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Abstract

This paper investigates the ultimate tensile failure strength of laminated composites containing a central circular hole. Based on

continuum damage mechanics, a Principal Damage Model is developed by combining the generalized standard material model with the

Principal Damage concept of composite materials. Three in-plane failure modes: fiber breakage, matrix cracking, and fiber/matrix

interface debonding are included in the present model. After obtaining material constants and damage relations from standard tensile

tests, the material constitutive relations with damage model are implemented into commercial finite element code, ABAQUS. By

comparing the predicted results with the experimental data, the proposed model has proven to be capable of predicting failure strength

and load–deflection relations of notched laminated composites. The effects of hole size and specimen width are discussed in detail. In

addition, the advantage of the present model is demonstrated through comparison with other existing models. q 2002 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

Fiber reinforced composite materials offer enormous

weight saving without sacrificing strength, and are used in a

wide number of engineering applications, ranging from

sports goods to advanced aerospace structures. In these

structural components, notches are inevitable and they tend

to decrease the strength of the composite laminates. Local

damage mechanisms may be initiated at an early loading

stage and propagate as the load increases. The type and the

accumulation of damage significantly affect the strength,

failure modes, and performance of the composites. There-

fore, the knowledge of damage tolerance of laminated

composites containing notches is very crucial in practice for

the design of load-bearing structural components made of

composite materials.

Various criteria for predicting strength of composite

laminates with stress concentration have been brought

out over the past three decades. Whitney and Nuismer

[1] proposed the point stress criterion (PSC) in 1974. It

postulates that as the stress level at a characteristic

distance ahead of the notch tip reaches its critical value,

the laminate is assumed to be failed. Nuismer and

Whitney [2] latter changed the point stress value to the

average stress over some fixed distance ahead of the

notch tip, which was termed the average stress criterion

(ASC). However, the characteristic length is dependent

on the laminate lay-up configuration and can only be

determined empirically through curve-fitting of exper-

imental data. Backlund and Aronsson [3] proposed a

damage zone model (DZM) to investigate the strength

of laminates with holes of various shapes and sizes. The

damage zone, ahead of the stress concentration, is

approximated by a crack with cohesive stresses acting

on its surfaces. Damage in the material is taken into

account by reducing the cohesive stresses with increased

crack opening, which in turn corresponds to increased

separation of the material. However, the relation

between cohesive stresses and crack opening displace-

ment in the damage zone is much more complex when

different kinds of failure modes are taken into account.

Similar to the DZM, Eriksson and Aronsson [4]

proposed a damage zone criterion (DZC) and Afaghi-

Khatibi et al. [5] proposed an effective crack growth

model (ECGM) to predict the strength of laminated

composites with different lay-ups. Chang and Chang [6]
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first proposed a progressive damage model (PDM) to

predict tensile failure strength of laminated composites

containing stress concentrations. Lamina failure cri-

terion, stiffness degradation rules together with finite

element analysis are included in the PDM analysis.

Moreover, Chang and Lessard [7], Shahid and Chang

[8], and Lessard and Shokrieh [9] extended the PDM to

investigate compression failure strength of the laminated

composites, accumulation of the damages in the

laminates, and pinned-joint failure of the composites,

respectively. It seems that the PDM is powerful in

damage analysis and failure strength prediction. How-

ever, the development of a general accepted failure

criterion and the stiffness degradation rules is still an

ongoing study.

To date, hundreds of papers have been reported to

deal with the failure strength of composite laminates with

a hole or a crack, but few of them can correctly predict

the result. The reason is that there is no unified method

to describe the post-failure stiffness degradation rules of

laminated composites, which is a notable shortcoming,

because the post-failure behavior plays an important rule

in the stress redistribution. The traditional ply discount

method or partially discount method [6] may result in the

underestimation of failure strength.

The authors of this article had proposed a unified model,

Principal Damage Model [10], which is based on combining

generalized standard material (GSM) [11] model and

Principal Damage concept, and had proven to be suitable

in describing damage accumulation in each ply of the

laminated composites. By using the model, stiffness

degradation rules after first-ply-failure can be obtained

directly within the framework of irreversible thermo-

dynamics. The uncertainty of choosing suitable stiffness

degradation rules in previous researchers can be overcome

by adopting the proposed model. In order to illustrate the

capabilities and advantages of the model, the damage

behavior of composite laminates containing a circular hole

is analyzed.

2. Statement of the problem

Consider a laminate containing a circular hole located at

the center of the plate as shown in Fig. 1. A uniform in-plane

tensile loading is applied at both ends of the specimen.

During loading, the plate is deformed in its own plane until

it collapses at which point the plate cannot sustain any

additional load. The following information will be investi-

gated.

1. The type and size of damage in each single layer of the

laminated plate as a function of applied load.

2. The in-plane load–deflection relation of the plate.

3. The ultimate tensile failure load of the plate.

3. Continuum damage theory

3.1. Continuum damage mechanics

The concept of continuum damage mechanic (CDM) was

first proposed by Kachanov [12] in studying the creep

rupture of metals. He found that microcracks and micro-

cavities increase with the loading and decrease the load-

carrying ability, and used a scalar parameter, continuity

factor, to describe the material degradation behavior. The

marvelous idea is a challenge to the old material mechanics

concept ‘perfect’ and ‘failure’, and points out that the

intermediate stage exists between perfect and final rupture.

Lemaitre [13] extended Kachanov’s concept and pro-

posed the principle of strain equivalence in 1971. It suggests

that any constitutive equation for a damaged material may

be derived in the same way as for a virgin material except

that the usual stress is replaced by the effective stress. Based

on the principle, the damage variable d is defined as d ¼

ðE0 2 EÞ=E0; where E 0 is the stiffness of the undamaged

material and E the stiffness of the damaged material.

Moreover, the scalar d is bounded between 0 and 1, i.e.

0 # d # 1; where d ¼ 0 represents perfect state and d ¼ 1

represents final rupture.

Later, CDM was extended to incorporate irreversible

thermodynamics and the internal state variable theory.

Numerous damage variable definitions, such as scalar,

double scalars, second order tensor, and forth order tensor,

together with damage evolution rules were developed to

model fatigue, creep, creep–fatigue interaction [13], ductile

plastic damage [13,14], and brittle materials such as

concrete [15] and composites [16].

3.2. Classification of damage mechanisms of laminated

composites

Damage modes of the laminated composites can be

classified mainly as: fiber breakage, matrix cracking,

fiber/matrix debonding, and delamination. Each associated

damage mode is assumed to occur when each stress or strain

components in the material principal coordinate reaches a

critical value. In other words, damage in a particular mode is

defined when the stress or strain components attain the

damage surface. In this study, three in-plane failure modes

will be discussed and incorporated in the present damage

theory with a phenomenological framework, while delamin-

ation, i.e. the out-of-plane damage mode, which is

irrelevant, is left out in this study. Details of the in-plane

failure modes and the interrelated studies are discussed in

the following sections.

3.2.1. Fiber breakage

Fiber rupture is primarily caused by tensile stress s11 in

the fiber direction. Tensile test of 0-degree laminate shows a

linear stress–strain relation up to rupture at the critical load.
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Thus damage mode in fiber direction is assumed to be

perfect brittle failure [10].

3.2.2. Matrix cracking

Reifsnider [17] studied the effect of transverse crack

density on stiffness reduction of 0/90 laminated plates under

uniaxial quasi-static loading and cyclic loading. He found

that the outer and the inner 90-degree plies of the

multidirectional laminate, unlike 90-degree unidirectional

laminate that fails in a catastrophic way, could still sustain

part of the loading after first crack initiation. Transverse

crack density in the 90-degree plies increases with the

loading until the saturation level, the characteristic damage

state has reached. Therefore, transverse matrix damage

mode in multidirectional laminates is assumed to be quasi-

brittle failure, which means that matrix damage accumulates

with the increase of the loading [10].

3.2.3. Fiber/matrix interface debonding

Interface debonding is mainly caused by in-plane shear

stress. As the interface debonds, relative sliding of the

discontinuity surfaces makes shear direction behave plas-

tically. Sun and Chen [18] developed a one-parameter

plasticity model and Ladeveze and Dantec [16] proposed a

meso-scale continuum damage model to describe the non-

linear shear stress–shear strain relation. Similar to Sun and

Chen’s idea, isotropic hardening behavior in shear direction

is postulated to describe the interface damage and the

corresponding accumulated shear plastic strain [10].

3.3. Constitutive theory of irreversible thermodynamics

Irreversible thermodynamics theory has been employed

as a rational framework for the unified formulation of

constitutive and evolution equations of elastic–plastic and

damage materials [11,14]. Free energy characterizing the

relation of the internal state variables and their conjugated

forces, dissipation function describing the evolution of the

internal state variables, and loading surface prescribing the

limitation of the elastic region should be postulated in prior.

Moreover, using both free energy and dissipation potential

to describe the irreversible material behaviors is also called

a GSM model [11] in the framework of irreversible

thermodynamics.

In this study, associated flow rules are adopted, which

assume that damage surface is identical to damage

dissipation potential and yield surface is identical to yield

dissipation potentials. Details of the free energy and dissi-

pation function will be discussed below. However, it should

be mentioned that all the proposed formulation are carried

out in the material principal coordinate system, where 1 and

2 represent the directions parallel to and transverse to fiber,

respectively.

3.3.1. Gibbs free energy

If we consider fiber and transverse directions to be

elastic-damage and shear direction to be elastic–plastic

with isotropic hardening, the Gibbs free energy G an be

expressed as [10,19]

Gðs; d; r;bÞ ¼ Geðs; dÞ þ GpðrÞ þ GdðbÞ; ð1Þ

where the free energy G e is the complementary strain

energy and may be influenced by the damage. Under the

plane stress assumption, G e can be expressed as

Geðs; dÞ ¼ 1
2

"
s2

11

E0
11ð1 2 d11Þ

þ
s2

22

E0
22ð1 2 d22Þ

2
2n0

12

E0
11

s11s22 þ
s2

12

G0
12

#
; ð2Þ

where both d11 and d22 represent ‘fiber breakage damage’

and ‘matrix cracking damage’. E0
11; E0

22; G0
12; and n0

12 are

Young’s moduli and Poisson’s ratio of undamaged lamina.

The free energy G p and G d introduced to describe the effect

of the accumulated matrix damage and the accumulated

shear plastic strain can be expressed as follows:

GpðrÞ ¼
1

ðm þ 1Þ
Armþ1; ð3Þ

GdðbÞ ¼
1

ðn þ 1Þ
Kbnþ1; ð4Þ

where A, k, m, and n are material constants, r the

accumulated shear plastic strain, and b the accumulated

matrix cracking damage.

According to the thermodynamic formulation, the elastic

constitutive equation of the damaged lamina can be

obtained by 1e ¼ ›Ge=›s: Expressing the equation in

Fig. 1. Geometry of the laminate containing a central circular hole.
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matrix form, we obtain

1
e
11

1e
22

1e
12

8>><
>>:

9>>=
>>; ¼

1

E0
11ð1 2 d11Þ

2
n0

12

E0
11

0

2
n0

12

E0
11

1

E0
22ð1 2 d22Þ

0

0 0
1

2G0
12

2
66666666664

3
77777777775

�

s11

s22

s12

8>><
>>:

9>>=
>>;: ð5Þ

Then the conjugate forces corresponding to the internal state

variables d11, d22, r and b can be derived from Eqs. (3) and

(4). Thus we have the following equations:

Y11 ¼
›Ge

›d11

¼
s2

11

2E0
11ð1 2 d11Þ

2
; ð6Þ

Y22 ¼
›Ge

›d22

¼
s2

22

2E0
22ð1 2 d22Þ

2
; ð7Þ

R ¼
›Gp

›r
¼ Arm; ð8Þ

B ¼
›Gd

›b
¼ Kbn: ð9Þ

It is worth noting that the damage conjugated forces Y11 and

Y22 in Eqs. (6) and (7) are also called strain energy density

release rate, which are similar to strain energy release rate

G in Fracture Mechanics [13].

3.3.2. Damage surfaces and yield surface

We postulate that elastic range is bounded by several

surfaces and each surface represents the limitation of

different failure modes. Damage surfaces and yield surface

can be expressed as follows [10].

3.3.2.1. Fiber breakage. Because of the perfect brittle

failure behavior in fiber direction, the fiber breakage

damage surface F11 is assumed to be

F11 ¼ Y11 2 Y11t; ð10Þ

where Y11t is the threshold of fiber damage conjugate force.

3.3.2.2. Matrix cracking. Because of matrix crack develop-

ments and accumulations, matrix cracking damage surface

can be expressed as

F22 ¼ Y22 2 ðY22t þ BÞ; ð11Þ

where Y22t is the threshold of matrix damage conjugate

force. Furthermore, B represents thermodynamic force

associated to matrix cracking damage accumulation as in

the case of isotropic hardening stress in the plasticity. By

using the normality rule, we have that

_d22 ¼ _l22

›F22

›Y22

¼ _l22; ð12Þ

_b ¼ 2 _l22

›F22

›B
¼ _l22; ð13Þ

where _l22 is the matrix cracking associated multiplier and

can be obtained from consistency conditions F22 ¼ 0 and
_F22 ¼ 0 [14]. Eventually, the evolution of d22 can be

obtained as follows:

_d22 ¼ _l22 ¼
_Y22

B0
; ð14Þ

B0 ¼ nKbn21: ð15Þ

3.3.2.3. Fiber/matrix interface debonding. Yield surface in

shear direction can be expressed as [10,20]

F12ðs12;R; _1
p
12; rÞ ¼ s12 2 ðR0 þ RÞ; ð16Þ

where R0 is the initial yield stress and R is the isotropic

hardening stress. By using the normality rule, we have

_1
p
12 ¼ _l12

›F12

›s12

¼ _l12: ð17Þ

_r ¼ 2 _l12

›F12

›R
¼ _l12; ð18Þ

where _l12 is the plasticity associated multiplier and can be

obtained from consistency conditions F12 ¼ 0 and _F12 ¼ 0

[14]. Therefore, elastic–plastic constitutive equation in in-

plane shear direction can be expressed as follows:

_112 ¼ _1e
12 þ _1

p
12; ð19Þ

_1e
12 ¼

_s12

2G12

; ð20Þ

_1
p
12 ¼ _r ¼

_s12

R0
; ð21Þ

R0 ¼ mArm21: ð22Þ

3.4. Principal Damage Model

Fig. 2 shows the Principal Damage Model proposed

by Maa and Cheng [10]. The first column represents the

definition of the material principal directions, and the

second column represents principal stress–strain rela-

tions. Obviously, fiber and transverse directions show

softening phenomena beyond damage initiation and no

plastic strains occur. However, shear direction behaves

elastic-plastically with strain hardening. The third

column represents fiber damage relation, matrix crack-

ing damage accumulation, and accumulated shear plastic

strain relation. In order to implement the Principal
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Damage Model into finite element program, a further

simplification will be discussed below.

3.4.1. Fiber breakage

As Y11 reaches threshold Y11t, fiber failure is assumed to

occur. d11, then, is set to unity.

d11 ¼
0 if Y11 , Y11t;

1 otherwise

(
: ð23Þ

3.4.2. Matrix cracking

As Y22 reaches its threshold Y22t, matrix cracking

initiates. The relation between accumulated matrix damage

d22 and matrix damage conjugated force Y22 can be obtained

by integrating Eq. (14)

d22 ¼
0 if Y22 , Y22t;

ððY22 2 Y22tÞ=KÞ1=n otherwise

(
: ð24Þ

3.4.3. Fiber/matrix interface debonding

Because of strain hardening assumption, shear direction

shows hardening without ultimate rupture. To overcome this

deficiency, shear absolute failure is assumed to occur as

shear stress s12 reaches ultimate shear strength obtained

from tensile test of angle-ply coupon specimen. When

ultimate strength is reached, shear stress is set to zero.

Moreover, in order to increase the efficiency of the

computation, the non-linear Ramberg–Osgood relationship

from the deformation plasticity theory, which allows for a

better fit of real stress–strain curves, is adopted to describe

the shear hardening in Eqs. (19)–(22) [20]. Taking shear

absolute failure into account, we have

2112 ¼
s12

G0
12

if s12 , R0;

2112 ¼
s12

G0
12

þ a
s12

G0
12

 !p

if R0 # s12 , S;

s12 ¼ 0 otherwise

8>>>>>><
>>>>>>:

ð25Þ

where S is the ultimate shear strength, a and p are material

constants which can be obtained from curve-fitting to shear

stress–shear strain relation.

4. Experimental and numerical procedures

4.1. Materials and tensile test

AS4/PEEK unidirectional prepregs produced by ICI

were lay-up as (1) [0/45/90/ 2 45]2S (quasi-isotropic), (2)

[0/902/0]2S (cross-ply), and (3) [^45]4S (angle-ply). The

prepreg has nominally 61 vol% of graphite fiber, and is

125 mm thick. A matched-die mold was used to form the

composite plates following the fabrication conditions

recommended by ICI. Circular holes of various sizes were

drilled at the specimen center and an ultrasonic C-scan

imaging was performed to eliminate any damaged speci-

mens after the machining. The laminate configurations

investigated are shown in Table 1.

All tensile tests were performed on an MTS 810 servo-

hydrodynamics machine at room temperature. Tests were

conducted under displacement control with a constant rate

of 0.2 mm/min to avoid dynamic effect. A clip gage was

mounted on the center of some notched specimens to

monitor the deformation.

4.2. Finite element model

Material constitutive equation, Eq. (5) and the internal

variable accumulation relations Eqs. (23) and (24) were

implemented into commercial finite element code ABAQUS

(Version 5.8). User subroutine USDFLD was used to

describe the fiber breakage and matrix cracking damages

by means of degenerating E11 and E22. Fig. 3 shows the

usage of the subroutine USDFLD. The name of USDFLD is

an acronym from USer-Defined FieLD variable. The

subroutine is an empty one, which allows the user to

program whatever his or her evolution equation of the field

(in this case, the damage) variable be. The main program of

ABAQUS will call USDFLD at each integration point while

forming the element tangent stiffness matrix. In the current

implementation, USDFLD calculates Y11 and Y22 and

checks if Y11 ¼ Y11t and/or Y22 . Y22t is satisfied. If any

damage mode occurs, damage variables will be updated

according to Eqs. (23) and (24). The material behavior along

Fig. 2. Schematic illustration of the Principal Damage Model.
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each direction is affected by the updated damage state

accordingly. Because of the explicit scheme adopted by

USDFLD, displacement increments should be as small as

possible. The increment adopted here is 1023.

Because of the plane stress assumption, eight-noded

reduced integration plane stress elements, CPS8R, were

adopted in this study. Symmetry boundary conditions

(v ¼ 0 on the y ¼ 0 centerline and u ¼ 0 on the x ¼ 0

centerline) were used to model one-quarter of the laminated

plate as shown in Fig. 4. Details of the subroutine

formulation can be found in Ref. [10]. The material

properties and parameters used in the finite element

calculations are listed in Table 2.

5. Results and discussion

5.1. [^45]4S laminate

Fig. 5 shows the comparison between the calculated and

measured load–deflection curves of [^45]4S laminate with

hole diameter D ¼ 5 mm leading up to ultimate failure. The

significant non-linearity, which can be attributed to

plasticity behavior in the shear direction, appears both in

the experimental and finite element results. The predicted

damage progression as a function of the applied load is

shown in Fig. 6. Observing the finite element predictions,

damage initiated from the boundary, near the stress

concentration, and propagated along 45-degree from the

loading direction. The ultimate failure was dominated by

fiber/matrix interface debonding.

Table 3 compares the predicted failure strength with the

experimental data of [^45]4S laminates containing different

hole sizes. The predicted results are consistent with the

experimental data except for the D ¼ 3 mm laminate.

5.2. [0/902/0]2S and [0/45/90/ 2 45]2S laminates

The predicted results and experimental data of

[0/902/0]2S and [0/45/90/ 2 45]2S laminates are also

shown in Table 3. Average errors of 20 and 30% appear

in cross-ply and quasi-isotropic laminates, respectively.

Figs. 7 and 8 show the predicted fiber breakage damage

pattern in the 0-degree plies of the two laminates. We can

observe that as the clipper gage displacement increases,

fiber damage extends through out the remaining width and

cause the catastrophic failure. It appears that the prefect

brittle failure assumption in fiber direction is inadequate to

account for the actual damage development. Residual

strength remained after fiber breakage. Because the 0-

degree ply dominated in these two lay-ups, a modified

model that can remedy this difficulty will be discussed in

Section 6.

6. Modified Principal Damage Model

6.1. Modified model formulation

Chang et al. [6–8] adopted a micromechanical approach

for fiber bundle failure proposed by Rosen [21] to describe

the fiber tensile failure in composite materials. It postulates

Table 1

Configurations of laminated plate lay-ups and hole size of AS4/PEEK

laminated composite. Thickness H ¼ 2 mm; L ¼ 100 mm

Laminates W (mm) D (mm) D=W

[0/45/90/ 2 45]2S 20 2 0.10

3 0.15

5 0.25

8 0.40

10 0.50

[0/45/90/ 2 45]2S 30 3 0.10

6 0.15

10 0.25

12 0.40

15 0.50

[0/902/0]2S 20 2 0.10

3 0.15

5 0.25

8 0.40

10 0.50

[^45]4S 20 2 0.10

3 0.15

5 0.25

8 0.40

10 0.50

Fig. 3. The flow-chart of user subroutine USDFLD.
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that longitudinal modulus E11 and shear modulus G12

degenerate according to the Weibull distribution. Moreover,

the modulus degradation function is a function of the fiber

failure interaction zone, the shape parameter of the Weibull

distribution, and the lamina fiber tensile strength. Although

Chang et al. mentioned that their model had the capability to

monitor fiber damage, the micromechanical model which

needs lot of experimental data to fit the material constants is

not practical in structural uses. To overcome the disadvant-

age of Chang et al. [6–8] and our previous difficult (Eq.

(23)), a simple modified fiber damage accumulation rule

that can include post-failure of fiber damage behavior is

proposed to be

d11 ¼
0 if Y11 , Y11t;

1 2 expð2gðY11 2 Y11tÞÞ otherwise

(
; ð26Þ

where g similar to shape function of Weibull distribution in

the fiber bundle theory, is a positive scalar and is called fiber

damage accumulation parameter.

Measuring the fiber damage accumulation parameter is

extremely difficult to do. Therefore, this value was chosen in

an inverse manner to match data from tensile fracture test of

the [0/45/90/ 2 45]2S specimen with W ¼ 20 mm and D ¼

5 mm: It should be mentioned that parameter g can also be

obtained from [0]2S specimen with arbitrary hole size. Fig. 9

shows the predicted failure load as a function of fiber

damage accumulation parameter g. The result indicates that

the failure load decreases as parameter g increases. Finally,

g ¼ 0:3 was chosen as the material constant of AS4/PEEK.

Fig. 10 shows fiber damage accumulation pattern in the

0-degree plies of the [0/45/90/ 2 45]2S laminate. The fiber

Fig. 4. Finite element mesh for the central hole composite plate.

Table 2

Material properties of laminated composite AS4/PEEK used in the finite

element calculation

Moduli

Undamaged longitudinal Young’s modulus, E0
11 (GPa) 139.0

Undamaged transverse Young’s modulus, E0
22 (GPa) 10.2

Undamaged Poisson’s ratio, n0
12 0.3

Initial in-plane shear modulus, G0
12 (GPa) 5.9

Damage parameters

Fiber damage conjugate force threshold, Y11t (MPa) 19.80

Matrix damage conjugate force threshold, Y22t (MPa) 0.385

Matrix damage hardening parameter, K (MPa) 0.601

Matrix damage hardening parameter, n 1

Fiber damage accumulation parameter, g 0.3

Plasticity parameters

Shear initial yield stress, R0 (MPa) 20

Shear hardening parameter, a 5.0 £ 1027

Shear hardening parameter, p 3

Shear ultimate strength, S (Mpa) 160

Fig. 5. Comparison between the calculated and the measured load–

deflection curves leading up to ultimate failure. AS4/PEEK [^45]4S

specimen.

Fig. 6. Illustration of the predicted fiber/matrix debonding damage pattern

as a function of the applied load. AS4/PEEK [^45]4S specimen.
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damage as a function of clipper gage measured and

parameter g are shown. Apparently, the development of

fiber damage is suppressed by decreasing the parameter g.

Moreover, Fig. 11 shows the load–deflection curve of the

[0/45/90/ 2 45]2S laminate with hole diameter D ¼ 5 mm:
It is clear that, the modified model shows good agreements

with the experimental data.

6.2. New model prediction and discussion

Table 4 shows the comparison of the new model

predictions and the experimental data. The predicted results

of angle-ply laminates are almost the same compared with

the original model, which can be contributed to the minor

importance of fiber failure in [^45]4S laminates. It is worth

noting that the prediction of the modified model in [0/45/

90/ 2 45]2S laminates agree well with the experimental data

for most of the cases. However, cases for [0/902/0]2S

laminate still have some errors in the laminates with D ¼

3 mm and D ¼ 5 mm:
The errors in [0/902/0]2S laminates indicates that using

the present model to predict the softening behavior may

result in localization around the stress concentration.

However, the so-called localization limiter introduced by

Bazant and Pijaudier-Cabot [22] may eliminate the

numerical difficulties of the problem. Localization limiter

is a regularization procedure; the additional terms are built

up from a second gradient approach or from a non-local

approach to deal with the material behavior with strain

softening properties. Details of the discussion can be seen in

Ref. [22].

6.3. Sensitivity of mesh size

During investigation, a mesh size sensitivity study was

performed to evaluate the effect of mesh size on the

predictions of failure strength. Three different meshes

Table 3

Comparison of the failure loads between the experimental data and the

FEM predictions. AS4/PEEK, W ¼ 20 mm

Laminates D

(mm)

Experimental data

(kN)

Finite element prediction

(kN)

[^45]4S 2 12.18 10.58

3 11.12 8.65

5 8.95 7.64

8 6.07 6.14

10 5.33 5.14

[0/902/0]2S 2 25.54 25.83

3 23.39 14.77

5 21.41 12.53

8 16.32 10.18

10 12.58 8.74

[0/45/90/ 2 45]2S 2 22.98 19.94

3 19.31 13.63

5 15.31 12.00

8 11.67 10.06

10 9.22 8.67

Fig. 7. Illustration of the predicted fiber breakage damage growth pattern in

0-degree layer as a function of the clipper gage measurement DE.

AS4/PEEK [0/902/0]2S specimen.

Fig. 8. Illustration of the predicted fiber breakage damage growth pattern in

0-degree layer as a function of the clipper gage measurement DE.

AS4/PEEK [0/45/90/ 2 45]2S specimen.

Fig. 9. Illustration of the effect of the fiber damage accumulation parameter

g on the predicted failure load. Experimental: 15.31 kN.
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ranged from a coarse (Mesh 1), a medium (Mesh 2) to a fine

mesh (Mesh 3) near the hole boundary were generated and

shown in Fig. 12.

The comparison of the predicted results of D ¼ 5 mm

and W ¼ 20 mm [0/45/90/ 2 45]2S laminate is shown in

Table 5. To sum up, the predictions based on the three

meshes were very consistent. It is also worth mentioning

that the predicted failure modes in single layer of the

laminate were also consistent among the three different

meshes.

6.4. Width effect and comparison with other models

In order to apply the proposed model to investigate the

effect of width with the same diameter/width ratio ðD=WÞ on

the failure load, the W ¼ 30 mm [0/45/90/ 2 45]2S lamin-

ate with different hole sizes are investigated. Table 6 shows

the comparison of the predicted and the experimental

results. The results indicate that the proposed model can also

predict the failure strength of larger width specimens.

Fig. 13 shows the comparison of the predictions and

experimental results as a function of D=W ratio for

laminated plates of W ¼ 20 mm and W ¼ 30 mm: When

the D=W ratio is kept to be constant, e.g. D=W ¼ 0:25; an

increase in the width W leads to a decrease in the failure

strength. The width effect or scaling effect on notched

composites can be attributed to accumulated damage near

the stress concentration around the circular hole. Moreover,

the observations are consistent with the results appeared in

Ref. [23].

To further validate the model, comparisons of the

proposed model with PSC [1] and ASC [2] were performed.

Figs. 14 and 15 show the compared results in [0/45/

90/ 2 45]2S laminates. The characteristic lengths used in

PSC and ASC are obtained from matching the data of the

W ¼ 20 mm and D ¼ 10 mm laminate. Apparently, the

failure strength decreases with an increased hole size in

Fig. 10. The fiber damage accumulation pattern as a function of clipper gage measured deflection DE and fiber damage accumulation parameter g.

Fig. 11. Comparison between the calculated and the measured load–

deflection curves leading up to ultimate failure. AS4/PEEK

[0/45/90/ 2 45]2S specimen.

Table 4

Comparison of failure loads between the experimental results and FEM

predictions. AS4/PEEK, W ¼ 20 mm; and g ¼ 0:3

Laminates D

(mm)

Experimental data

(kN)

Finite element prediction

(kN)

[^45]4S 2 12.18 10.61

3 11.12 8.77

5 8.95 7.75

8 6.07 6.23

10 5.33 5.14

[0/902/0]2S 2 25.54 27.14

3 23.39 17.55

5 21.41 16.12

8 16.32 12.79

10 12.58 10.99

[0/45/90/ 2 45]2S 2 22.98 21.69

3 19.31 17.65

5 15.31 15.34

8 11.67 12.46

10 9.22 10.77
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every model. Furthermore, as shown in Fig. 15, the

proposed model conforms more closely to the experimental

data than PSC and ASC. It is because that material constants

used in PSC and ASC were obtained from curve-fitting and

is dependent on lay-up configurations and notch size.

However, the proposed model is based on the irreversible

thermodynamics, and has a unified method to obtain the

material constants.

7. Conclusions

In this study, the Principal Damage Model which

combined the Principal Damage concept with GSM model

were used in investigating three damage modes in laminated

composite materials. After obtaining damage relations,

elastic-damage and elastic–plastic constitutive equations

were implemented into finite element program to predict the

stress–strain relation and the ultimate failure loads of the

laminates containing a circular hole. Based on the above

investigations, some remarks can be summarized as follows.

1. The post-failure behavior of different failure modes were

studied in detail. Contrast to PDM by Chang and Chang

[6], the present model provided a unified method, based

on irreversible thermodynamics, to obtain the macro-

stiffness degradation relations and in-plane shear stress–

shear strain behavior.

2. In order to take the complex geometry into consideration,

the commercial finite element code ABAQUS with its

powerful user’s subroutines was adopted in this study. A

particular user’s subroutine, USDFLD, was used to

define the proposed damage model.

3. The fiber damage behavior plays an important role in the

laminated composites failure analysis, and a fiber

Fig. 12. Illustration of three typical finite element meshes used in the mesh

size sensitivity study.

Fig. 13. The comparison of failure strength as a function of a D=W ratio

between the predictions and the experimental data. AS4/PEEK, W ¼

20 mm; and W ¼ 30 mm:

Fig. 14. Comparison of failure strength between the predictions and the

experimental data of [0/45/90/ 2 45]2S AS4/PEEK composite laminates.

W ¼ 20 mm:

Fig. 15. Comparison of failure strength between the predictions and the

experimental data of [0/45/90/ 2 45]2S AS4/PEEK composite laminates.

W ¼ 30 mm:

Table 5

Illustration of the effect of mesh size on the predicted failure loads.

AS4/PEEK, D ¼ 5 mm; and W ¼ 20 mm: Unit of load is kN

Laminates Mesh 1 (coarse) Mesh 2 (medium) Mesh 3 (fine)

[0/45/90/ 2 45]2S 15.38 15.52 15.34

Table 6

Comparison of failure loads between the experimental results and FEM

predictions. AS4/PEEK, W ¼ 30 mm; g ¼ 0:3

Laminates D

(mm)

Experimental data

(kN)

Finite element prediction

(kN)

[0/45/90/ 2 45]2S 3 30.62 28.37

6 24.06 23.94

10 18.51 19.62

12 17.87 17.95

15 14.16 15.24
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damage accumulation model was proposed to take fiber

post-failure behavior into account. By comparing finite

element results with experimental data, we proved that

the fiber damage accumulation parameter is a material

constant.
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