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Abstract

In this paper we study the effects of elastic foundation on the static and dynamic snap-through of a shallow arch
under a point load traveling at a constant speed. The deformation of the arch is expressed in a Fourier series. For static
analysis when the moving speed of the point load is almost zero, the first four modes in the expansion are sufficient in
predicting the equilibrium positions and the critical loads. Unlike the case without elastic foundation, static snap-
through can occur even when the arch is in another stable (P�1 ) position before the point load moves onto the arch.
In the dynamic case when the moving speed of the point load is significant, the numerical simulation of the response
does not converge well, especially long after the point load leaves the arch. However, the total energy of the arch con-
verges quite well when only the first eight modes are used in the Fourier series. This observation allows us to establish a
sufficient condition against dynamic snap though, although we are unable to predict precisely, with finite number of
modes in the series, at what time it will occur when this sufficient condition is not fulfilled.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

An arch subjected to lateral loads may become elastically unstable. If the initial height of the arch is of
the same order as the span of the arch, the buckling deformation is nearly inextensional. Sometimes, an
arch of this nature is called a ring. On the other hand, an arch is termed shallow if the initial height is much
smaller than the span. When the lateral load of a shallow arch reaches a critical value the deformed shape
may undergo a sudden jump called snap-through buckling. The buckling deformation of a shallow arch will
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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be extensional rather than inextensional. Depending on how the lateral load is applied, the snap-through
buckling of a shallow arch can be divided into two categories, i.e., static buckling and dynamic buckling.
In the case of static buckling, the lateral load is applied in a quasi-static manner. The first theoretical pre-
diction on the static critical load was conducted by Timoshenko (1935), in which a pinned sinusoidal arch
was subjected to a uniformly distributed load. Timoshenko�s pioneering work was followed and extended
by many other researchers, including Fung and Kaplan (1952), Gjelsvik and Bonder (1962), Onat and Shu
(1962), Franciosi et al. (1964), Schreyer and Masur (1966), Lee and Murphy (1968), Simitses (1973), and
Chen and Lin (2005). Experimental results have been reported by Roorda (1965).

In the case when the lateral load is applied dynamically instead of in the quasi-static manner, the critical
load will be different from the one predicted statically, see Hoff and Bruce (1954), Humphreys (1966), Lock
(1966), Hsu (1967, 1968), Hsu et al. (1968), Huang and Nachbar (1968), Fulton and Barton (1971), Sun-
dararajan and Kumani (1972), Lo and Masur (1976), Johnson and Mclvor (1978), Johnson (1980), Gregory
and Plaut (1982), Donaldson and Plaut (1983), Patricio et al. (1998), Xu et al. (2002), Lin and Chen (2003),
Chen and Lin (2004a), and Chen and Liao (2005). A comprehensive review on the dynamic instability of
shallow arches can be found in the book by Simitses (1990).

In all these previous researches, the lateral loading, either distributed or concentrated, is assumed to be
fixed in space. In 1979, Plaut studied the effect of point load position on the stability of a shallow arch. This
paper described the behavior of a shallow arch under a point load moving through the span quasi-statically.
Chen and Lin (2004b) extended Plaut�s work to study the dynamic snap-through buckling of a shallow arch
under a point force moving with high speed. They reported that when the point load is greater than a dy-
namic critical load there exists a finite speed zone within which the arch runs the risk of dynamic snap-
through. The establishment of the sufficient condition against dynamic snap through is based on the con-
cept of comparing the total energy gained by the arch and a critical energy barrier. In this paper we extend
Chen and Lin�s work (2004b) to discuss the effects of an elastic foundation (Hetenyi, 1946) on the static and
dynamic stability of a pinned shallow arch under a moving point force. The consideration of an elastic
foundation represents a more realistic modeling of many civil structures. For instance, the cement concrete
pavement on a rolling-hill terrain can be modeled as a curved beam or plate on elastic foundation. Due to
axial compressive forces, the concrete pavements sometimes experience buckling, which is also called blow-
up (Kerr and Dallis, 1985). The situation can be aggravated by high speed traveling of heavy vehicles. The
detailed study conducted by Simitses (1973) on the stability of a shallow arch resting on an elastic founda-
tion and under a space-fixed distributed load is a typical example in this regard.
2. Equations of motion

Fig. 1 shows an elastic shallow arch with the two pinned-ends being separated by a distance L. The arch
is assumed to rest on a Winkler-type elastic foundation with elastic constant b*. The initial shape of the
unloaded arch is y0(x). The arch is subjected to a point force Q* traveling from x = 0 to x = L with a con-
stant speed c*. The equation of motion of the arch can be written as
qAy ;tt ¼ �EI y � y0ð Þ;xxxx þ p�y ;xx � Q�dðx� c�tÞ � b� y � y0ð Þ. ð1Þ
The parameters E, q, A, and I are Young�s modulus, mass density, area, and moment of inertia of the cross-
section of the arch. d is the Dirac delta function. In Eq. (1), we assume that the effect of the axial stress wave
on the lateral vibration is negligible. Chen and Lin (2004b) argued that for a curved beam with slenderness
ratio 10, the effect of axial stress wave on the lateral vibration is negligible unless the traveling speed of the
point force is in the range of ten times of the flexural wave speed. In this paper we assume that the moving
speed of the point force is well below this range. Under such condition the axial force p* can be considered
as independent of the load position x and can be calculated as



Fig. 1. Schematic diagram of a shallow arch resting on an elastic foundation and under a moving point load.
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The boundary conditions for y at x = 0 and L are
yð0Þ � y0ð0Þ ¼ y;xxð0Þ � y0;xxð0Þ ¼ yðLÞ � y0ðLÞ ¼ y;xxðLÞ � y0;xxðLÞ ¼ 0. ð3Þ
Eqs. (1) and (2) can be nondimensionalized to the forms
u;ss ¼ � u� u0ð Þ;nnnn þ pu;nn �
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r is the radius of gyration of the cross-section. p = 1 corresponds to the Euler buckling load for a perfectly
straight simply supported beam. c = 1 corresponds to the speed of the flexural wave of the curved-beam
with wavelength L. It is noted that Q is positive when the concentrated load points downward in Fig. 1.
The unstressed shape of the arch before the lateral load is applied is assumed to be in the form
u0ðnÞ ¼ h sin n; ð7Þ
h is the rise parameter of the arch.
It is assumed that the shape of the loaded arch can be expanded as
uðn; sÞ ¼ lim
N!1

XN

n¼1

anðsÞ sin nn. ð8Þ
After substituting Eqs. (7) and (8) into (4) and (5) we obtain the equations governing an,
€an ¼ �n4an � n2pan � qn � ban; n ¼ 1; 2; 3; . . . ; ð9Þ
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where
p ¼ 1

4

X1
k¼1

k2a2
k �

h2

4
; ð10Þ

q1 ¼ Q sin e� h� bh; ð11Þ

qn ¼ Q sin ne; n ¼ 2; 3; . . . ð12Þ

eðsÞ ¼ cs. ð13Þ
The parameter 0 < e(s) < p represents the position of the point load on the arch. The overhead dot in Eq.
(9) represents differentiation with respect to s. The initial conditions for Eq. (9) are
a1ð0Þ ¼ h; anð0Þ ¼ 0 for n ¼ 2; 3; . . . ; _anð0Þ ¼ 0 for n ¼ 1; 2; 3; . . . ð14Þ
3. Equilibrium equations

We first consider the case when the moving speed c of the point load is small and the acceleration term in
Eq. (9) can be neglected. The equilibrium equations governing an can then be written as
n4an þ n2pan þ qn þ ban ¼ 0; n ¼ 1; 2; 3; . . . ð15Þ

In the case when e = 0, i.e., the arch is free from the point load, there could exist one-mode solutions involv-
ing only a1, and two-mode solutions involving a1 and aj, where j 5 1. For a specified h, we can define a b1

such that there are three one-mode solutions (P 0; Pþ1 ; P
�
1 ) as long as b < b1 (Chen and Lin, 2004a), where
b1 ¼
h
4

� �2

� 1. ð16Þ
On the other hand, there exists only one one-mode solution P0 if b > b1. Similarly, we can define a bj such
that the two-mode solutions P�1j exist if and only if b < bj, where
j2 � 1
� �2

bj � j2
� �2

1� 2j2
� �

bj þ j4 � 2j2
¼ j2h2

4
. ð17Þ
Chen and Lin (2004a) also reported that there exist at most two stable equilibrium positions P0 and P�1 if
b < b2.

In the case when the point load is on the arch Eq. (15) represents an infinite number of coupled nonlinear
equations for the infinite number of coordinates an. While it is in general impossible to solve for the infinite
number of an simultaneously, it is possible to use a deduction method to derive the equation for a1. It is
noted that equilibrium position of a shallow arch under a point force at the mid-point is a classical problem
and has been presented in (Fung and Kaplan, 1952). However, a more general case when the point load is at
an arbitrary position of the arch is not available in the literature except in Plaut (1979) and Chen and Lin
(2004b). The following methodology is a concise extension of the method adopted by Chen and Lin (2004b)
to the case with elastic foundation.

N = 1: We first assume that the number of modes N used in Eq. (8) is 1. Then the solution a1 can be
solved from the following cubic equation:
f1ða1Þ ¼ a1 þ
a1

4
a2

1 � h2
� �

þ q1 þ ba1 ¼ 0. ð18Þ
There are at most three one-mode equilibrium positions for N = 1.
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N = 2: For the case when N = 2 there are at most five equilibrium positions. After eliminating the axial
thrust p in Eq. (15) for n = 1 and 2, we can derive the relation between a1 and a2 as
a2 ¼ �
a1q2

3ð4� bÞa1 � 4q1½ � . ð19Þ
After substituting Eq. (19) into the first equation in (15) we obtain the equation for a1 as
f2ða1Þ ¼ 3 4� bð Þa1 � 4q1½ �2f1ða1Þ þ q2
2a

3
1 ¼ 0. ð20Þ
N = k: After eliminating p in Eq. (15) for n = 1 and j we can derive the relation between a1 and aj as
aj ¼
�a1qj

ðj2 � 1Þ j2 � b
� �

a1 � j2q1

	 
 ; j ¼ 2; 3; . . . ; k. ð21Þ
After substituting Eq. (21) into the first equation in (15) we obtain the equation for a1 as
fkða1Þ ¼ k2 � 1
� �
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� �

a1 � k2q1

	 
2
fk�1ða1Þ þ

k2q2
ka

3
1

4

Yk�1

j¼2

j2 � 1
� �

j2 � b
� �

a1 � j2q1

	 
2 ¼ 0; ð22Þ
fk�1(a1) = 0 is the equation for a1 when N = k � 1. After successive substitution Eq. (22) can also be rewrit-
ten as
fkða1Þ ¼ f1ða1Þ
Yk
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8>><
>>:

9>>=
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ð23Þ

Eq. (23) is a polynomial of order 2k + 1, admitting at most 2k + 1 real a1. For those real a1, the correspond-
ing aj are also real when the arch is loaded as can be calculated from Eq. (21). On the other hand for an
unloaded arch, both qj in the numerator and the bracket term in the denominator of Eq. (21) are zero.
Therefore, Eq. (21) is not applicable for a free arch. For a free arch a real a1 may correspond to a purely
imaginary aj. Obviously, only those solutions with real aj are real equilibrium configurations.
4. Effects of b on equilibrium positions of the loaded arch

The first question in numerical calculation is how many modes should be included in the expansion (8).
Chen and Lin (2004b) reported that in the case without elastic foundation the first two modes are sufficient
in predicting the stable equilibrium positions and the static buckling load. This is no longer true when the
elastic foundation b is included in the model, as explained in the following.

The thick lines in Fig. 2 are the a1�s as functions of load position e for the case when h = 8 and b = 0.5.
The special bj�s as defined in Eqs. (16) and (17) are b1 = 3, b2 = 0.96, b3 = 2.65. All other bj�s are negative.
Fig. 2(a), (b), and (c) are for Q = 18, 18.16, and 20, respectively. The number of modes N used in the expan-
sion is 4. While there are at most nine equilibrium positions for N = 4, only seven of them are real. The
equilibrium positions with the same loading condition but with b = 0 have been presented by Chen and
Lin (2004b) and are reproduced in Fig. 2 with thin lines. By comparing the thick lines and the thin lines,
we can observe some effects of the elastic foundation on the equilibrium positions. For the unloaded arch
there are three one-mode solutions (P 0; Pþ1 ; P

�
1 ) and two pairs of two-mode solutions (P�12; P

�
13), among them

only P0 and P�1 are stable while all others are unstable. As the point load moves across the arch, these one-
mode and two-mode solutions will involve all the harmonic modes in expansion (8). However, we retain the
names of the equilibrium positions when the point load moves across the arch because these components
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Fig. 2. a1(e) for an arch with h = 8 and b = 0.5. (a) Q = 18. (b) Q = 18.16. (c) Q = 20.
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(a1 for originally one-mode-solutions and (a1,aj) for the originally two-mode solutions) remain dominant
compared to others. We use solid and dashed lines to denote stable and unstable solutions.

For the case with b = 0 and the arch is in P0 position before the point load moves onto the arch, the
static critical load is 18.16. This is defined as the point load at which trans-critical bifurcation between
the stable P0 solution and the unstable P�12 solution occurs, as shown by the thin lines in Fig. 2(b). There-
fore, for a point load smaller than 18.16, say, 18 as in Fig. 2(a), no bifurcation will occur as the point load
moves across the arch. This is still the case when elastic foundation b = 0.5 is present, as shown in Fig. 2(a),
although the deflection of a1 is slightly smaller due to the additional support from the elastic foundation.
When the point load is increased to 18.16 as in Fig. 2(b), the load is no longer large enough for the trans-
critical bifurcation between P0 and P�12 to occur when b = 0.5. Further calculation shows that the new static
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critical load for b = 0.5 is 19.77. In other words, as one might expect, the elastic foundation tends to pre-
vent the shallow arch from snapping from position P0 to P�1 . This critical load is denoted by QðP 0Þ

cr , empha-
sizing that the arch is in P0 position before the point load moves onto the arch. For an even larger point
load, say Q = 20, Fig. 2(c) shows that snap through from P0 to P�1 occurs at load position e = 0.99. In the
case b = 0 this saddle-node bifurcation occurs earlier at load position e = 0.76. It is noted that at the load
positions e which render q1 = 0 (Eq. (11)), all but two a1-curves intersect at the point a1 = 0. This phenom-
enon can be proved mathematically to be true as in the case when b = 0 (Chen and Lin, 2004b).

It is noted that if P�1 is the initial position of the arch, then no snap through will occur when the point
load moves along the arch quasi-statically. This is true for b = 0 and 0.5. A more interesting phenomenon is
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cr ¼ 20.26. (c) Q = 21.



J.-S. Chen, Y.-T. Li / International Journal of Solids and Structures 43 (2006) 4220–4237 4227
that the stable position P�1 tends to approach the unstable position P�12 as the point load moves to the right.
This trend is more obvious when b increases, as will be shown in Fig. 3.

To examine the accuracy of using the first four modes in expansion (8), we redo the calculation by using
eight modes in the expansion. It is found that the a1 presented in Fig. 2 are almost unchanged. Therefore, in
the following calculations, only the first four modes are used. It is noted that Chen and Lin (2004b) re-
ported that the first two modes in the expansion are ultimately important and all the physical essences
are retained even when only the first two modes are used in the expansion. This is however not the case
when elastic foundation is present, especially when b is large. Our experience shows that at least four modes
should be retained in the expansion in order to obtain satisfactory accuracy in quasi-static analysis, at least
to the range of b of our interest.
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Fig. 4. a1(e) for an arch with h = 8 and b = 1.5. (a) Q ¼ QðP 0Þ
cr ¼ 23.7. (b) Q = 24. (c) Q = Qinf = 27.59.



4228 J.-S. Chen, Y.-T. Li / International Journal of Solids and Structures 43 (2006) 4220–4237
In Fig. 3, we show the equilibrium positions for the case with b = 0.64. Fig. 3(a) shows the case when
Q = 15.81. At this load, solution P�1 merges with P�12, while no bifurcation occurs along the P0 curve. This
load may be considered as critical in the sense that for a load larger than 15.81 and the initial position of the
arch is P�1 , then the arch may snap from P�1 to P0 when the point load moves across the arch quasi-stati-
cally. We may denote this critical load as Q

ðP�
1
Þ

cr . It is noted that the merging of P�1 and P�12 will never occur in
the case when b = 0 and 0.5 (Fig. 2). Further increase of the point load to 20.26, as in Fig. 3(b), the merging
of P0 and P�12 curves occurs. Therefore, the critical load QðP 0Þ

cr is 20.26 when b = 0.64. Apparently, QðP 0Þ
cr is

greater than Q
ðP�

1
Þ

cr in Fig. 3. For an even larger Q = 21, as shown in Fig. 3(c), snap through will occur as the
point load moves across the arch no matter the initial position of the arch is P0 or P�1 .

Fig. 4 shows the equilibrium positions for b = 1.5, which is greater than b2 and smaller than b1 and b3.
Therefore there are three one-mode solutions (P0, Pþ1 , P�1 ) and one pair of two-mode solutions (P�13) for the
unloaded arch, among them only P0 is stable. It is noted that the a1 for the nonreal P�12 solutions are com-
plex conjugate pairs before the load moves onto the arch. Fig. 4(a) shows the situation when Q = 23.7. As
this load reaches e = 0.96, the complex conjugate pair a1 of solutions P�12 become real, among them Pþ12 is
unstable and P�12 is stable. As the load moves further to the right at e = 1.17, trans-critical bifurcation be-
tween stable P0 and unstable Pþ12 occurs. This load becomes the static critical load QðP 0Þ

cr for this b. The
behavior of solutions a1(P0) and a1ðP�12Þ can be examined by a root loci in the complex plane with load po-
sition e as a control parameter, as shown in Fig. 5. The symbols · represent the solutions for e = 0 and the
open circles signify the situation when merging of root loci occurs. It is noted that while a1ðP�12Þ at e = 0 are
real, the corresponding a2 are purely imaginary. Therefore, P�12 are not real for the unloaded arch.

Fig. 4(b) shows the equilibrium positions for a larger load Q = 24, which breaks the trans-critical bifur-
cation into a pair of saddle-node bifurcation. The position corresponding to the left saddle node bifurcation
is e = 1.06. It is noted that there are another pair of saddle-node bifurcation points in the lower branch at
e = 0.95 and 2.19. Therefore, when the point load moves across the arch quasi-statically, the arch will jump
from upper position to lower position at e = 1.06, and then jump back to the upper position at e = 2.19. As
Q increases further to 27.59, as shown in Fig. 4(c), the upper and lower bifurcation points approach each
other and the solution curve exhibits an inflection point with vertical tangent. We denote this special Q as
Qinf. Although there is no jump phenomenon at Qinf, the arch still experiences dramatic deformation from
e=1.17e=0.96
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Fig. 5. Root loci for solutions a1(P0) and a1ðP�12Þ with e as the control parameter. Physical parameters are h = 8, b = 1.5, Q = 23.7,
corresponding to Fig. 4(a).
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positive to negative a1. Further increase of point load results in slightly less dramatic deformation with the
slope at the inflection point nonvertical.

In Fig. 6, we increase b to 2.8, which is greater than b2 and b3, but smaller than b1. Therefore, there are
three one-mode solutions (P 0; Pþ1 ; P

�
1 ) but no real two-mode solutions for the unloaded arch. There still ex-

ists a QðP 0Þ
cr equal to 31. Fig. 6(a), (b), and (c) show the response curves for Q smaller, equal to, and larger

than QðP 0Þ
cr . As load Q = 30.6 moves across the arch, as shown in Fig. 6(a), the unstable Pþ1 andP�1 merge at

e = 0.29 and become a complex conjugate pair thereafter. These two solutions become real again when
the load reaches e = 0.65. As the load moves further to the right, the originally complex solutions of P�12

and P�13 become real at e = 1.41, and 0.91, respectively. As Q ¼ QðP 0Þ
cr , as shown in Fig. 6(b), trans-critical
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bifurcation between solutions P0 and Pþ12 occurs. The Qinf for this b is 31.04. Snap-through buckling occurs
only in the small range of Q between QðP 0Þ

cr and Qinf.
In Fig. 7, we increase b further to 5. For this b only the one-mode solution P0 is real when the arch is not

loaded. For a smaller Q = 43, the P0 curve will form a cusp at the midpoint, as shown in Fig. 7(a). We
denote this Q as QðuÞcusp, which means that the cusp is in the upper position. Further increase of Q to
47.5, the P0 curve will form a loop around the mid-point while another separate loop (unstable) forms
in the lower branch, as shown in Fig. 7(b). Jump phenomenon will occur at e = 1.61 when the point force
moves quasi-statically. Further increase of Q to 49, the loop in the original P0 curve will separate, and the
lower loop will connect to the P0 curve, as shown in Fig. 7(c). As a consequence, the arch will jump back-
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ward at e = 1.60. When the load is further increased to QðlÞcusp ¼ 49.5, the lower loop will degenerate to a
cusp in the lower position. Therefore, static jumping of the arch occurs for the load between QðuÞcusp and QðlÞcusp.

The equilibrium positions for various values of b as discussed in Figs. 2–7 can be summarized in a bifur-
cation set diagram using Q and b as control parameters in Fig. 8 for an arch with h = 8. The three vertical
dashed lines represent b1, b2, and b3. The cross-hatched areas represent the parameter ranges in which static
snap through will occur. More specifically, the areas with positive slope lines represent the parameter range
in which snap through will occur when the initial position of the arch is P0. On the other hand, the area with
negative slope lines represents the range in which snap through will occur when the initial position of the
arch is P�1 .
5. Convergence test for dynamic response

The response of the arch will be different when the point load travels with a nonzero speed. The response
history can be calculated by integrating Eq. (9) numerically with the initial conditions (14). In the preceding
section we have shown that the first four modes in the expansion are sufficient in static analysis. This does
not guarantee that the same number of modes is sufficient in dynamic analysis. To test the convergence of
the expansion, we calculate the response of an arch with h = 8, Q = 23, b = 0.5, c = 2 by using two, four,
and eight modes in the expansion. In the numerical simulation we also add damping terms l _aj in the equa-
tions of motion. Fig. 9(a) shows the calculated a1 for various numbers of modes used in the expansion. The
damping parameter l is chosen to be 0.001. At the instant s = 1.57 when the point force leaves the arch, as
signified by a black dot in Fig. 9(a) the a1 calculated by using N = 4 and 8 are almost indistinguishable.
However, the arch will continue to vibrate after the point force leaves the arch until it settles to a steady
state position. As shown in Fig. 9(a), the responses after the point load leaves the arch can be quite different
for different number of modes used. For N = 2, the calculated result shows that the arch will not snap, while
for N = 4 and N = 8, the calculated results show that the arch will snap at time s = 51.89 (not in the range
of Fig. 9(a)) and 5.48, respectively. The convergence of a1 improves slightly when we further double the
number of modes to 16. However, a1 curves for N = 8 and 16 still start to show significant discrepancy
at time s = 8.64. Our experience shows that the convergence deteriorates further when b increases.
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6. Total energy and energy barrier

Although it is difficult to predict the dynamic response a1 numerically after the point load leaves the
arch, as demonstrated in Fig. 9(a), it does not jeopardize our goal of establishing a more conservative con-
dition to guarantee the safe passage of the point force without snapping the arch. We first notice that the
arch may snap either while the point load is still on the arch or after the point load leaves the arch. The
snapping after the point load leaves the arch can occur only if the unloaded arch has two stable equilibrium
positions, which is possible when b < b2. Therefore, we can establish the following sufficient conditions to
guarantee the safe passage of the load as follows. (1) The total energy H gained by the arch at the instant
when the point load reaches the other end is smaller than the critical energy barrier lying between the two
distant stable equilibrium positions. (2) The coordinate a1 remains greater than zero while the point load is
still on the arch. Condition (1) prevents the arch from snapping after the point load leaves the arch. Con-
dition (2) guarantees that the arch does not snap while the point load is still on the arch. The total energy H
of the arch can be calculated as,
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H ¼ U þ
X1
n¼1

_a2
n; ð24Þ
where U is the strain energy of the arch and the elastic foundation,
U ¼ 2p2 þ 1þ bð Þ a1 � hð Þ2 þ
X1
n¼2

n4 þ b
� �

a2
n

	 

. ð25Þ
The physical total energy H* and strain energy U* are related to H and U by
H � ¼ p4EI2H

4AL3
; U � ¼ p4EI2U

4AL3
. ð26Þ
It can be shown that for an unloaded arch with b < 4
11

and h1 < h < h2, where
h1 ¼ 4
ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
and h2 ¼

3 4� bj jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 7b
p ; ð27Þ
the critical energy barrier Ubarrier is the strain energy U of position Pþ1 . On the other hand, for an arch with
h > h2 the critical energy barrier is the strain energy of position P�12 (Chen and Lin, 2004a). The two suffi-
cient conditions can then be stated mathematically as
Hðe ¼ pÞ 6Min UðPþ1 Þ;UðP�12Þ
	 


; ð28Þ

a1ð0 < e < pÞ > 0. ð29Þ
Therefore, if we can predict the total energy H at the instant when the point load leaves the arch accurately,
we can estimate whether the arch is in danger of snapping either when the point load is still on the arch or
after the point leaves the arch. Fig. 9(b) shows the total energy of the arch as in Fig. 9(a) when the point
load moves across the arch. It is shown that the total energy calculated by using the first 4 and 8 modes in
the expansion converge quite well. On the other hand, the first two modes are obviously insufficient. Fur-
ther doubling the number of modes to 16 will not produce distinguishable difference in H from the result
calculated by using 8 modes. The critical energy barrier which corresponds to UðP�12Þ is also plotted as a
dashed horizontal line for comparison. In summary, while 8 modes are not sufficient in predicting the a1

after the load leaves the arch, it is sufficient in predicting whether the arch is in danger of snapping.
The fact that the total energy converges when 8 modes are used while the a1 response does not converge

is not difficult to understand. We observe that the total energy and a1 at the instant when the point load
leaves the arch are almost identical for N = 8 and 16. However, for N = 16 the total energy can spill over
to the sub-space a9 � a16 due to nonlinear coupling of various modes, while for N = 8 the total energy is
confined to the space a1 � a8. Therefore, as time goes by the a1 in these two cases will show significant dif-
ference while the total energy in these two cases remain almost unchanged.
7. Dynamic snap through for a negative point load

It is not difficult to envision the static and dynamic snap-through phenomena when the point load in Fig.
1 points downward, which is considered as positive in our model. On the other hand, when a negative point
load moves onto the arch quasi-statically, it is obvious that the arch will not snap. However, it is not so
obvious whether dynamic snap through can occur in this case. A high-speed cart moving on a roller coaster
rail-track might be somewhat similar to this situation. If we consider the possibility that the arch may gain
enough total energy to surpass the energy barrier, it becomes clear that the arch may snap after the load
leaves the arch even when the point load is negative. In Fig. 10(a) we show the response a1 for an arch with
h = 8, b = 0.5, and Q = �36. Two moving speeds c = 2.4 and 2.8 are considered. The instants at which the
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point load leaves the arch are signified by black dots. It is observed that the a1�s increase initially and were
pulled back by the stiffness of the arch. At the instants when the loads leave the arch the arch is only flat-
tened slightly but with high speed pointing downward. For the lower speed c = 2.4, the arch will continue to
oscillate but will not snap. On the other hand, for the higher speed c = 2.8 the arch snaps back and forth
several times in the time range of Fig. 10(a). The total energies gained by the arch and the elastic foundation
with these two speeds as functions of load position are shown in Fig. 10(b). Obviously, at the instant when
the point loads leave the arch, the total energy for the case c = 2.8 exceeds the barrier while the total energy
for c = 2.4 does not.
8. Boundary of dangerous speed zone

In Fig. 11, we use the energy criterion to determine the boundary of the dangerous speed zone in the Q–c

plane for an arch with h = 8 and various values of b. The arch is assumed to be in position P0 before the
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load moves onto the arch. The point load can be positive or negative. We divide the parameter space in Fig.
11 into 100 by 100 points. For each of these parameter points we examine conditions (28) and (29) and
locate the point at which the equal sign of condition (28) is satisfied. The damping coefficient l is chosen
to be 0.001. The dangerous speed zone for b = 0.9 is signified by the cross-hatched area. In other words, the
arch runs the risk of snap-through if the parameter point (Q,c) is in the shaded area. In the case when c = 0,
the critical loads QðP 0Þ

cr predicted from quasi-static analysis are 18.16, 19.77, and 21.21 for b = 0, 0.5, and
0.9, respectively. On the other hand, no static snap-through will occur for negative point load. The positive
dynamic critical load Qþd

cr is defined as the load below which the arch will not snap dynamically under po-
sitive load no matter what the moving speed is. The negative dynamic critical load Q�d

cr is defined similarly.
The dynamic critical loads Qþd

cr and Q�d
cr for the case b = 0 are signified in Fig. 11. In other words, the arch is

safe from dynamic snap-through as long as the point load is in the range Q�d
cr < Q < Qþd

cr . Fig. 12 shows the
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relation between Q�d
cr and b for various values of h. Apparently, the safe range of Q increases as the initial

height of the arch and the spring constant of the foundation increase.
9. Conclusions

In this paper, we study the effects of elastic foundation on the static and dynamic snap-through of a shal-
low arch under a point load Q traveling with a constant speed. Snap-through can occur when the arch is in
either P0 or P�1 before the arch is loaded. For static analysis, the first four modes are sufficient in predicting
the equilibrium positions. The evolution of the equilibrium positions for some typical values of elastic con-
stant of the foundation is described in detail. On the other hand, the numerical simulation of the dynamic
response does not converge well. In other words, it is almost impossible to predict the dynamic response of
the arch numerically using only finite number of modes in the Fourier series. The convergence deteriorates
as the spring constant of the foundation increases. Fortunately, the total energy of the arch converges quite
well when only the first eight modes are used in the expansion. This observation allows us to predict
whether the arch is in danger of dynamic snap-through, although we are unable to predict accurately at
what time it will really occur. The sufficient condition which guarantees the safe passage of the point load
without snapping the arch dynamically are based on the concept of comparing the total energy of the arch
and the foundation at the instant when the point force leaves the arch and the critical energy barrier. With
this method we can define a pair of dynamic critical loads Q�d

cr (negative) and Qþd
cr (positive), such that the

arch is safe from snapping no matter what the moving speed is as long as the point load is in the range
Q�d

cr < Q < Qþd
cr . The safe range of Q increases as the initial height of the arch and the spring constant

of the foundation increase.
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