14# Nayfeh, A. H., and Mook, D. T., 1979,Nonlinear Oscillations, Wiley, New
York.
JULY 2004, Vol. 126 Õ 429

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


