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Abstract—This paper investigates the in-plane response of a rotating annular disk under concentrated edge
loads with both the radial and tangential components. Lame’s potentials are used to simplify the highly
coupled equilibrium equations. It is demonstrated that the problem of fixed disk-rotating load differs from the
problem of rotating disk—fixed load not only by the centrifugal effect, but also by additional terms arising from
Coriolis effect. While the effect of these Coriolis terms may be negligible when the rotational speed is small or
the concentrated edge load is in the radial direction, they are important in the high rotational speed range when
the concentrated edge load is in the tangential direction. Numerical results of the natural frequencies and
steady-state response are presented for a radius ratio of 0.3 with emphasis on the difference between the
responses of fixed disk-rotating load and rotating disk—fixed load systems. Copyright © 1996 Elsevier
Science Ltd.
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NOMENCLATURE

a, b inner and outer radii of the annular disk
Cp, A, €4, f»  constants of homogeneous solution
A,, B, constants of particular solution
E Young’s modulus
G, H functions used in the equilibrium equations

Ly, Ly, Ly, Ly, differential operators

r*,n polar coordinates with respect to the inertial frame
r dimensionless coordinate in radial direction

Su1s Sn2s Pu1s Buz  parameters used in solving the general solution

t*  time
t dimensionless time
u¥, uy in-plane displacements
u,, 4, dimensionless in-plane displacements
f distribution angle of edge traction
p mass density
v Poisson’s ratio
radius ratio
Ay, A2 constants depending on Poisson’s ratio
¢, Lame’s potentials
ok, a stresses
o, 0y, dimensionless stresses
Wm, dimensionless natural frequency
D, V.. separable solutions used in calculating natural frequencies

Ty

D,., Oy, Voo, Woe  separable solutions used in calculating steady-state response

Q* rotational speed
Q dimensionless rotational speed

INTRODUCTION

It is well known that the natural frequencies of the in-plane radial and torsional vibrations of
a spinning disk depend on the rotational speed. Bhuta and Jones [1] investigated the axisymmetric
planar vibration of a rotating disk and found that the effect of rotation is generally to lower the
natural frequencies. The same problem was studied by Doby [2] with different formulation. Burdess
et al. [3] generalized the analysis to asymmetric in-plane vibration, and discussed the properties of

both the forward and backward traveling circumferential waves.
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The in-plane stress distribution in a fixed annular disk under fixed edge traction can be readily
calculated by using the Airy stress function [4]. On the other hand, the investigations on the problem
of a spinning disk under fixed edge loads are relatively rare, partly due to the complex Coriolis
coupling associated with the relative motion between the rotating disk and the non-rotating loads.
In practice, this study may find application in such fields as wood cutting industry or grinding wheel
operation. In order to avoid the difficulties imposed by the Coriolis terms and the in-plane stresses
due to centrifugal effect, Srinivasan and Ramamurti [5] investigated a relevant problem of a fixed
disk under rotating concentrated edge loads with both radial and tangential components. While
their investigation sheds some light on the dynamic effect of rotating loads on the fixed disk, the
more important problem of a rotating disk under fixed concentrated edge load remains unsolved.

In the present paper we examine the in-plane stress distribution in a rotating disk under fixed
concentrated edge loads. Both radial and tangential edge loads are considered. Instead of using
a delta function to represent the concentrated load, we consider the edge load as a smoothly varying
distributed traction over a narrow region of the outer boundary. Faster convergence is demon-
strated with this arrangement. The equations of in-plane vibration of the rotating disk with respect
to the inertial frame are first derived. Lame’s potentials are used to simplify the highly coupled
equations. Numerical results of the natural frequencies and steady-state response are presented for
a radius ratio of 0.3 with emphasis on the difference between the responses of fixed disk-rotating
load and rotating disk—fixed load systems.

EQUATIONS OF MOTION

Figure 1 shows an annular disk rotating at constant speed Q*. The material of the disk is assumed
to be homogeneous and isotropic with mass density p, Young’s modutus E and Poisson’s ratio v. The
rotating disk is clamped at the inner radius r* = g, and is subject to non-rotating edge tractions
6% and 7% at the outer radius r* = b. (r*, n) are the polar coordinates of a point in the rotating disk
with respect to an inertial frame. If the disk is thin, plane stress conditions can be assumed and the
in-plane displacements in the radial and tangential directions are denoted as ;¥ and 1, respectively.

It is convenient to introduce some dimensionless variables,

r¥ a u uy P
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where t* represents the physical time. The equations of motion in terms of the dimensionless
variables defined above with respect to the inertial frame can be written as follows [6],
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Fig. 1. A spinning annular disk under space-fixed edge load.
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where the differential operators L1, L4, L,; and L, are defined as

2 1a 1 1—va?

T rrr— ——— — —— —— e 3

L 6r2+r6r r2+ 2r? on? &)
1+vi 02 3—v 1o

= = — — 4

Liz=— rordn 2 r?op )
1+v1 ¢2 3—v1 ¢

L21= 2 5. (5)
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The dimensionless boundary conditions with respect to the inertial frame are
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Another problem relevant to the above is a fixed disk subjected to edge traction rotating with
constant speed Q [5]. For this problem the dimensionless equations of motion with respect to
a frame rotating with the edge traction can be written as

0%u *u *u
L = - +2Q Q2 9
(1 _vz)(Lllur+ lzuﬂ) atz + 6t611+ 6712 ( )
1 *u o%u *u
—— (L L =—1+4+2Q—1 2 10
(1 _vz)( 21U + 22“;1) 0t2 + 6[6)’]+ 6112 ( )

The associated boundary conditions are in the same form as in Eqns (7) and (8). It should be
understood that the coordinates (r,#) in Eqns (9) and (10) and the boundary conditions are
associated with the rotating frame. By comparing Eqns (1, 2) with Eqns (9) and (10) we can see that
the rotating disk—fixed load problem differs from the fixed disk-rotating load problem, mathemat-
ically, not only by the centrifugal effect but also by the additional terms arising from Coriolis
coupling. While it is well known that the centrifugal effect will cause axisymmetrical stress field in the
rotating disk, it is not clear how the Coriolis terms affect the steady-state stress distribution in
a rotating disk under fixed edge traction. In other words, it is not clear how close the solutions of the
fixed disk-rotating load system approximate the solutions of the rotating disk—fixed load system
besides the stresses due to centrifugal effect.

NATURAL FREQUENCIES

Before calculating the steady state stress distribution, we first consider the natural frequencies of
the freely rotating disk with respect to the inertial frame. It is noted that the differential equation (1)
is inhomogeneous due to the body force term rQ2. As the disk rotates at a certain speed, steady-state
in-plane displacements u”(r, ) and u\"(r, ) are induced due to the centrifugal effect. We consider
small perturbations in displacements, #,(r, n; t) and 4,(r, n; t), superposed on the steady-state solu-
tions. By substituting the total displacements, u® + 4, and u{® + 4,, into the equilibrium equations
(1) and (2), we can obtain the equations of vibration in terms of small displacement perturbations
4, and 4,. The resulted equations are similar to Eqns (1) and (2) with rQ? in Eqn (1) being deleted and
displacements u, and u, being replaced by #, and #,, respectively. In the following discussion on
natural frequencies we neglect the superposed hats on @, and #, for brevity. The boundary conditions
for the freely rotating disk are similar to Eqns (7) and (8) with &,,() = 6,,(n) = 0.
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Equations (1) and (2) can be simplified if Lame’s potentials ¢ and ¢ are introduced [7]

2o 10y
_ o 1 1
U= +r817 (D
1o o »
" rom o

Substituting Eqns (11) and (12) into the homogenecous parts of Eqns (1) and (2) resuits in the
following equations

G 10H

5 to5- =0 13
5r+r6;1 (13)
180G ¢H
—5 T =0 14
r on or (14)
where
82 0 52 62 F
G=1%V2¢—Qzﬁf+92¢—29%—'5-%—29%—2@% (15)
oty op 2y oy )
— 12y2y, — 02 2 2V -0 20 °? 16
H=1VYy-Q 61’]2+Q Y+ 2Q o A atan+ % (16)

Ay and 4, are two constants depending on the Poisson ratio,

1

2 2

A = /12—2(1+v)' (17
Equations (15) and (16) are two inhomogeneous equations for ¢ and . The complete solutions of

¢ and y include time-independent particular solutions and time-dependent homogeneous solutions.

While the particular solutions are important in determining the steady-state response as will be

discussed later, they have nothing to do with the natural frequencies of the system. On the other

hand, the homogeneous solutions of ¢ and i (with G = H = 0) are assumed to be in the following

separable forms,

Bl 1 1) = Bpy(r)e™e (13)
Y1) = —i¥,(re™e o (19)
where
DQrun(r) = Cadu(Burt) + duSur Ja(Bu2t) + € Yol fur 1) + fusur Ya(Ba2t) (20)
Wonn(r) = CuSpadu(Bur?) + duu( B2t} + €nsnz Ya(Burr) + fu Yal(Br2r). (21

Jand Y are Bessel functions of the first and the second kinds. w,,, represents the natural frequency of
the rotating disk. s,; and s,, are defined as

—2Q(wWy, — 1Y) and —2Q(Wpy — 1Q) 2)
Sp1 = S, =
" o —nQ)? + Q2 + AlBE " (w —nQ)? + Q2 — 2B
where fi,; and f,, are positive real roots of the following quartic equation
A28y — (f + AR (@mn — nY? + Q°] + [(0n — nQ)* + Q*]* = 0. (23)

After applying the homogeneous boundary conditions, we obtain four homogeneous algebraic
equations with four unknowns c,, d,, e, and f,. For the existence of nontrivial solutions, the
determinant of the coefficient matrix should vanish, and the frequency equation is then derived. For
each n, which represents the number of nodal diameters, there is an infinite number of discrete
Wy satisfying the frequency equation.

The solid lines in Fig. 2 represent the dimensionless natural frequency w,,, as a function of the
dimensionless rotational speed Q for radius ratio { = 0.3. For simplicity, only the modes with less
than four nodal diameters are shown in Fig. 2. The Poisson ratio is assumed to be 0.3. The mode
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Fig. 2. The solid lines represent the natural frequencies of in-plane vibration of a freely rotating disk with
respect to an inertial frame. The dashed lines represent the natural frequencies of a fixed disk as viewed by an
observer rotating with speed Q. The radius ratio of the disk is 0.3.

label (m, n); represents the forward traveling modes with m nodal circles and n nodal diameters.
Similarly, the subscript “b” represents a backward traveling wave. The critical speed Q,,, is defined as
the rotational speed at which the natural frequency of the mode (0, n), vanishes. The first critical
speed in Fig. 2is Q.o = 0.591 corresponding to the mode (0, 0). Beyond this critical speed the natural
frequency weo becomes purely imaginary, and divergence instability is induced. It is noted that mode
(0,0) is a torsional mode which involves displacement u, only, while mode (1, 0) is a radial mode
which involves displacement u, only.[6]. All the modes with nodal diameters involve both torsional
and radial vibrations at the same time.

The natural frequencies of a fixed disk as viewed by a rotating observer are much easier to obtain.
First of all the natural frequencies ,,, of the fixed disk as viewed by a non-rotating observer have
been discussed in [5]. To a rotating observer, each of these natural frequencies splits into two, i.e.
Wy + 1 and w,,, — nQ, except the axisymmetrical modes (i.e. n = 0) whose natural frequencies
appear the same to both the fixed and the rotating observers. The dashed lines in Fig. 2 represent the
natural frequencies of the fixed disk as viewed by an observer rotating with speed Q.

The natural frequency loci in Fig. 2 offer valuable insight into the steady-state response of the disk
under edge load. For a rotating disk under fixed edge traction with distribution cos n#, its response
tends to grow unboundedly as its rotational speed approaches the critical speed €,,.. These physical
interpretations will be helpful in understanding the steady-state response of a rotating disk under
concentrated edge load.

STEADY-STATE RESPONSE

In calculating the steady-state response of the rotating disk we assume that the edge traction is
applied for a long time and the steady-state prevails as seen by an observer in the inertial frame. It is
noted that both the differential Eqns (1) and (2), and the boundary conditions (7) and (8) are
inhomogeneous. The superposition principle [8] permits us to decompose the problem into two
simpler parts; one with inhomogeneous equations and homogeneous boundary conditions, and
the other with homogeneous equations and inhomogeneous boundary conditions. The solution of
the original problem can be obtained by reassembling these solutions of the simpler problems. For
the first part, the forcing term rQ? in the inhomogeneous Eqn (1) is due to the centrifugal effect.
When the steady-state solutions are concerned, this term is dominant compared to other contribu-
tion from the term 1, Q2 Therefore, the solution of the first problem is the same as the classical
problem of a freely rotating disk, and is well documented in the literature [9]. On the other hand, the
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second problem with homogeneous equations and inhomogeneous boundary conditions is rarely
investigated and will be the subject of the following discussions.

The homogeneous parts of Eqns (1) and (2) are equivalent to Eqns (13) and (14), as explained in
preceding section. When steady-state response is concerned, all the temporal derivatives are
neglected and Eqns (15) and (16) are replaced by

¢ W

2y2 2 2 2 24
G =MV — Qaz+§2¢ man (24)
0
H=;.§V2¢~QZ '/’+92|//+2QZ ¢. (25)
on
The general solutions for G and H in Eqns (24) and (25) can be expressed in the form

G=A,+ Z [(4,r" + B,r ")cosny + (A,*" + B,r~")sinnn] (26)
n=1

H=A,+ Y [(4,r" — B,r ")cosny + (—A,r" + B,r ")sinny] 27
n=1

where A,, B,, A, and B, are undetermined constants. Equations (24) and (25) are two in-
homogeneous equations for ¢ and . Since the corresponding solutions must be periodic in #, the
general solutions for ¢ and i can be expressed in Fourier series as

P(r,n) = O, + i D, (r)cosny + @, (r)sinny (28)

n=1

Y(r,n) =YW + Z W,.(r)cosny + ¥ ,(r) sin ny. (29
n=1
Since the Fourier components are orthogonal, the solutions can be treated separately for different
Fourier components.
Case n # 1. The nontrivial solutions for this case are

Due = cnJu(Bu1?) + dnsur JaBnar) + €n YulBur7) + fasn1 Y(Brar) (30)
Wos = CasnaJu(Bu1?) + duJu(Bu2r) + €nSn2 Yal(Bar 1) + fo YalBazr) (31)
s = codn(Bur?) + dusur Ja(Bazt) + €3 Ya(Bur7) + i sw1 Yol Buz?) (32)
Wae = —CuSn2Ju(Ba1?) — dndu(Buzt) — €nsnz Ya(Burr) — £ Yul(Brar) 33)

where s,;, 5,2, Ba1, and B,, are defined by Eqns (22) and (23) with w,,, being specified to be zero.
Case n = 1. The solution for this case cannot be generalized from the case n # 1, because one of
the two f’s vanishes. The nontrivial solutions for this case can be found as

rinr

O =dis;1Ji(Brar) Hhisu Yi(fin) + 41 5= ZQZ + B, /12 T2 (34)
Yio=dJi(Bian)+ f1Y(B121) + B 1 In +/12 & (35)
= r r
1lPy2 1 11{P12 1)1+/uz r 7 Q2
, rinr
=dis11J1(Brar) + fis11 Yi(B127) + A} 292 + B} 212 Ty 2 (36)
W, = —d\Ji(B12") — fi Yi(B12r) — B L In +12 & (37)
1c = 141(P12 1 Pl P27 li /12 rinr 77 Q2

where 8, and s,, are found to be

3= _ 1—v

ﬂlz =
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The constants ¢,, d,, ey, fn, An, By and their primed counterparts in Eqns (30-37) can be determined
by the inhomogeneous boundary conditions.

For the steady-state response of a fixed disk under rotating edge load Eqns (13) and (14) should
read

0% %y
G= /lfVZd) - QZW’ H= A%Vzl// - QZW

It is noted that the equilibrium equations for the fixed disk—rotating load system are decoupled into
equations for ¢ and V¥, respectively, and the stress distribution as viewed by an observer rotating
with speed Q has beed examined in [5].

CONCENTRATED EDGE LOADS

We first assume that the normal edge traction d,,(y) distributes over a small range on the outer

boundary from # = —f§ to f§ in the following form
. 1 7

a.(n) = —(1 + cos -—) for —g<n<p. (38)
28 B

As f approaches zero, Eqn (38) may simulate a concentrated force with unit magnitude. Equation
(38) can be expanded in the following Fourier series,

1 * rwsinnfcosny

Pl =32 2 B — 2B
From boundary condition (39) and 4,,(r) = 0, together with the zero displacement conditions (7) on
the inner radius one can determine the constants in Eqns (30-37) uniquely. In the case when the edge
load is in the tangential direction, the roles of 6,,(n) and 6,,(n) are exchanged.

Tables 1 and 2 show the results of a convergence test on the stresses for the cases of rotating
disk—fixed load and fixed disk-rotating load, respectively. The columns labeled o,, and o,, show the
stresses at various radii when the edge tractions are in the radial and tangential directions,
respectively. The radius ratio of the disk is 0.3, and the rotational speed Q = 0.5. The angle of edge
traction distribution 2§ is taken to be 10 degrees. As expected, the stresses converge faster when edge
traction distribution (38) is assumed, as compared to the case of a delta function used in [5]. In the
following calculations 50 terms are used in the summations (28) and (29).

(39)

Table 1. Convergence test for a rotating disk under fixed concentrated edge load. The
radius ratio is 0.3, and the rotational speed Q = 0.5

Gpr O',,,

Radius 50 terms 70 terms 50 terms 70 terms
0.3 1.9627007 1.9627007 7.1025632 7.1025632
0.5 2.4019989 2.4019989 2.3432113 2.3432113
0.7 3.9279871 3.9279940 0.5004403 0.5004349
09 10.6590257 10.7647320 — 1.7836641 —1.8626198

Table 2. Convergence test for a fixed disk under rotating concentrated edge load. The
radius ratio is 0.3, and the rotational speed Q = 0.5

Oy (7;,'

Radius 50 terms 70 terms 50 terms 70 terms
0.3 22012810 22012810 2.7130206 2.7130206
0.5 2.6446471 2.6446471 0.8581873 0.8581873
0.7 4.0766234 4.0766303 0.0367004 0.0367057

0.9 10.6056926 10.7106894 — 1.7821996 — 1.8601687
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Figures 3 and 4 show the stress distributions ¢w and &, in the circumferential direction at the
radius r = 0.7 when the concentrated edge loads are in the radial and tangential directions,
respectively. All the stresses due to centrifugal effect are excluded in these figures. The solid lines
represent the case of a disk rotating at Q = 0.5 and subjected to fixed edge load. The dashed lines
represent the stress distribution in a fixed disk subjected to edge load rotating at Q = 0.5, as viewed
by an observer rotating with the edge load. The dotted lines represent the case of a fixed disk under
fixed load, which are obtained through the use of Airy stress function [4]. As Q approaches zero,
both the solid and the dashed lines approach the dotted lines. In the case when Q = 0.5 and the edge
traction is in the radial direction, the stress distribution o, of the fixed disk-rotating load system is
close to that of the rotating disk—fixed load system, as shown in Fig. 3. In the case when the edge

1.0 T T ] T T

-5.0 1 | 1 L 1
0 30 60 90 120 150 180

n

Fig. 3. The solid lines represent the stress distribution g,, along the circumferential direction at radius 0.7

for a disk rotating at Q = 0.5 under fixed normal edge traction in the form of Eqn (38). The dashed and the

dotted lines represent the stress distributions for a fixed disk under rotating and fixed edge loads,
respectively, with the same distribution.

-0.5 i | Il 1 i
0 30 60 90 120 150 180

n

Fig 4. The solid lines represent the stress distribution o,, at radius 0.7 for a disk rotating at Q = 0.5 under
fixed tangential edge traction in the form of Eqn (38). The dashed and the dotted lines represent the stress
distributions for a fixed disk under rotating and fixed edge loads, respectively, with the same distribution.
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load is in the tangential direction, on the other hand, Fig. 4 shows that the stress o,, of the rotating
disk—fixed load system is much larger than that of the fixed disk-rotating load system. In other
words, the Coriolis terms in Egns (1) and (2) have significant contributions when the rotating disk is
under concentrated tangential load.

The response of the rotating disk under concentrated edge load can be considered as due to the
combined effects of all the harmonics in Eqn (39). A careful inspection on the frequency loci in Fig. 2
reveals that the natural frequency of the mode (0, 0) of the rotating disk with respect to the inertial
frame differs significantly from that of the fixed disk with respect to the rotating observer. In
particular, when the rotating disk is under uniform tangential edge traction 4,, = 1, stress response
in the disk will grow unboundedly when the rotational speed of the disk approaches Q.. On the
other hand, the stress field in the fixed disk under uniform edge load is independent of the rotational
speed of the edge load. Based on the above examination, we conclude that the significant contribu-
tion of the Coriolis terms is primarily due to the axisymmetrical mode (0, 0), which is of torsional
nature.

CONCLUSIONS

This paper investigates the natural frequencies of a freely rotating disk and the steady-state
response of the rotating disk under fixed concentrated edge traction. Emphasis is given to the effect
of the terms arising from Coriolis coupling. Another problem of a fixed disk under rotating edge
traction is also presented for comparison. One of the obvious differences between these two
problems is the stress field due to the centrifugal effect. On the other hand, the significance of the
Coriolis terms are not so obvious and is the subject of this paper. The results of these studies can be
summarized as follows.

(1) The apparent natural frequencies of a fixed disk as viewed by a rotating observer are linear
functions of the rotational speed. In particular, the natural frequencies of the axisymmetrical modes
are independent of the rotational speed. On the other hand, the natural frequencies of the rotating
disk relative to the inertial frame are much more complex due to Coriolis coupling. Divergence
instability is induced when the disk rotates beyond the critical speed Q.

(2) When the concentrated edge traction is in the tangential direction, it is found that the
steady-state stress response of the rotating disk-fixed load system grows unboundedly as the
rotational speed approaches the critical speed 4. On the other hand, the stresses of the fixed
disk—rotating load system change only slightly compared to those of the rotating disk—fixed load
problem,

(3) When the concentrated edge load is in the radial direction, the difference between the steady
state responses of the rotating disk—fixed load system and the fixed disk-rotating load system is not
as significant as the case with tangential load.

(4) The most significant harmonic component in the concentrated edge traction which causes the
deviation between the stress distributions in the fixed disk-rotating load and the rotating disk—fixed
load systems appears to be the axisymmetrical mode, which is of torsional nature.
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