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Abstract

The locking phenomenon, or the degeneracy, has long been the potential defectiveness of the Complex Method. A

locked optimization process leads to not only unreliable optimum but waste of time. In this paper, a modified Complex

algorithm is suggested and assessed by four test functions. The results showed that the improved Complex Method

equipped with the new unlocking mechanisms demonstrates excellent abilities to avoid locking phenomenon. Besides,

it reduces the time of processing to about 80% to reach the optimum with the same accuracy. Moreover, a practical

example of a common engineering problem is also given to show its applicability.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the Complex Method utilizes direct search

rather than gradient search, it has been extensively ap-

plied and continuously improved to optimize non-ana-

lytical functions, such as experimental optimizations

[1]. After decades of development, this method has been

comprehensively adopted in various fields of biology [2],

geology [3], electronics [4], chemistry, chemical engineer-

ing [5,6], material engineering [7], parallel processing

and communication [8], numerical control and informa-

tion processing [9]. Besides, the ‘‘simple elegance’’ of this

method also shows great compatibility of combination

with other algorithms, like the Evolutionary Algorithm
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[10], Genetic Algorithm [2,11] and Game Theory [12].

However, the defectiveness of the Complex Method,

known as the locking phenomenon or the degeneracy,

might emerge abruptly during the search process and

interrupt the optimization. According to the algorithm

of the Complex Method, an optimization process that

has fallen into a locked position can neither be resumed

nor redeemed, and all previous experiments or evalua-

tions are nullified. This is quite a waste of time and re-

sources, and a variety of modifications against this

shortcoming have been proposed by researchers. How-

ever, it is already confirmed by Keefer that most of them

introduced complications into what is basically a very

simple procedure without significantly improving the

efficiency [13]. Only few of them have been proved effec-

tive to ameliorate the situation.

Van der Wiel introduced a symmetry restriction to

control the degeneracy of the simplex to prevent it from

repeatedly making steps that will create an elongated
ed.

mailto:jhcheng@ntu.edu.tw


1992 S.-y. Hu, J.-H. Cheng / Computers and Structures 83 (2005) 1991–2002
and degenerate simplex [14]. A few years later, Hedlund

adopted the idea and used degeneracy constraints to im-

prove the converging ability of the Simplex Method [15].

Simply applying constraints to avoid locking might seem

straightforward. However, extra constraints not only re-

tard the convergence by complicating the process, but

sometimes yield inaccurate results.

To solve all the problems above, the aim of this paper

is to develop efficient and reliable algorithms to avoid

locking phenomenon. The improved method will be as-

sessed by common test functions and compared with the

original Complex Method to demonstrate its feasibility.
2. Theories

The predecessor of the Complex Method is the Sim-

plex Method, which was invented by Spendley et al. in

1962 [16]. Later in 1965, Box devised his own method

to deal with constrained optimization problems, and

called it the Complex Method [17]. However, essentially

it is just a modification of the Extended Simplex Method

proposed by Nelder and Mead in 1965 [18].

2.1. Complex method

When using the Complex Method to solve an optimi-

zation problem of N variables, an initial simplex with 2N

nodes, or vertices, must first be constructed. Each of the

nodes represents a set of design variables, either specified

by user or generated randomly without violating con-

straint equations. All nodes will be evaluated for their

objective function values and accordingly sorted, and

then the iteration begins.

The iterative procedure of the Complex Method can

be simplified into only two actions: expansion and con-

traction. The node with the largest function value, or the

‘‘worst’’ node, will be abandoned, and then a new node

is located away from the old node with respect to the

centroid of other nodes with a reflection factor of 1.3,

as suggested by Box. This procedure is called expansion,

because the reflection factor is usually larger than one.

After the expansion, the new node must be checked

for its validity. If it violates any constraint equations,

or its function value is still the largest, suggesting that

the new node is not better than the old one, a midway

node will be located to replace the new node with a

reflection factor of 0.5, as suggested by Box. Because

the midway node is located backwards, this procedure

is thus called contraction. The simplex keeps contracting

until the new node fulfills all constraint equations and

possesses smaller function value than the old node. This

makes a whole iteration and generates a new simplex

with one node modified.

Then the new simplex is expanded again, and the iter-

ative process goes over and over until all nodes occupy
almost the same location, and the simplex shrinks to

one point. This point represents the best node that can

be found, i.e., the optimum [19].

2.2. Locking phenomenon and degeneracy

When dealing with smooth objective functions, the

Complex Method seldom fails. But for some special

cases, such as the well-known Rosenbrock�s function,

there is a great chance that the worst node of the simplex

gets trapped in particular locations and loses the abilities

to expand or contract. Because this was not anticipated

by the original algorithm, the worst node will be forced

to contract over and over again, creating an infinite

loop, or so-called locking phenomenon.

The most common reason of such case is that the

worst node coincides with the centroid of other nodes.

Since the worst node is reflected with respect to itself,

the simplex can never change its shape. Because such a

simplex usually has a slender or distorted shape, the

locking phenomenon is also designated as a degeneracy.
3. Improvement

Here we demonstrate a typical example of the locking

phenomenon. By observing the history of the iterative

process step by step, we hope to reveal the crux that

leads to the locking phenomenon.

We choose the well-known Rosenbrock�s function

f(x,y) = 100(y � x2)2 + (1 � x)2 as the objective func-

tion, with four initial nodes (0,0), (�3.63,23.2),

(�20.55,19.0), (�25,25). The design space is �256

x 6 25, �25 6 y 6 25, and the optimum is 0 at (1,1).

The iterative history is shown in Table 1.

It is clear that finally the worst node coincided with

the centroid of other nodes in the last iteration caused

the locking phenomenon. In closer observation we no-

ticed three things that might help to eliminate the lock-

ing phenomenon.

3.1. Pre-locking determination

The first thing we noticed is that successive contrac-

tions augur the locking phenomenon. From iterations

1–8, every node gets no more than two contractions.

But then node 3 gets five contractions in iteration 9

and soon it is locked. Gustavsson and Sundkvist once

concluded in their work that repeated failed contractions

had to be minimized in order to prevent false conver-

gence [20]. It suggests that successive contractions on a

single node gives the warning that the locking is about

to occur. We call this a pre-locking state.

The determination of the locking occurrence is a con-

verging process, and therefore requires considerable

evaluations of the objective function. Wasting so many



Table 1

Iterative history of a locking phenomenon

Iter. No. Node 1 Node 2 Node 3 Node 4 No. of contractions

x y x y x y x y

0 0 0 �20.55 19.0 �3.63 23.2 �25 25

1 # # # # # # 13.96 �0.15 0

2 # # 14.22 0.33 # # # # 1

3 # # �10.6 17.25 # # # # 0

4 # # # # # # �9.8 16.4 2

5 # # 3.44 7.9 # # # # 0

6 # # # # # # 6.27 6.5 1

7 # # # # # # �4.18 12.9 1

8 # # # # 1.96 �3.6 # # 1

9 # # # # �0.33 7.37 # # 5

10 # # # # �0.13 6.38 # # 0

11 # # # # �0.24 6.94 # # 33
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resources just to declare failure of the process is obvi-

ously absurd. Therefore, the pre-locking warning be-

comes very important. It tells us that if we want to do

something to prevent the locking phenomenon, we

should do it right away. According to our experiments,

it is recommended that five successive contractions are

sufficient to be determined as a pre-locking state.

3.2. Abdication

Abdication is the main unlocking mechanism we have

developed to prevent the process from locking. The idea

is simple. When the worst node of the simplex is in pre-

locking state, we judge it improper to be reflected in this

iteration. Naturally, the second worst node makes the

best candidate to substitute for the worst node, for it will

become the new worst node one way or the other. Since

the worst node gives way to the priority of expansion, we

termed this mechanism ‘‘abdication’’.

Although abdication somewhat violates the basic

concept of the Complex Method, there are two reasons

that make it permissible. One reason is that expanding

the second worst node helps to change the shape of

the simplex. After the second worst node expands suc-

cessfully, the real worst node will no longer be on the

centroid of the other nodes, because one of them has

moved. The other reason is that we assume the worst

node and the second worst node will expand toward al-

most the same direction with or without abdication, be-

cause at least they are always reflected towards the better

nodes. In short, abdication helps to reshape the simplex

for easier expansion without altering the converging

direction, and thus prevents locking.

In some special cases, the second worst node is also in

the pre-locking state, while the third worst node must

carry on. This may keep going until all worse nodes

get in pre-locking state, and abdication fails to unlock
the situation. When this happens, there are two ways

to resume the operation. One is to increase the number

of contractions for pre-locking criteria, but this does

not always work. The other is to add extra nodes

to the simplex, and this will be discussed in the next

section.

3.3. Adjustable number of nodes

Nelder and Mead recommended N + 1 nodes for an

N-variable optimization, while Box recommended 2N.

However, there is no reasonable explanation why they

decided thus. According to our experiments, a 2N-node

simplex leads to more failed processes, while an N + 1-

node simplex results in more inaccurate optima (Tables

2–5). This implies that too many nodes might interfere

with one another and obstruct the convergence, while

insufficient nodes may lack the ability to cover the

whole design space, and thus generate an inaccurate

optimum.

We adopted a compromised means to determine the

number of nodes of a simplex. Based on our experi-

ments, an initial simplex of 1.5N nodes seems an ade-

quate choice. Besides, an extra random node is added

to the simplex when all worse nodes within the simplex

are in pre-locking state. This may keep going until the

total number of nodes reaches 2N. If all worse nodes

within a 2N-node simplex are in pre-locking state, the

whole process is determined as failed.

The idea of an adjustable number of nodes is moti-

vated by two assumptions. First, too many nodes re-

quire more time of evaluation, so less nodes seem

more efficient, and extra nodes are added only when

needed. Second, a newly added node not only makes a

failed convergence resumable, but helps to find new

search directions since it is not involved in previous

iterations.



Table 2

Comparison of different algorithms tested by Powell�s function

Algorithm C Eight initial nodes Algorithm R Six initial nodes

Accuracy 10�2 10�3 10�5 10�2 10�3 10�5

Inaccurate 0 0 0 0 0 0

Failed 0 0 0 0 0 0

S.D. 55.5 73.8 95.7 76.7 84.9 88.5

Avg. 674.3 904.6 1343.8 554.7 720.8 1068.6

EffU 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

EffE 100.0% 100.0% 100.0% 111.7% 117.8% 122.2%

Eff 100.0% 100.0% 100.0% 111.7% 117.8% 122.2%

Algorithm R2N Eight initial nodes Algorithm RN+1 Five initial nodes

Accuracy 10�2 10�3 10�5 10�2 10�3 10�5

Inaccurate 0 0 0 0 0 1

Failed 0 0 0 0 0 0

S.D. 69.8 70.4 83.5 83.6 95.8 116.0

Avg. 676.3 894.4 1329.2 511.7 664.2 987.6

EffU 100.0% 100.0% 100.0% 100.0% 100.0% 99.0%

EffE 95.7% 101.9% 103.8% 118.7% 124.3% 125.4%

Eff 95.7% 101.9% 103.8% 118.7% 124.3% 124.1%

Table 3

Comparison of different algorithms tested by Rosenbrock�s function

Algorithm C Four initial nodes Algorithm R Three initial nodes

Accuracy 10�2 10�3 10�5 10�2 10�3 10�5

Inaccurate 1 0 0 3 2 1

Failed 47 55 43 3 2 3

S.D. 27.1 28.5 41.0 29.3 35.1 48.9

Avg. 225.4 265.4 357.7 162.7 204.4 283.4

EffU 52.0% 45.0% 57.0% 94.0% 96.0% 96.0%

EffE 100.0% 100.0% 100.0% 129.4% 120.1% 117.7%

Eff 52.0% 45.0% 57.0% 121.6% 115.3% 113.0%

Algorithm R2N Four initial nodes Algorithm RN+1 Three initial nodes

Accuracy 10�2 10�3 10�5 10�2 10�3 10�5

Inaccurate 0 0 0 8 0 2

Failed 5 8 8 0 2 3

S.D. 33.0 32.0 39.6 31.4 30.4 36.1

Avg. 218.5 267.0 344.3 169.5 201.5 271.2

EffU 95.0% 92.0% 92.0% 92.0% 98.0% 95.0%

EffE 99.0% 97.3% 103.8% 123.7% 124.1% 128.3%

Eff 94.1% 89.5% 95.5% 113.8% 121.6% 121.8%

R and RN+1 begin with the same number of nodes, so actually they are the same algorithm for this function.
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3.4. The improved algorithm

All the unlocking mechanisms mentioned above were

combined as one final algorithm, and a flow chart of the

whole process is shown in Fig. 1. The three rhombi at
right represent the pre-locking warning, abdication,

and extra nodes, respectively. This final algorithm will

be referred to as the Raplex Method hereafter, and

Visual Basic 6.0 is adopted as the programming

environment.



Table 4

Comparison of different algorithms tested by Fletcher�s function

Algorithm C Six initial nodes Algorithm R Five initial nodes

Accuracy 10�2 10�3 10�5 10�2 10�3 10�5

Inaccurate 0 0 0 1 1 0

Failed 41 36 38 1 3 1

S.D. 108.6 98.9 116.9 120.7 118.4 102.1

Avg. 501.7 572.5 747.6 424.5 507.7 649.1

EffU 59.0% 64.0% 62.0% 98.0% 96.0% 99.0%

EffE 100.0% 100.0% 100.0% 112.6% 106.9% 115.0%

Eff 59.0% 64.0% 62.0% 110.3% 102.6% 113.9%

Algorithm R2N Six initial nodes Algorithm RN+1 Four initial nodes

Accuracy 10�2 10�3 10�5 10�2 10�3 10�5

Inaccurate 0 0 0 5 1 0

Failed 0 2 3 3 1 2

S.D. 119.1 133.8 128.4 122.1 107.7 123.9

Avg. 518.2 598.7 756.5 361.4 439.5 565.8

EffU 100.0% 98.0% 97.0% 92.0% 98.0% 98.0%

EffE 95.7% 91.3% 97.3% 128.9% 122.6% 124.6%

Eff 95.7% 89.5% 94.3% 118.5% 120.1% 122.1%

Table 5

Comparison of different algorithms tested by Wood�s function

Algorithm C Eight initial nodes Algorithm R Six initial nodes

Accuracy 10�2 10�3 10�5 10�2 10�3 10�5

Inaccurate 6 0 0 20 3 0

Failed 9 13 10 0 0 0

S.D. 245.2 279.7 279.0 174.0 245.0 240.7

Avg. 961.5 1100.5 1362.8 760.9 901.1 1144.2

EffU 85.0% 87.0% 90.0% 80.0% 97.0% 100.0%

EffE 100.0% 100.0% 100.0% 129.3% 120.5% 118.5%

Eff 85.0% 87.0% 90.0% 103.4% 116.9% 118.5%

Algorithm R2N Eight initial nodes Algorithm RN+1 Five initial nodes

Accuracy 10�2 10�3 10�5 10�2 10�3 10�5

Inaccurate 5 1 0 45 14 0

Failed 2 0 0 0 0 0

S.D. 254.8 269.6 288.6 185.1 174.0 218.4

Avg. 954.2 1082.2 1369.6 699.6 782.5 1036.0

EffU 93.0% 99.0% 100.0% 55.0% 86.0% 100.0%

EffE 99.9% 102.1% 98.9% 136.4% 144.7% 130.8%

Eff 92.9% 101.1% 98.9% 75.0% 124.4% 130.8%
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4. Results and discussion

Our modifications were assessed by some well-known

test functions to examine their reliabilities and efficien-
cies. Moreover, the Raplex Method was compared

with unlocking mechanisms previously suggested by

other researchers to manifest its outstanding appli-

cability.
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Fig. 1. Flow chart of the Raplex Method.
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4.1. Benchmark functions

We choose the following four test functions, which

are suggested by brilliant mathematicians and have long

been adopted to assess optimization algorithms [21].

1. Powell�s function:

Obj = (x + 10y)2 + 5(z � w)2 + (y � 2z)4

+ 10(x � w)4

region: �100 6 x,y,z,w 6 100

optimum: 0 at (0,0,0,0)

Powell�s function is a relatively simple function. Even

the original Complex Method can solve it correctly.

2. Rosenbrock�s function:

Obj = 100(y � x2)2 + (1 � x)2

region: �25 6 x,y 6 25

optimum: 0 at (1,1)
Complex Method often fails to solve the Rosen-

brock�s function, and gets locked on these two

pseudo-minima: 1 at (0,0) and 0.25 at (0.5,0.25).

3. Fletcher�s function: ffiffiffiffiffiffiffiffiffiffiffiffiffiffip

Obj ¼ 100ðz� 10hðx; yÞÞ2 þ ð x2 þ y2 � 1Þ2 þ z2

where hðx; yÞ ¼ 1
2p tan

�1ðyxÞ
region: �100 6 x,y,z 6 100

optimum: 0 at (1,0,0)

Fletcher�s function is also hard to solve because the

function surface is a steep helical valley.

4. Wood�s function:

Obj = 100(y � x2)2 + (1 � x)2 + 90(w � z2)2

+ (1 � z)2 + 10.1((y � 1)2 + (w � 1)2)

+ 19.8(y � 1)(w � 1)

region: �100 6 x,y,z,w 6 100

optimum: 0 at (1,1,1,1)

Wood�s function is another tricky function, while the

(y � x2) and (w � z2) terms also induce (�1,1,�1,1)

rather than the real optimum.

4.2. Efficiency Indices

Before the assessment begins, we want to establish

two indices as the reference of efficiency: the Evaluation

Efficiency and the Unlocking Efficiency.

Many people take the number of converging itera-

tions as the index of optimization efficiency, but this is

not always adequate. In experimental optimizations,

for example, each evaluation of the objective function

requires one or more field experiments to be performed

[6]. In such cases, the less experiments are needed to be

carried out, the more time will be saved. Therefore, the

Evaluation Efficiency is defined as the normalization

with respect to the original Complex Method, counted

within certain number of optimizations:

EffE ¼ w1

Avg0
Avg

þ w2

SD0

SD
ð1Þ

where w1, w2 are weighting factors, Avg is the average

value of the number of evaluations, and Avg0 is that

of the original Complex Method. Similarly, SD repre-

sents the standard deviation of the number of evalua-

tions, and SD0 is that of the Complex Method.

We choose to observe not only the average number of

evaluations but also their standard deviation because we

need the algorithm to perform steadily. If some algo-

rithm takes the fewest evaluations to complete a process

but with high standard deviation, it implies that this

rarely occurs, and that is not what we want. In this pa-

per, we choose w1 = 80% and w2 = 20%.

The Unlocking Efficiency is simply defined as

EffU ¼ 1� F þ I
T

ð2Þ
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where F is the number of failed optimizations, and I is

the number of optimizations that yield inaccurate re-

sults. In this paper, a result is defined as an inaccurate

one if the difference between the resulted optimum and

the exact optimum exceeds 50 times the convergence cri-

teria. T represents the total number of optimizations.

Finally we define the total efficiency as the product of

the two indices:

Eff ¼ EffU � EffE ð3Þ

which is much stricter definition than the sum or the

average value of those two indices.

4.3. Comparison between the R-series algorithms

and the complex method

Four different algorithms will be assessed together

for comparison: the original Complex Method, the pro-

posed Raplex Method, and the Raplex Method initial-

ized with 2N nodes and N + 1 nodes.

The procedure of the assessment is as follows. Each

test function will be optimized to specific accuracy by

every different algorithm for 100 times. The accuracy is

controlled by the convergence criteria, which is set to

10�2, 10�3, and 10�5. The converging status and number

of evaluations will be recorded and calculated for their

average value and standard deviation for further analy-

ses. All the results are listed in Tables 2–5. Different

algorithms are referred to as C, R, R2N, RN+1 for the

original Complex Method, the Raplex Method, and

the Raplex Method initialized with 2N nodes and

N + 1 nodes, respectively.

The success of an optimization process is dependent

on the ability of the algorithm to locate the optimum

not only correctly but efficiently [15], and this can be ver-

ified by checking the Unlocking Efficiency and the Eval-

uation Efficiency.

First we examine the unlocking ability. From Table

3–5 it is clear that there is a 9–55% chance that the Com-

plex Method fails to complete an optimization process,

while our modifications reduce the rates to only 0–3%.

The Unlocking Efficiencies of the R, R2N and RN+1

algorithms are undoubtedly much higher than that of

the Complex Method. This suggests that the abdication

mechanism does possess good abilities of unlocking.

Then we check the Evaluation Efficiency. Because the

pre-locking detection deflects the searching direction be-

fore it falls into a tedious locking convergence, and an

adjustable number of nodes avoids unnecessary evalua-

tions, these two unlocking mechanisms are also sup-

posed to reduce the number of evaluations of the

process. Just as expected, the R-series algorithms exceed

the Complex Method in Evaluation Efficiency by

approximately 20–30%.

If we take a closer look at the results, we can find that

there is no particular best algorithm for all situations.
The RN+1 algorithm has better Evaluation Efficiency be-

cause it does not have too many nodes to evaluate.

However, it also induces more inaccurate optima than

other algorithms. The R2N algorithm has the best

Unlocking Efficiency on Wood�s function, but performs

worse than any other R-series algorithm on Rosen-

brock�s function. The R algorithm seems efficient for

most of the cases, especially when the accuracy demand

is high. However, if the problem is relatively simpler, the

RN+1 algorithm might perform more efficiently than the

R algorithm. These all suggest that the initial number of

nodes should be determined not only by the number of

variables but also by the complexity of the problem.

Therefore, it is advised that this value should be open

for users to modify when translating this algorithm into

computer programs. Basically, we recommend 1.5N as a

modest default for an average performance.

4.4. Comparison between the Raplex Method and other

unlocking mechanisms

The Raplex Method is compared with other improve-

ments proposed in [14,15]. The main unlocking mecha-

nism in [14] is Symmetry Control, and that in [15] is

Degeneracy Constraint.

Van der Wiel proposed a measure of simplex distor-

tion termed ‘‘Symmetry’’, which is defined by the Nth

root of the absolute value of the determinant of the sim-

plex divided by the radius of the sphere passing through

all vertices of the simplex, where N represents the num-

ber of variables. If the Symmetry of the simplex is below

a preset criterion, the simplex will be reshaped until it

meets the Symmetry criterion [14]. Although it is men-

tioned that the applicable number of variables range

from 2 to 8, no experiments were demonstrated to show

that this mechanism works for N > 2, probably due to

the limitations of computing capacities 20 years ago. It

should be noticed that the calculation of the matrix

determinant and the circumcenter of the simplex re-

quires considerable resources of CPU, especially when

N is large. Besides, this mechanism is inapplicable when

N = 1.

Hedlund proposed a relatively simpler measure of

degeneracy, which is the minimum angle ratio of the

smallest to largest angles of the simplex (Amin/Amax).

When a simplex was regarded as too degenerate, the

optimization was continued with a simplex that was reg-

ularly rescaled, retaining the previous best vertex, the

best gradient direction and the area of the simplex

[15]. It should come to one�s attention that the term

‘‘area’’ implies that this mechanism is developed for 2-

variable problems only. Besides, all experiments con-

ducted in [15] are also of 2-variable test functions, which

concur with the conjecture. The reason why N must not

exceed 3 could be that an angle between two vectors in

hyperspace has little physical meaning. In addition, this



Table 6

Comparison between the Raplex Method and other unlocking mechanisms

Raplex Method Symmetry Control Degeneracy Constraint

Accuracy 10�2 10�5 10�2 10�5 10�2 10�5

Rosenbrock function (N = 2)

Activated

Count 38 59 100 100 53 39

Inaccurate 1 1 7 0 49 0

Failed 3 3 17 21 0 0

Overall

Inaccurate 3 1 7 0 50 0

Failed 3 3 17 21 0 0

S.D. 29.3 48.9 29.5 30.0 29.4 76.0

Avg. 162.7 283.4 147.4 237.1 142.2 311.9

EffU 94.0% 96.0% 76.0% 79.0% 50.0% 100.0%

EffE 129.4% 117.7% 140.8% 148.0% 145.4% 102.6%

Eff 121.6% 113.0% 107.0% 116.9% 72.7% 102.6%

Fletcher function (N = 3)

Activated

Count 53 53 100 100 2 1

Inaccurate 1 0 0 1 2 1

Failed 1 1 80 73 0 0

Overall

Inaccurate 1 0 0 1 3 1

Failed 1 1 80 73 44 41

S.D. 120.7 102.1 82.5 127.3 98.3 99.0

Avg. 424.5 649.1 319.5 495.0 324.6 551.3

EffU 98.0% 99.0% 20.0% 26.0% 53.0% 58.0%

EffE 112.6% 115.0% 152.0% 139.2% 145.7% 132.1%

Eff 110.3% 113.9% 30.4% 36.2% 77.2% 76.6%

Wood function (N = 4)

Activated

Count 24 7 100 100 0 0

Inaccurate 3 0 10 0 0 0

Failed 0 0 82 94 0 0

Overall

Inaccurate 20 0 10 0 30 0

Failed 0 0 82 94 16 8

S.D. 174.0 240.7 171.2 175.5 227.3 219.0

Avg. 760.9 1144.2 380.7 667.2 514.8 1029.7

EffU 80.0% 100.0% 8.0% 6.0% 54.0% 92.0%

EffE 129.3% 118.5% 230.7% 195.2% 171.0% 131.4%

Eff 103.4% 118.5% 18.5% 11.7% 92.3% 120.8%
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mechanism also requires considerable computing re-

sources when N is large, since the rescaling of the sim-

plex requires complete update of evaluations of every

simplex nodes except the best one.

The assessing procedures in the previous section were

adopted again for these two mechanisms, and the results

are listed in Table 6. Besides the previously defined indi-

ces, the number of optimizations in which the unlock-
ing mechanism is activated are also listed, along

with the number of corresponding inaccurate or failed

results. This helps to identify the connections between

the source of unreliable results and the unlocking

mechanisms.

First it should come to one�s notice that both the

Symmetry Control and the Degeneracy Constraint show

poor Unlocking Efficiencies (mostly 6–58%) for the
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Fig. 2. Geometry and mesh for a deep drawing problem.
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Fletcher and the Wood functions, implying that they

are applicable only when N = 2. Moreover, the unreli-

able results is of different sources. For the Symmetry

Control, the number of unreliable results from the opti-

mizations which activates the unlocking mechanism

agrees with the total number of unreliable results. This

suggests that Symmetry Control is quite alert to the

degeneracy of the simplex even though reshaping of

the simplex is ineffective. However, the number of unre-

liable results from the optimizations which activates the

Degeneracy Constraint does not match the total number

of unreliable results at all, implying that this mechanism

is unsuitable for N > 2 cases because it cannot even

detect that the locking is happening, not to mention

unlock it.

On the other hand, the Evaluation Efficiencies tend

to substantially favor Symmetry Control and Degener-

acy Constraint rather than the Raplex Method for the

Fletcher and the Wood functions. However, this is be-

cause the Raplex Method begins with 1.5N nodes, while

the other two mechanisms begin with N + 1 nodes. Con-

sequently the number of evaluations required by the Ra-

plex Method is doubtlessly larger when N > 2. Even so,

the overall efficiencies of the Raplex Method are still

averagely higher than other two mechanisms, because

of its steady and reliable unlocking abilities.

As for the 2-variable Rosenbrock�s function, Symme-

try Control does exhibit abilities to unlock the degener-

acy as compared to the Complex Method, but the

Unlocking Efficiencies are still much lower than those

of the Raplex Method. On the other hand, Degeneracy

Constraint successfully unlocked all of the 100 tests.

However, half of them yields inaccurate results when

the accuracy demand is low, so the average Unlocking

Efficiency is still lower than that of the Raplex Method,

implying that Degeneracy Constraint works selectively

to the convergence criterion.

4.5. Summary

Basically Symmetry Control and Degeneracy Con-

straint have similar deficiencies. They are both unsuit-

able for N > 2 cases, and require extra computer

resources while calculating the measure of geometric dis-

tortion of the simplex. On the contrary, the Raplex

Method has no such limitations at all, since it forecasts

the occurrence of degeneracy long before the locking

happens by monitoring the iterative history, rather than

exhausting additional resources to detect and reduce the

degeneracies, as the other two mechanisms do.

Overall, the Raplex Method not only prevents the

locking phenomenon more effectively than other dis-

cussed mechanisms, but saves about 20–30% of the time

required by the Complex Method. This makes it a

successful modification to the original Complex

algorithm.
5. Application

Deep drawing of sheet metal is an important

manufacturing technique, and the selection of working

conditions has always been complicated and tricky.

Numerous techniques such as the Evolutionary Struc-

tural Optimization (ESO), Inverse Approach (IA), and

the Large Time Incremental (LATIN) method have been

proposed for optimization of the parameters [22–24].

Since manual optimization requires the competence of

qualified engineers during a long period, and is thus

unreliable and costly [25], we tried to translate the pro-

cess into an optimization problem, where the history

of drawing can be automatically simulated by finite ele-

ment analysis. Then we can solve the problem with both

the Complex Method and the Raplex Method, and

determine from the results whether the Raplex Method

is more capable of dealing with practical engineering

problems than the Complex Method.

5.1. Description

A typical deep drawing process of a cylindrical cup

usually consists of one piece of sheet metal, a punch, a

die, and a holding clamp. The geometry and mesh for

this problem are illustrated in Fig. 2 [26]. RB, RD, RP

and RC represent the radii of the blank, the die, the

punch, and the clamp, respectively, while rD and rP
stand for the radii of the fillet of the die and the punch.

RB, RD, and RC have already been chosen, while RP, rD
and rP remain to be decided.

To obtain a successful deep drawing process, it is

essential to control the slip between the blank, the

clamp, and the die. If the slip is restrained too strongly,

the material will undergo severe stretching, thus poten-

tially causing necking and rupture. If the blank can slide
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too easily, the material will be drawn in completely and

high compressive circumferential stresses will develop,

causing wrinkling in the product. Therefore, the friction

coefficients between those parts are also to be optimized.

They are referred to as fD, fC and fP standing for the fric-

tion coefficients between the blank and the die, the blank

and the clamp, the blank and the punch, respectively.

That makes a total of six variables to be tuned for this

deep drawing problem. Although some may argue that

friction coefficients are not to be manipulated, the inten-

tion of this example is to reveal the optimized configura-

tion for the process. Practically it can be achieved by

selection of blank materials and lubricants to create con-

ditions similar to the optimized configuration.

Since relatively small thickness changes are usually

desired in deep drawing processes, we decided to choose

the absolute value of the simulated maximum compres-

sive strain in the thickness direction as the objective

function of this optimization problem. Thus the optimi-

zation problem can be described as

minimize f obj ¼ f ðRP; rD; rP; fD; fC; fPÞ

subject to

45.0 < RP < 55.0

3.0 < rD < 25.0

3.0 < rP < 25.0

0.01 < fD < 0.5

0.01 < fC < 0.5

0.15 < fP < 0.5

with initial values RP = 50.0, rD = 13.0, rP = 5.0, fD =

0.1, fC = 0.1 and fP = 0.25, where the initial values of

the variables are directly adopted from the configuration

in [26], and the constraints represent the design space,

which is decided by choosing a reasonable range around

the given initial values.

5.2. Finite element modelling

The finite element analyses are conducted by the

commercial software ABAQUS 6.3-1. Since the target

shape is a cylindrical cup, the blank is modelled with

4-node bilinear axisymmetric element with reduced inte-

gration (CAX4R). The punch, the die, and the clamp are

all modelled as rigid bodies, and the material of the

blank (aluminum-killed steel) is assumed to satisfy the

Ramberg–Osgood relation between true stress and loga-

rithmic strain:

e ¼ r
K

� �1=n
ð4Þ

where the reference stress value K is 513 MPa, and the

work-hardening exponent n is 0.223. The Young�s mod-

ulus is 211 GPa, and the Poisson�s ratio is 0.3.
The procedure for an evaluation is simple. Whenever

an evaluation is requested by the optimizing algorithm,

values of a set of parameters RP, rD, rP, fD, fC and fP
should be given, and an input file of corresponding mesh

and boundary conditions for a finite element analysis

can be generated by filling the blanks reserved in a tem-

plate file with given values. Then the FEM software

ABAQUS will be executed to solve the simulation prob-

lem. The status of ABAQUS will be continuously mon-

itored until the job is successfully completed, and the

results will then be retrieved from the output files and

searched for the maximum compressive strain in the

direction of thickness as the objective. If the analysis

fails to converge, a strain of �10 will be adopted instead

as a penalty. All of the above procedures are pro-

grammed and thus automatically yield the value of eval-

uation for the objective function. A representative flow

chart showing the flow of information among the Ra-

plex Method, ABAQUS, and the interface program is

illustrated in Fig. 3.

5.3. Results and discussion

The problem is optimized for 25 times by each algo-

rithm with a convergence criteria of 10�2, and the results

are shown in Table 7. The optimized variables and the

contour of the thickness strain for the optimal case lo-

cated by the Raplex Method are shown in Fig. 4.

Basically both algorithms can reach an optimal com-

pressive strain of about �1.37E � 2. This is quite an

improvement compared with the suggested configura-

tion in [26], which yields a compressive strain of

�7.896E � 2. However, it is clear that in 19 out of 25

cases, the original Complex Method failed to converge

to the specified criteria, while the Raplex Method suc-

cessfully solved all of them without failure. The standard

deviation of the Raplex Method for evaluation numbers



Table 7

Comparison of different algorithms for the deep drawing problem

Algorithm

Complex Method Raplex Method

Accuracy 10�2 10�2

Failed 19 0

Evaluation

S.D. 109.1 133.9

Avg. 352.8 284.1

Efficiency

EffU 24.0% 100.0%

EffE 100.0% 115.6%

Eff 24.0% 115.6%

Best six converged objective values

1.3703E � 02 1.3773E � 02

1.4152E � 02 1.4083E � 02

1.4166E � 02 1.4098E � 02

1.4526E � 02 1.4313E � 02

1.6671E � 02 1.4496E � 02

1.7988E � 02 1.4796E � 02

Fig. 4. Contour of thickness strain for the optimal result.
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is a little higher than that of the Complex Method, but

this is because there are only six effective samples for

the Complex Method. The overall efficiency of the Ra-

plex Method is undoubtedly much higher than that of

the Complex Method.
When we compare the best six results yielded by

both algorithms, it is obvious that those by the Raplex

Method are averagely smaller than those by the Com-

plex Method. All six results by the Raplex Method are

below 1.5E � 2, while those by the Complex Method
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range up to 1.8E � 2. Therefore, it can be concluded

that the Raplex Method possesses not only higher

unlocking efficiency, but also greater chance to locate re-

sults closer to the exact optimum.
6. Conclusions

In this paper, we developed an improved Complex

Method with three unlocking mechanisms: pre-locking

detection, abdication, and adjustable number of nodes.

The new method is assessed by four common test func-

tions, and the results demonstrated the following truths:

1. The new method has reliable unlocking abilities. It

solves most of the cases that the original Complex

Method fails to deal with.

2. The Evaluation Efficiency of the new method is aver-

agely 25% higher than the original Complex Method,

which means it needs only 80% resources to generate

the same optimum.

We have shown that the new method is reliable and

efficient, and thus termed it the Raplex Method for its

rapidity.
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