
The first two equations are used to find )t~ and A 2. If Eq. (8c) is 
applied, then these two equations become 

(I~ + M . R 2 ) ~  + M ' R ' a ' [ 3  2 + M ' R ' g ' c o s  /3 + hi 

+ 2 " M ' R ' a ' ( 3 " . X . z + M ' R ' a ' ~ 3 " A 2 = O  (9a) 

M(a 2 + k2)~ - M ' R "  a ' / ~2  + M ' a "  g" sin/3 - hi + m ( a  2 

+ k Z ) A 2 + M ' R ' a ' l ] ' h 2 + M ' a ' g ' c o s / 3 " X 2 = 0 .  (9b) 

At disappears after adding the last two equations, and the equation 
of motion of the entire system (the attached disk and plate) is 
obtained: 

[ll + M(R  2 + a 2 + k2)]~ + m .  g (R"  cos/3 + a"  sin/3) 

+ M(a 2 + k2)Xz + 2 " M '  R" a (~  ; X2 + ¢ "  A2) 

+ M" g • a"  cos/3 • }k 2 = 0. (10) 

The first term in the last equation presents the inertial moment (of 
the entire system) about the point O (positive in the counterclock- 
wise direction). The second term is the contribution of gravity to 
the moment about the same point. The last three terms represent 
the moment that is applied by the motor on disk Y~ (the control 
moment), M,: 

M,, = - M ( a  2 + k2)X2 - 2" M"  R" a ( ~ "  X2 + [J" .h2) 

- M ' g ' a ' c o s / 3 " A 2 .  (11) 

The fact that the new formulation of Lagrange method offers a 
unified approach to all kinds of constraints is shown again if one 
drops all the terms that include Xz and its derivatives in Eq. (10). 
This means that the condition of a pin-joint at A is dropped and 
instead a rigid joint is considered. Then Eq. (10) converges to the 
well-known equation of vibrations of the entire system about point 
O, under the influence of gravity (a physical pendulum). 

Cabannes gives an analytic solution of Eq. (3), For the case 
where the initial conditions are /3 = /30 = 0 and ~3 = ~0, this 
solution is 

R 1 + m 2 e"~t3 

mg 
R(1 + m  z) (cos/3 + m  sin/3) = 0 (12) 

where 

2Ra 
m - a 2  -IF k 2" (13) 

In Fig. 2 results for the case 

M = I i  = R = a  = k =  /~0= 1; /30= (h2)0= ( ~ 2 ) 0 = 0  

are presented. These results were obtained by direct numerical 
integration of Eqs. (3) and (10), while Eq. (9) was used to solve for 
X~. /3, A~, and Xz exhibit a periodic behavior that is different for 
each unknown. In order to verify the accuracy of the numerical 
integration the values of/3 and/3, at any moment, were substituted 
into the left side of Eq. (12) and the result divided by /32. The 
absolute value of this relative error (in percents) is also shown and 
indicates that the numerical integration is associated with rela- 
tively small errors. 

4 Conclusions 
Recently a new formulation of the Lagrange method was pre- 

sented by Rosen and Edelstein. This formulation offers a unified 
approach of dealing with holonomic or nonholonomic constraints 
that is correct from a variational mathematical point of view for 
both kinds of constraints. 

BRIEF NOTES 

The use of the new formulation to solve problems of control 
constraints has been presented in this note. The advantages of the 
new formulation are the following: 

(a) It is straightforward and easy to apply. Thus, the new 
formulation is suitable for a general purpose computer code. 

(b) There is a unified approach to all the kinds of constraints, 
holonomic or nonholonomic. 

(c) It is possible to deal with constraints that include acceler- 
ations and nonlinear expressions of the velocities. 

(d) There is a clear direct physical interpretation of the con- 
straints, similar to that offered by Newton's method. 
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Steady-State Deflection of a Circular 
Plate Rotating Near Its Critical Speed 

Jen-San Chen  ~ 

The steady-state response o f  a disk spinning near its critical speed 
and under space-fixed time-invariant load is analyzed by using yon 
Karman's  nonlinear plate model. It is found that as the disk rotates 
beyond a modified critical speed there exist three steady-state 
deflections, among which only one is in the same direction as the 
applied load and is stable in the presence o f  space-fixed clamping. 

Introduction 
Conventional linearized plate theory predicts that the steady- 

state deflection of a spinning disk under space-fixed time-invariant 
load approaches infinity as the rotation speed approaches the 
critical speed. This conclusion contradicts experimental result that 
shows the existence of finite steady-state deflection even at the 
critical speed (Tobias and Arnold, 1957). In order to capture the 
physical essence of critical speed resonance, Raman and Mote 
(1999) recently adopted yon Karman's plate model (Nowinski, 
1964) to study the nonlinear oscillations of a disk spinning near its 
critical speed and subject to rotating damping. Since their analysis 
is performed in a rotating frame, the forcing terms are time- 
dependent and averaging technique has to be used. In many spin- 
ning disk applications, however, the external damping is space- 
fixed, such as the damping in circular saw guides and disk drive 
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BRIEF  N O T E S  

head-suspensions. In this note we study critical speed resonance in 
a space-fixed frame with emphasis on the effects of space-fixed 
damping on the stability of steady-state deflections. In the present 
formulation the forcing terms are time-invariant and no perturba- 
tion techniques are needed. 

Equations  of  Mot ion 

The dimensionless equations of motion of a disk spinning with 
constant speed 12 with respect to a space-fixed frame (r, 0) can be 
written as 

w , + 2Ow,,o + ~ 2 W  oo -1- c] ,w t + ~ 7 4 w  - r l(o',.rW,r).r 

_ r - 2 o . o W o o  = W r r ( r  145,,. _~ F 245,00) -1~ ( r  'Wr 

+ r 2wo,,)45.,.,.- 2(r- 'wo) , , . (r- '45.o) ,~ + q(r ,  O) (1) 

V445= - e [ w  ~r(r lw ,. + r -Zw oo) + 2r-3w.,oW,o 

- r 2 ( w , 0 ) 2 -  r -4 (wo)2] .  (2) 

w and 45 are transverse displacement and stress function, respec- 
tively. The relations between dimensionless quantities and physi- 
cal quantities (with asterisks) are 

t = ~  , a = a * b  ~ , r = ~ ,  

w = w *  45 = 45* - ' D 

b/b 9 b 2 h a 
q = q* ~ / ~ 3 ,  cy= c~ p i E ,  e = 1 2 ( l - u 2 ) ~ ,  r / = ~ .  

The parameters p, h, E, v, and D are the mass density, thickness, 
Young's modulus, Poisson ratio, and ftexural rigidity of the disk, 
respectively, c~ represents a space-fixed homogeneous damping. 
q*(r* ,  O) is the space-fixed time-invariant loading. The disk is 
assumed to be "partially clamped" at the inner radius r* = a, and 
is free at the outer radius r* = b (Benson and Bogy, 1978). o', and 
o% in Eq. (1) are dimensionless stresses due to centrifugal effect. In 
the special case when • = 0, the solution 45 in Eq. (2) is identically 
zero, and as a consequence Eq. (1) reduces to 

w. ,  + 2f~w.~o + [12Woo + clw , + ~74W --  r-t(o,.rw.~)., .  

- r - 2 o - o W o o  = q .  (3) 

Equation (3) is the conventional equation used in the literature 
without considering von Karman's effect. The natural frequency 
and the orthonormal eigenfunction of a freely spinning disk (i.e., 
c I = 0, q = 0) are denoted by o3 .... and w .... = Rm,,(r)e i'°, 
respectively. 

Steady-State  Deflection Near  Critical Speed 

We assume that when the disk rotates near its critical speed l-l~ 
of mode w .. . .  the solution w of Eqs. (l)  and (2) can be approxi- 
mated by a two-mode expansion, 

w(r ,  O, t) = Cm,,(t)w,,,,, + O,,,,(t)# ...... (4) 

Both c,,,,(t) and w,,,,,(r, O) in Eq. (4) are complex functions. In 
order to solve 45 in Eq. (2) we introduce a set of eigenfunctions 45m,, 
satisfying the following differential equation: 

V 4 + m n -  134tti(J)mn = O. (5) 

0,,,,, satisfy the same boundary conditions as 45 does. After ex- 
pressing 45 in terms of eigenfunctions series 45,,,,, and following 
Galerkin's procedure, we can discretize Eqs. (1) and (2) into 

500 : 

Fig. 1 
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Steady-state deflection C(o~ ) near the critical speed 

~:,,,,, + (2inUt + cy)(,,,, + K,,,,c,,,, + - qm,, = 0 (6) 

where 

f2'n- f r l  qm, = q(r ,  O)Rm, (r)e -i"°rdrdO 

o o "o 

(7) 

~m,, = W,,,,,(W,,,,, + 2n~) .  (8) 

Constant 7 can be obtained via numerical integration involving 
eigenfunctions Win,, and 45,,,. It is noted that for a reflected wave 
the integer n is considered as positive, while the natural frequency 
w,,,, is considered as negative. Therefore Kin,, is positive in the 
subcritical speed range, and is negative in the supercritical speed 
range. Ic,,,I represents the absolute value of complex number c,,,,. 
The steady-state solutions c~,'~ satisfy the equation 

(") + ~ I (s) 2 (.0 K,,,,,c,,,,~ _7 ,c , ,  c , , , , -  qm,, = 0. (9) 

It is noted that this cubic equation allows only real roots. In the special 
case of a freely spinning disk when q,,,,, = 0, there is one trivial 
steady-state solution c~;il, = 0 in the subcritical speed range f l  < ~c. 
On the other hand, in,~e supercritical speed r a ~  > 12c, there are 
three real roots, i.e., c},~], = 0 and c}~], = ± V  -K,,,n/e 7. The dashed lines 
in Fig. 1 represent the steady-state deflections c~; } of a disk with 
clamping ratio '0 = 0.5 and Poisson ratio v = 0.27. The critical speed 
If It of mode w03 is 8.75. The dimensionless thickness • is taken to be 
10 6 and the constant 3' is calculated as 0.393. 

In the case of a loaded disk with q,,,,, > 0, we can show that 
there is a modified critical speed l)~ > 1),, 

12~ = f~. + ~ (10) 

When ~ < 12~ there is only one positive real root. On the other 
hand, there are three distinct real roots as 12 > ~ .  The solid lines 

(s) in Fig. 1 represent the steady-state solution c03 when q03 = I. The 
deflection A is always in the same direction as the applied load, 
while the deflections B and C are in the opposite direction. The 
small arrows in Fig. 1 indicate the deflection change from freely 
spinning disk to loaded disk. 

Stability Analysis  of  Steady-State  Solutions 

In order to investigate the stability of the steady-state solutions, 
we express the solution c.., in Eq. (6) as 

c,,,,,(t) = c12, + e ( t ) .  ( l l )  

After substituting Eq. (11) into Eq. (6), using Eq. (9) and linear- 
izing with respect to ~, we obtain the following equation: 

+ ( 2 i n O  + cs)~ + K,,,,,~ + e3,(c~,~!,)2(2~ + ~) = 0. (12) 

The eigenvalue A of Eq. (12) can be obtained by solving the 
following quartic equation: 
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/~4 .4_ 2Cy~3 + [2K,,,,, + 4ey(c,~'~,~) 2 + c} + 4 n 2 a 2 ] A  2 

+ 2Cf[K,,. + 2e3,(c};r),)a]A 

(s) 2 (s) 2 + [K,,,,, + 3eV(c,,,,,) ][K,,,,, + ey(c,,.,) ] = 0. (13) 

The steady-state solution is unstable when the real part of any of 
the four eigenvalues A's is positive. 

First of all we consider the deflections of the freely spinning disk 
with c s = 0. For the trivial deflection c,~,~, = 0, the square of the 
eigenvalues solved from Eq. (13) are A z = -~o~,,, and - (~o,,,,, + 2nO) 2. 
For the nontrivial solutions c~,~], = ±~/-K,,,,,/¢% A z = 0 and 2K.,,, - 
4n2~ 2. Therefore, the steady-state solutions of a freely spinning disk 
are neutrally stable to the first order of the stability analysis. 

For the case of a loaded disk. it is difficult to express A 2 in terms 
of physical parameters explicitly. However, we can study how A 2 
varies as q,o. increases from zero by differentiating Eq. (13) with 
respect to q .... to obtain the first-order derivative [0(A2)/ 
Oq,,,] [q ..... o. For the trivial solution c~,~ = 0, we can show that the 
derivatives for h 2 = -00,~,,, and - ( o J  ..... + 2n~1) 2 are zero. 
Therefore, deflection B remains neutrally stable when the space- 
fixed load is present. 

For the nontrivial deflections c},~ ), = _+ ~k/-~,,,,/e,y in the super- 
critical speed range, the derivative for A2 = 0 is 

a (~  2 ) 1 ~ / -  ~,,,,, 
- ¥ (14) 

Oq ..... q,,,,,:0.a:=o 2 n 2 ~  2 -  K ..... ~ e T ' 

From Eq. (14) we can predict that a 2 is negative for deflection A, 
and positive for deflection C. As a consequence, the steady-state 
deflection C of the loaded disk is unstable, and deflection A 
remains neutrally stable. 

BRIEF NOTES 

0~ccAf Kmn = - - 1 4 -  
~=o 4n 21~ 2 _ 2 K,,,,,' (17) 

• The right-hand side of Eq. (17) is always negative. Therefore, we 
conclude that deflection A of the loaded disk is stabilized by the 
external damping. 
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Maximizing the Natural Frequencies 
and Transverse Stiffness of Centrally 
Clamped, Circular Disks by 
Thickening the Clamped Part 
of the Disk 

A. A. Renshaw I 

Space-Fixed Damping  Effects 

We next study the behavior of the eigenvalues when space-fixed 
damping is present. To do so, we differentiate Eq. (13) with respect 
to c I and calculate the derivative at c i = 0 and q,,,, = 0. For the 
trivial solution c~,~ = 0 the derivative of eigenvalue _+ OOm,, is 

O A  _ - -  ~ mn 

ci=0,A:~/ ...... 4nD. " 
(15) 

In the supercritical speed range, the right-hand side of Eq. (15) is 
positive real. We theretbre conclude that deflection B of the loaded 
disk is unstable in the presence of cf. 

For the negative deflection of the freely spinning disk, we first 
observe that cf has no effect on the degenerate eigenvalues A = 0. 
However, we have shown in the preceding section that applied 
load tends to drive one of these two degenerate eigenvalues to 
positive real for deflection C. Therefore, we conclude that deflec- 
tion C of the loaded disk is also unstable when external damping 
c~ is present. 

For the positive deflection of the freely spinning disk, applied 
load tends to drive the degenerate eigenvalues A = 0 to purely 
imaginary, while cf has no effect on these two eigenvalues. There- 
fore, deflection A is neutrally stable to the first order of the stability 
analysis. However, if we approximate A of the undamped loaded 
disk by Eq. (14), then we obtain an estimate of the eigenvalue 
change of the loaded disk as 

0cA r r<.,n ~ ( 2 n 2 ~ Q  2 -  K,,.,) -- q,,,,, ~ 
,r:0 = 2 ~ ' f ~ (  2 n 2 [ 1 2 -  K,,,,,) 2 -  2q,,,,,~---K,,,,," (16) 

The right-hand side of Eq. (16) is negative for small q ...... There- 
fore, c i drives the eigenvalues from 0 to negative real. On the other 
hand, the derivative of the eigenvalues X = ±iX/4n2O 2 - 2~ ..... 
can be calculated as 

The natural frequencies and transverse stiffness of centrally 
clamped, circular disks are computed taking into account the 
flexibility of the central clamp and the thickness of  the clamped 
part of  the disk. When compared to experimental vibration data, 
these predictions are more accurate than the traditional perJect 
clamping predictions, particularly ,for zero and one-nodal- 
diameter vibration modes. The reduction in natural frequency or 
transverse stiffness caused by clamping flexibility can be mitigated 
either by increasing the clamping stiffness or by increasing the hub 
thickness, defined here as the thickness of  the disk sandwiched by 
the central clamp. A design study of  these two alternatives for both 
stationary and rotating disks shows that increasing the hub thick- 
ness is often a more attractive design alternative. 

1 Introduct ion 

For the past decade, an interesting, industrial circular saw design 
has existed in which the hub thickness of the saw, defined here as 
the thickness of the part of the saw that is sandwiched between the 
thick clamping collars, is two to four times thicker than the 
exposed part of the saw (Bird, 1990). The origins of this design are 
unclear, although they may lie in the designs of unclamped, 
"free-floating" circular saws (Mote, 1977; Renshaw and Mote, 
1996). The inventor of the design claims that increased hub thick- 
ness raises the critical speed of the saw even for centrally clamped 
saws. What is interesting about this claim is that the hub thickness 
is irrelevant in the traditional model of a centrally clamped saw. 
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