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Parametric Resonance of a 
Spinning Disk Under Space- 
Fixed Pulsating Edge Loads 
The parametric resonance of a spinning disk under a space-fixed pulsating edge load 
is investigated analytically. We assume that the radial edge load can be expanded 
in a Fourier series. With use of the orthogonality properties among the eigenfunctions 
of a gyroscopic system, the partial differential equation of motion is discretized into 
a system of generalized Hill's equations in the first-order form. The method of multiple 
scale is employed to determine the conditions for single mode as well as combination 
resonances to occur. For any two modes, with s and v nodal diameters, respectively, 
combination resonance occurs only when there exists a specific Fourier component 
cos kO in the edge load, where s + v = ±k. Sum type resonance occurs when both 
modes are reflected or both modes are nonreflected. On the other hand, difference 
type resonance occurs when one mode is reflected and the other is nonreflected. In 
applying this rule, the number of nodal diameters' of a forward and a reflected wave 
is considered as negative. Several typical loadings are discussed, including uniform 
and concentrated edge loads. 

Introduction 
The vibration analysis of a spinning disk under a space-fixed 

edge load attracts attention because of its possible application 
in such fields as circular saw cutting and grind wheel operation. 
Carlin and his co-workers' investigation (1975) appears to be 
the first paper attempting to calculate the natural frequencies of 
a spinning disk under a concentrated radial edge load. Radcliffe 
and Mote (1977) extended the work of Carlin et al. by consider- 
ing a general concentrated edge load with both radial and tan- 
gential components. The formulations in these two papers did 
not take into account the effects of relative motion between the 
spinning disk and the space-fixed edge load. Recently Chert 
(1994) reformulated the problem with emphasis on the effects 
of relative motion between the disk and the edge load on the 
stability and natural frequencies of the loaded disk. He reported 
that both divergence and flutter instabilities are induced by the 
space-fixed edge load when the disk is spinning at or beyond 
the first critical speed. 

The edge loads in these aforementioned works are assumed 
to be independent of time. In the case when the edge loads are 
periodically varying, parametric resonance may be induced. 
Tani and Nakamura ( 1978, 1980) studied the dynamic instabil- 
ity of an annular disk under periodically varying in-plane edge 
traction. The disk considered in their papers is clamped on both 
the inner and outer radii, and the edge traction is uniform in 
the circumferential direction. Zajaczkowski (1983) investigated 
the parametric resonance of a clamped-free disk under both 
uniform and concentrated pulsating torques. In these papers 
both the annular disk and the periodic loading are fixed in space. 

A natural extension of these previous analyses is to study the 
dynamic instability of a spinning annular disk under periodically 
varying edge load which is fixed in space. This investigation 
may find application in the wood cutting industry as it represents 
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a more general model for the cutting process by a circular saw. 
In the present paper, we first write the equation of motion for 
a spinning disk under a periodically varying in-plane load with 
arbitrary distribution on the outer rim. We assume that the edge 
load can be expressed as a Fourier series expansion. The re- 
suited equation O f motion is gyroscopic, and can be discretized 
with use of the orthogonality properties among the eigenfunc- 
tions of the unloaded disk. A system of generalized Hill's equa- 
tions in the first-order form is obtained. The method of multiple 
scale is then employed to determine the conditions for paramet- 
ric resonance to occur. Several typical forms of radial edge loads 
are considered, including uniform and concentrated loading. 

Equation of Motion 
Figure 1 shows a circular disk, which is clamped at the inner 

radius r = a and subjected to a periodic radial traction at the 
outer radius r = b. We assume that the edge in-plane traction 

can be expanded in a Fourier series e cos yt E fk cos kO. e has 
k=0 

a dimension of stress, and T is the excitation frequency of the 
edge load. fk is a dimensionless scalar representing the weighting 
of each Fourier component. The disk is rotating with constant 
speed fL while the edge load is fixed in space. The direction 
of the edge load remains the same when the disk vibrates later- 
ally. The equation of motion of the system, in terms of the 
transverse displacement w and with respect to the stationary 
coordinate system (r, 0), is 

h[ O2W 02w ~.~2 02W ~ 
p ~ ' - ~  + 2f~ + + DV4w 

OtO0 002 J 

where 

+ Lw + e cos yt Y~ fkLkw = 0  (1) 
k=0 

E h  3 
D 

12(1 - u 2) 

The parameters p, h, E, and u are the mass density, thickness, 
Young's modulus, and Poisson ratio of the disk, respectively. 
L is the membrane operator associated with the axisymmetrical 
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I 
Fig. 1 A spinning disk subjected to a space-fixed pulsating edge load 

stress field due to the centrifugal force, and L~ is the membrane 
operator associated with the stress field due to the Fourier com- 
ponent cos kO of the edge traction, 

L ~ - ~ [ ~ r  ( r o t t E r )  + ~ 0 ( ~ r ° ~ 0 ) ]  

^ 0 
L~ =- - h [ ~r ( r a r~ -~r + ~r ~°~ -~  

Stress fields err and ~ro are due to the centrifugal force and are 
proportional to f2 2. On the other hand, &rk, &0k, and &0~ are the 
dimensionless stress fields induced by the radial edge traction 
cos kO and can be expressed as 

&~k(r, 0) = 6-~(r) cos kO 

~ok(r, O) = #ok(r) cos kO k = O, 1, 2 . . . . .  

&rok(r, O) = &oh(r) sin kO 

~~k, ~'ok, and 6~0k are functions of radial coordinate r only, and 
can be found readily in Coker and Filon (1957). It is noted 
that 3~(b) = 1 and gr~o(b) = 0 due to the in-plane traction 
boundary conditions on the outer rim. 

The associated boundary conditions for Eq. ( 1 ) are 

w = w , ,  = 0 a t  r = a ( 2 a )  

B1w + e COS yt  ]F, fkt~lkW = BzW = 0 at r = b (2b) 
k=0 

where the boundary operators are defined as 

B' ~ r  ~ r 2 + r O - - - 7 + r ~  + 7  0 ~  2 r N  2 

ilk 
h cos (kO) 0 

D Or ' 
B2 =- - -  + - + . 

Or 2 r 

The transverse component of the edge traction can also be 
included in Eq. (1), and excluded from boundary condition 
(2b). The equivalent boundary value problem becomes 

/ O2w O2w a2 
phi----=- + 2f~ + + OV4w + Lw 

\ o r  ~ OtO0 002 J 

and 

w = w , r = 0  at r = a  (4a) 

Blw =B2w = 0 at r = b. (4b) 

6( • ) is the Dirac delta function. 
It is convenient to introduce dimensionless variables (denoted 

with an asterisk), 

w* w r* = r ~,  a =~, ~, =~, ~*(.)=b6(.), (5) 

T* = T b2 ph , t* -£7 ' 

(6) 

hb 2 hb 2 hb 2 
~ =T-~ r ,  ~ = T - ~ , ,  ~*=--~ (7) D 

and operators 

L * = - - [ ~ r 0 ,  (r*o-,.* ~ r 0 , ) +  ~0 ( r  4 c r ~  ~ 0 ) ]  (8) 

Lff -= - 0 r*~rk ~ + d-,ok 
Or* 

+ ~ &rOt Or--- ~ + r- 7 

After substituting Eqs. (5) - (9) into Eqs. (3) and (4), and 
dropping the asterisks in what follows for brevity, Eq. (3) can 
be rewritten in the dimensionless operator form 

O2w cow 
M-~-fi- + Ot + (K + /()w = 0 (10) 

where 

M = - l ,  G=- 2f~ 0 K ~ ~~ 2 02  
aT' -g~ + v~ + L, 

R ~- e c°s yt  k~ofkI L~ + 6(r  - 1 )  cos k0 ~r ] .  

Equation (10) can also be cast in the first-order operator form 

(A +,~1 0 x -  (B + B)x = 0 (11) 
Ot 

by defining the state vector 

and the matrix differential operators 
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For a freely spinning disk (i.e., in the absence of the edge 
load), Eq. (10) can be reduced to 

02w Ow 
M - ~ t  2 + G 0-7 + K w  = 0 (12) 

Since M and K are symmetric and G is skew, Eq. (12) is a 
standard gyroscopic equation. The eigenvalues of the e a' time- 
reduced form of Eq. (12),  together with the associated homoge- 
neous boundary conditions, are purely imaginary and occur in 
complex conjugate pairs, i.e., ~,,,, = i~0 ..... where ~,,,,, is real. 
The eigenfunction corresponding to k,,,,, is in general complex 
and assumes the form 

Win,, = R,,,,,(r)e i'°. (13) 

Rm,, is a real-valued function of r. The natural frequency corre- 
sponding to eigenfunction W,,,,, is X ...... where overbar means 
complex conjugate. It is noted that ~7,,,, = w,,,_,,. If we consider 
only positive natural frequency, then w,,,, in Eq. ( 13 ) with posi- 
tive n is a backward traveling wave with n nodal diameters and 
m nodal circles, which is also denoted by ( m ,  n)b. Similarly, 
w,,,, with negative n is a forward traveling wave (m, - n ) f .  The 
critical speed ~'~c for the mode (m, n) is defined as the rotation 
speed at which ~z,,,,, of the backward traveling wave (m ,  n)b 
becomes zero. For f~ greater than f~c, this mode is a forward 
traveling wave, and is called a "reflected wave," denoted by 
(m, - n ) , .  Figure 2 shows the dimensionless natural frequencies 
~z ..... of a freely spinning disk as functions of dimensionless 
rotation speed f~. For simplicity, only the modes with less than 
four nodal diameters are shown here. The material properties 
of the disk used in the calculation are: p = 7.84 X 103 kg/m 3, 
E = 203 X 10  9 N/m ~, u = 0.27, h = 1.02 mm (0.04 in.), a = 
101.6 mm (4 in.), and b = 203.2 mm (8 in.). The natural 
frequencies of the modes with nodal circle(s) are beyond the 
range of Fig. 2. 

Discretization 
It has been shown in Chen and Bogy (1992) that for a freely 

spinning disk, the orthogonality relations among the eigenfunc- 
tions can be written as follows: 

(x ...... Axpq) = 0, (x ...... Bxpq) = 0 if k,,,,, :~ kpq (14) 

where the inner product between two vectors Xm,, and Xpq is 
defined as 

 ?fl (x . . . .  Xpq) = X~,XpqrdrdO. (15) 

x~,',,, is the transpose of the state vector x ..... Although Chen and 

3 

3 0 - -  

2 6  

16 

3 6 9 12  

R o t a t i o n  s p e e d  

Fig. 2 Dimensionless natural frequency t o , , , ,  versus dimensionless rota- 
t ion speed ~ for  a freely spinning disk 

Bogy (1992) only showed orthogonality properties among ei- 
genfunctions with distinct eigenvalues for general gyroscopic 
systems, orthogonal relations still exist when the eigenmodes 
happen to be degenerate in the case of a freely spinning disk. 
It is noted that while eigenfunctions w,,,, and w,,,,, represent the 
same mode of vibration physically, x,,, and x,,,, are two orthogo- 
nal state vectors in the inner product space defined by Eq. (15).  

Since a closed-form solution for Eq. (11) does not exist 
in general, we use an expansion in terms of finite number of 
eigenfunctions of the freely spinning disk to approximate the 
true solution of Eq. ( 11 ), 

N 1 N 2 

x(r ,  O; t) ~ ~ ~ C,,q(t)x,,q(r, 0 ) .  (16) 
p = 0  q=--N 2 

N~ and Nz are the maximum numbers of nodal circles and nodal 
diameters, respectively, of the modes used in the expansion. 
Scalar amplitude function Cpq(t) is in general complex. It is 
noted that the right-hand side of Eq. (16) involves both modes 
xpu and Xpq. The validity of expansion (16) has been confirmed 
in C h e n ( 1 9 9 6 ) ,  in which the eigenvalues of a spinning disk 
under time-invariant space-fixed edge loads are calculated and 
compared both by expansion (16) and an independent finite 
element scheme. Substituting Eq. (16) into ( 11 ) and taking the 
inner product between x,,,, and both sides of Eq. ( 11 ), with use 
of the orthogonality properties (14),  we obtain a system of 
generalized Hill 's  equations in the first order form, 

dCmn 
- -  - ico,,,,,c,,,, + c cos Yt 

dt  

k~0,,=0¢= N2 A',,],'~ dt  A',',',,'~ Cpq = 0 (17) 

where 

A',','/, ', = 41rw,,,,(aJ,,,,, + nf~) R~,~(r)rdr .  (18) 

The physical meaning of the above discretization procedure is 
to force the error function of the approximation (16) to be 
orthogonal to all eigenfunctions Xro (r ,  0) used in the expansion. 
Therefore, the above discretization technique falls into the cate- 
gory of the so-called Galerkin's method. It can be shown that 
constant A~',',',', is a positive real number when the mode (m, n) 
is a nonreflected wave, and it is negative when (m, n) is a 
reflected wave (Chen and Bogy, 1992). When n - q :¢ +_k, 

" " "  = ^' .... = +_k , A pq(k) B r,q(k) O. On the other hand, when n - q = we 
obtain 

^ mn ^ pq 
A pq(k ) = A ,,,,(k~ 

: a~ r6,.k d---r- d---r - + q n -r d~ J ..... l,q 

~ dRpq] 
- (n  + q )~rokR , , , , ' - - : - - l d r  (19) 

d t ' J  

^ '  .... = i ( ~ m n  q- C d p q ) A l , q ( k  ) B pq(k ) ^ mn (20) 

where a0 = 27rf0, and ak = 7rfi when k :~ 0. In summary, the 
coefficients - '  .... A pq(k) and ^ "" B,,q(k) are determined by the eigenfunc- 
tions w,,,, and Wpq, and are affected only by the specific Fourier 
component cos kO of the edge loads with n - q = _+k. 

It is in general difficult to find the closed-form expression 
for the real-valued function Rm,,(r) when the disk is spinning. 
However, it is possible to obtain the values of this function at 
discrete radial points by a finite element method (Ono and 

^ mn mn Maeno, 1987). The matrices A',,",,',', A r,t, and/~ pq in Eqs. ( 1 8 ) -  
(20) can then be obtained through numerical integration. 
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Perturbation Technique 

In this section we apply the method of multiple scale to 
determine the conditions for parametric resonance to occur. The 
methodology of this perturbation technique has been described 
and applied by Nayfeh and Mook (1977) to a system of second- 
order nongyroscopic equations. In this section we extend this 
methodology to solve a system of gyroscopic equations in the 
first-order form. 

The method of multiple scale assumes an expansion of the 
form 

c~,(t)  = ~,,~(°)~'~, T~) + eclat(t, T~) + O(e 2) (21) 

where T~ ~ et. In Eq. (21) the amplitude parameter e is assumed 
to be smaller than 1. Substituting (21) into (17) and equating 
coefficients of like powers of e yield 

e°: Doc~.~ - iw,,,.c~°2 = 0 (22) 

el: Doc~/2 : , ~(l> 

NI N2 ^ m n  

-- L* 1~.,,, -- cos yt _ _ _ ~-JO t~ p q  

k=0 p =0  q = - N  z A m n  

m n  

B p q ( k )  ~ ( 0 )  (23) 
A ~  ~ pq 

where Do ~ (O/Ot), and Di ~ (O/OTl). The general solution 
of Eq. (22) can be written in the form 

c~2 = Hm~(T,)e%,, to. (24) 

Substituting (24) into (23) yields 

Dock]2 - ,ta..Jmnt, . ~(11 = _ D i H m n e i % , r o  

N I  N2 ~ m n  

+ COrn,___2 ~ ~ ~ Apq(~)Hpq[e,%+v)r ° + e,%_r)ro] (25) 
2 A~,'; ~=o p=o q=-N2 

Combination Resonance at ~ = to~, + ea~ + ~ .  In the 
case when y is near cos, + to,r, we assume that ,y = w~, + w,,~ 
+ e~, where ~ is a detuning parameter. The secular terms in 
Eq. (25) are eliminated if 

^ rs A u,-v(k) 
DiH.,~ - iw~, ~=o Huoe i;r~ = 0 (26) 

2A~:~ 

and 

^ uu 

A r,-s(k) 
D~H,~ - iw~ k=o 

2A~ 
/H~,,e *;r, = 0 (27) 

Equations (26) and (27) admit nontrivial solutions having the 
form 

H~s = h .e  -+xr~ and H.. = h~e"~+or, (28) 

where h~., and h.o are complex constants, and 

x = - ;  ± ' / ~ -  Aa 
2 (29) 

where 

I ~o ~rv I 2 & ) r s ( a ) u v  m .,-~(k ) 
ASS ° = k (30) 

rs uu A~sA.~ 

It follows from Eq. (29) that the solution ofEq. (17) is bounded 
if and only if 

~2 _~ A~i~ (31) 

On the other hand, combination resonance may occur when ~2 
< A~%. Frequency co~, + w,o is called the center frequency and 

is called the width parameter of the parametric resonance. 

Single-Mode Resonance at y = 2ton, + El. In this case 
the secular term in Eq. (25) is eliminated if 

O l n r  s __ iWrs k=0 / ~ e  i;rt = 0 (32) 
2A~ 

Equation (32) admits nontrivial solution having the form 

H~ = [a(T1) + i/3(Tl)]e(i/2);rl. (33) 

Substituting Eq. (33) into (32), equating the real and imaginary 
parts to zero, and evoking the condition for a(Tz) and/3(T~) 
to be bounded result in the condition 

~2 ~_ A r~ (34) 

where 

^ rs Wrs A r, s(k) 
A~ = k --> 0. (35) 

r s  
m r s  .] 

Consequently, single-mode parametric resonance may occur if 

the summation £ - r, A ~.-s(k~ does not vanish. It is noted that Eq. 
k=0 

(35) can also be obtained by substituting (u, u) by (r, s) 
directly in Eq. (30). 

Typical Edge Loading 

Concentrated Edge Load. We first consider the case when 
the spinning disk is subjected to a space-fixed concentrated edge 
load. In this case the Fourier decomposition of the edge load 
would include all the harmonics of cos kO, and the summation 

~ rs 
A,_,,(k) in Eq. (30) reduces to a single nonzero term 

k~0 
A ,':~_,,(~), where s + u = _+k. In other words, for any two modes 
(r, s) and (u, u), there always exists a specific Fourier compo- 

nent which renders the summation E A ~.-~(k) nonzero. Bearing 
k = O  

the relation wm~ = - Wm.-n in mind and speaking of only positive 
natural frequencies, we can conclude that combination reso- 
nance of the sum type occurs when both modes are nonreflected 
or both modes are reflected. On the other hand, combination 
resonance of the difference type can occur only when one mode 
is reflected and the other is nonreflected. Single mode paramet- 
ric resonance can occur for any mode, reflected or nonreflected. 

The center frequency and the width parameter of a spinning 
disk under a pulsating concentrated edge load are shown in Fig. 
3. Solid lines represent the single-mode parametric resonance, 
while dashed lines and dotted lines represent the cases of combi- 
nation resonance of the sum type and difference type, respec- 
tively. In the frequency range of Fig. 3 only the modes with 
zero nodal circle contribute to the parametric resonance. The 
mode labels in Fig. 3 are simplified by neglecting the number 
of nodal circle. For instance, 0 + 2 I represents the combination 
resonance of the sum type involving modes (0, 0) and (0, 
2)f, and 2b - 3r represents the combination resonance of the 
difference type involving modes (0, 2)1, and (0, 3)r. It can be 
seen from Fig. 3 that the rotation speed tends to squeeze the 
width of parametric resonance region. 

In the special case when the excitation frequency y ap- 
proaches zero, which corresponds to the case of constant con- 
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Fig. 3 Center frequencies and width parameters of a spinning disk un-  
de r  a space-fixed pulsating concentrated edge load. Solid lines represent 
the single mode parametric resonance. Dashed and dotted lines rep re -  
sen t  the combination resonance of the sum type and the difference type, 
respectively, 

centrated edge load, we can see from Fig. 3 that there exist two 
rotation speeds at which parametric resonance can occur. The 
rotation speed at which the solid line labeled % + % intersects 
the horizontal line Car., + w,,o = 0 corresponds to the first critical 
speed. Therefore, the divergence instability reported by Chen 
(1994) can be considered as a limit case of single mode para- 
metric resonance. On the other hand, the rotation speed at which 
the dotted line labeled 2b - 3r intersects the line ,Jr., + ca,~ = 
0 is a speed at which the backward wave (0, 2)~, and reflected 
wave (0, 3), become degenerate. Therefore, the flutter instabil- 
ity reported by Chen(1994)  can be considered as a limit case 
of combination resonance of the difference type. 

Uniform Edge Load. In this case the summat ion  

~2 ,~ ,~-,<k) in Eq. (30) reduces to ,4 ,~-,(o), and is equal to zero 
k=0 
unless s = - u. Consequently, we can conclude that combination 
resonance of the sum type occurs only when both modes have 
the same number of nodal diameters, and one of them is a 
forward wave while the other is a backward wave. On the other 
hand, combination resonance of the difference type occurs when 
both modes have the same number of nodal diameters, and one 
mode is a backward wave while the other is a reflected wave. 
From Eq. (35) we can see that single-mode parametric reso- 
nance is possible only for zero-nodal diameter modes. There- 
fore, the center frequency and width parameter graphs for a 
spinning disk under uniform edge load can be obtained by re- 

taining only the dashed curve 1: + 1~, and solid curve 0 + 0 in 
Fig. 3. 

Another way to look at the above problem is to fix the coordi- 
nate system onto the spinning disk. Since the loading is uniform 
circumferentially, it appears no difference to both the stationary 
and the spinning coordinate systems. To an observer spinning 
along with the disk, there is only one natural frequency for the 
(0, 1 ) mode, which is the average of the natural frequencies of 
modes (0, 1): and (0, 1 )~, as observed by another observer in 
the stationary coordinate system. Therefore, the curves If + 10 
and 0 + 0 in Fig. 3 represent the single mode parametric reso- 
nance involving modes (0, 1 ) and (0, 0),  respectively, as ob- 
served by a spinning observer. 

As the rotation speed f~ approaches zero, the natural fre- 
quency of the forward wave (r, s): and the backward wave (r ,  
s)h coincide. Consequently, single mode parametric resonance 
occurs for each mode when a stationary disk is under uniform 
loading. Furthermore, combination resonance of the sum type 
can occur whenever two modes have the same number of nodal 
diameters. 

Conclus ions  
Dynamic stability of a spinning annular disk under periodi- 

cally varying in-plane loading on the outer rim is studied analyt- 
ically. The equation of motion is gyroscopic due to relative 
motion between the spinning disk and the space-fixed edge 
loading. The differential equation of motion is first discretized 
into a system of generalized Hill 's  equations of the first-order 
form. Conventional method of multiple scale is extended to 
treat the system of gyroscopic equations. The results show that 
combination resonance is possible only when there exists a 
specific Fourier component cos kO in the edge load, where k 
equals the sum of the number of nodal diameters of these two 
modes. Sum type resonance occurs when both modes are nonre- 
flected or both modes are reflected. On the other hand, differ- 
ence type resonance occurs when one mode is reflected and the 
other is nonreflected. 
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