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Abstract

The Kirchoff–Love plate theory and electroelasticity theory are combined to simulate the dynamic
behaviors of the trimorph ring transducers under different boundary conditions. The transducer consists of
an isotropic elastic ring laminated between two identical piezoelectric rings. Their electric current response,
resonant frequencies, antiresonant frequencies and electromechanical coupling coefficients (EMCCs) are
theoretically formulated and studied by numerical simulation. Also, the resonant frequencies and their
corresponding mode shape are simulated by the finite element modelling to verify the theoretical results.
Finally, to obtain the maximum energy conversion efficiency, the dynamic EMCC is optimized by varying
the proportion of piezoelectric and elastic parts. It is shown that the dynamic EMCC depends on geometric
thickness and radii ratios. Optimum settings for a particular transducer to reach the maximum dynamic
EMCC are found for different boundary conditions. The trimorph ring transducer for the fixed inner and
free outer surfaces boundary condition has slightly lower resonant and anti-resonant frequencies, and
larger EMCCs than that for the free inner and fixed outer surfaces boundary condition does.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The strong electromechanical coupling effects of piezoelectric materials make themselves
become one of the most important intelligent materials in terms of the abilities of actuation,
sensing and control. The devices based on piezoelectricity have been expanded rapidly in
applications from ultrasonic transducer [1], actuator [2], vibratory gyrosensor [3], and optical
scanner [4], to precision positioning mechanism [5].
Many applications using ring piezoelectric structures can be found for resonator [6], ring

transducer [7], moving actuator [8], and piezomotor [9]. Research results on the vibration
characteristics of piezoelectric ring structure include finite-element method (FEM) [10], theoretical
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model on thickness mode vibration on single ring [11], and other theoretical model on laminated
ring, plates [12–15], and bimorph disks [16]. The laminated elastic and piezoelectric rings were
used as the dynamic focusing lens [17] and variable-focus mirror [18]. Those works focus on
resonant frequencies, mode shapes, and sensitivity of sensor or ability of actuator. However, to
measure the practicality of a piezoelectric transducer, the efficiency of energy conversion between
mechanical and electric ones is an essential index. All above studies pay little attention on it.
In this article, the piezoelectric trimorph ring transducer under study consists of an isotropic

elastic ring laminated between two identical piezoelectric rings. The inner and outer radii are same
for elastic and piezoelectric layers. The trimorph ring is mechanically supported either at the inner
or outer radius to form the fixed–free, free–fixed, and fixed–fixed boundary conditions. The
Poisson’s ratios of piezoelectric and elastic layers are treated not the same. The piezoelectric rings
are fully covered by electrode, polarized in thickness direction and isotropic transversely. The
elastic ring is treated as the common electrode to piezoelectric rings and the electric potential
applied to both of the piezoelectric rings are identical. Under sinusoidal electric excitations, one
piezoelectric ring expands and the other contracts both in the radial direction. Thus, the major
motion of laminated trimorph ring transducer is the bending vibration owing to unequal
extensions of piezoelectric and elastic rings.
To study characteristics of the trimorph ring transducer, an electroelastic laminated plate

theory was developed first to analyze its dynamic behaviors such as electric current response,
resonant frequencies, antiresonant frequencies and electromechanical coupling coefficients
(EMCCs). This theory was formulated by combining the equilibrium equations, the geometric
relationships, the constitutive relations and the electrostatic equations. The piezoelectric effects
were included with the use of the Kirchhoff–Love plate theory. The distribution of electric
potential and electric displacement in the thickness direction for piezoelectric layer were assumed
quadratic and constant with respect to the thickness co-ordinate, respectively. These
characteristics were therefore numerically evaluated for different values of geometric variables,
such as thickness and radius ratios of the piezoelectric and elastic layers. Also, the FEM was
applied to simulate and verify the vibration characteristics obtained by previous numerical
evaluation. Finally, to attain highest energy conversion efficiency of the trimorph ring transducer
was realized by changing the proportion of piezoelectric and elastic parts to reach the maximum
dynamic EMCC. The optimum setting for a particular trimorph ring is found as an example.

2. Electroelastic theory

A complete electroelastic theory consists of the equilibrium equations, the geometric
relationships, the constitutive relations and the electrostatic equations. For piezoelectric materials
of class 6mm and polarized in the thickness direction a3ðzÞ; the constitutive relations are [19]:

S11 ¼ sE
11T11 þ sE

12T22 þ sE
13T33 þ d31E3;

S22 ¼ sE
12T11 þ sE

11T22 þ sE
13T33 þ d31E3;

S33 ¼ sE
13 T11 þ T22ð Þ þ sE

33T33 þ d33E3;

S23 ¼ sE
44T23 þ d15E2;
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S13 ¼ sE
44T13 þ d15E1;

S12 ¼ sE
66T12;

D1 ¼ d15T13 þ eT
11E1;

D2 ¼ d15T23 þ eT
11E2;

D3 ¼ d31 T11 þ T22ð Þ þ d33T33 þ eT
33E3; ð1Þ

where Sij ; Tij; Di and Ei denote the components of strain, stress, electric displacement and electric
fields, respectively, and sE

ij ; dij and eT
ij denote the elastic compliance constants at constant electric

field, the piezoelectric constants, and the dielectric constant at constant stress field, respectively.
The constitutive relations for the isotropic elastic materials are

S11 ¼
1

E
T11 � nmT22 � nmT33ð Þ;

S22 ¼
1

E
T22 � nmT11 � nmT33ð Þ;

S33 ¼
1

E
T33 � nmT11 � nmT22ð Þ;

S23 ¼
2 1þ nmð Þ

E
T23;

S13 ¼
2 1þ nmð Þ

E
T13;

S12 ¼
2 1þ nmð Þ

E
T12; ð2Þ

where E and nm are Young’s modulus and Poisson’s ratio of the elastic material. The general
electrostatic equations are

r � D
,

¼ 0;

E
,
¼ �rc; ð3Þ

where c is the electric potential. To analyze the flexure problem precisely, we should choose the
mutually perpendicular lines on the middle surface as co-ordinates a1 and a2; and the normal to
the middle surface as the third co-ordinate a3ðzÞ: However, the piezoelectric–elastic actuator
displaces infinitesimally, so the equilibrium equations for flat plates without surface traction in
cylindrical co-ordinates r, y and z, shown in Fig. 1, are

@T11

@r
þ

1

r
T11 � T22ð Þ þ

1

r

@T12

@y
þ

@T13

@z
¼ r

@2Ur

@t2
;

@T21

@r
þ

1

r

@T22

@y
þ
@T23

@z
þ

2T21

r
¼ r

@2Uy

@t2
;

@T31

@r
þ

1

r

@T32

@y
þ
@T33

@z
þ

T31

r
¼ r

@2Uz

@t2
; ð4Þ
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where Ui and r are the components of displacement and material density, respectively. The
geometric relationships are

S11 ¼
@Ur

@r
;

S22 ¼
1

r

@Uy

@y
þ

Ur

r
;

S33 ¼
@Uz

@z
;

S12 ¼
1

r

@Ur

@y
�

Uy

r
þ

@Uy

@r
;

S13 ¼
@Ur

@z
þ

@Uz

@r
;

S23 ¼
@Uy

@z
þ

1

r

@Uz

@y
: ð5Þ
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Fig. 1. Configuration of the trimorph ring transducer. (a) cross section, and (b) top view.
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To simplify this electroelastic problem, four assumptions are proposed. The first two are
Kirchhoff–Love hypotheses used in the classical plate theory for non-electric plates and the others
are particularly used for piezoelectric materials. The first hypothesis is that the normal stress
acting on the surface elements parallel to the middle surface is small and can be neglected as
compared to other stresses:

T33 ¼ 0: ð6Þ

The second hypothesis is that a line normal to the middle surface before deformation remains
perpendicular to the strained surface and is not extended after deformation:

S13 ¼ S23 ¼ 0: ð7Þ

The third hypothesis is that the electric potential varies with thickness by the quadratic relation
[20]

c ¼ c0 þ zc1 þ z2c2; ð8Þ

where c0; c1; and c2 are coefficients of z term and independent of z, in which the superscript n

denotes the nth power term in the co-ordinate z. The fourth hypothesis is that the electric
displacement is constant along the plate thickness:

D3 ¼ D0
3; ð9Þ

where D0
3 is a constant independent of z. Besides, the membrane forces Nij and bending moments

Mij; where i, j ¼ r; y; are considered instead of stress in this electroelastic plate theory and are
defined as

Nij ¼
Z

z

Tij dz; Mij ¼
Z

z

Tijz dz: ð10Þ

Thus, the general electroelastic laminate plate theory can be derived from Eqs. (1) to (10), but only
those relations for a particular piezoelectric/elastic rings are shown in this paper. Fig. 1 shows the
trimorph ring transducer with outer diameter 2ro and inner diameter 2ri: It consists of an isotropic
elastic ring laminated between two identical piezoelectric rings, which their radii equal to elastic
ring. The major faces of piezoelectric rings are fully covered by thin electrodes whose thickness
can be neglected. They are polarized in thickness direction as shown by the arrowheads in Fig. 1
and isotropic transversely. The elastic ring is treated as the common electrode to those
piezoelectric rings and the electric potentials applied to these two piezoelectric rings are equal. If
the middle plane of the ring is chosen as the reference plane, the electric boundary conditions can
be expressed as

cjz¼h=2 ¼ cjz¼�h=2 ¼ V ; cjz¼hm=2 ¼ cjz¼�hm=2 ¼ �V ; ð11Þ

where V is the applied voltage. Under this configuration and the applied electric potential, one of
piezoelectric rings extends while the other contracts. Thus, the major motion of the ring is a
bending vibration under a sinusoidal electric excitation. In addition, the dynamic responses in the
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y direction is omitted due to the axis-symmetry:

@f

@y
¼ 0; ð12Þ

where f is the arbitrary physical quantity of the trimorph ring transducer. Due to the symmetry of
the ring, extensional motion in the middle plane will not occur, i.e.,

Urjz¼0 ¼ 0: ð13Þ

To determine the dynamic responses, boundary conditions of the system are specified here. For
the fixed inner and free outer circumferential surfaces of the laminated trimorph ring transducer,
the mechanical boundary conditions are:

Uzjr¼ri
¼ 0;

@Uz

@r

����
r¼ri

¼ 0;

Nrzjr¼ro
¼ 0; Mrrjr¼ro

¼ 0; ð14Þ

where ri; ro are the inner and outer radii, respectively.
Moreover, for the free inner and fixed outer circumferential surfaces of the laminated trimorph

ring transducer, the mechanical boundary conditions are

Nrzjr¼ri
¼ 0; Mrrjr¼ri

¼ 0;

Uzjr¼ro
¼ 0;

@Uz

@r

����
r¼ro

¼ 0: ð15Þ

And for the fixed inner and fixed outer circumferential surfaces of the laminated trimorph ring
transducer, the mechanical boundary conditions are

Uzjr¼ri
¼ 0;

@Uz

@r

����
r¼ri

¼ 0;

Uzjr¼ro
¼ 0;

@Uz

@r

����
r¼ro

¼ 0: ð16Þ

Combining Eqs. (1)–(13), the equilibrium equations can be greatly simplified. The tedious
procedure is briefly stated below. From Kirchhoff–Love hypotheses, the displacements in
the r, y; z directions, Ur; Uy; Uz at arbitrary point of the trimorph ring transducer can be expres-
sed as

Ur r; y; zð Þ ¼ ur r; yð Þ þ zbr r; yð Þ;

Uy r; y; zð Þ ¼ uy r; yð Þ þ zby r; yð Þ;

Uz r; y; zð Þ ¼ uz r; yð Þ; ð17Þ

where ur; uy; uz are the displacements in the r, y and z directions of the reference plane,
respectively, and

br ¼ �
@uz

@r
; by ¼ �

1

r

@uz

@y
; ð18Þ
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Using cylindrical co-ordinates and substituting Eqs. (12), (13) and (17) into Eq. (5), then strains
are expressed as

S11 ¼ zkrr;

S22 ¼ zkyy; ð19Þ

where kii; i ¼ r; y denote the bending strains and are defined as

krr ¼ �
@2uz

@r2
;

kyy ¼ �
1

r

@uz

@r
: ð20Þ

To simplify equilibrium equations, we first change co-ordinates of Eq. (4) into cylindrical ones
and substitute Eqs. (6), (7), (12), (13) and (17) into Eq. (4). We then integrate Eq. (4) with respect
to z; and multiply Eq. (4) with z and integrate results with respect to z: Eq. (10) is used to make
derived equations more clearly. Besides, the ring laminate in this paper is thin and the rotating
inertia is omitted. After the above procedures, the equilibrium equations can be expressed as

1

r

@

@r
r
@Mrr

@r
þ

1

r
Mrr � Myyð Þ

� �� �
¼ R0

@2uz

@t2
; ð21Þ

where

R0 ¼ rmhm þ rphp ð22Þ

and rm and rp are the density of elastic and piezoelectric material, respectively. Also, we can take
integration of Eq. (10) by combining Eqs. (1)–(3), (8), (9), (19) and (20), using cylindrical co-
ordinates, the bending moments can be expressed as

Mrr

Myy

" #
¼

D11 D12

D12 D11

" #
krr

kyy

" #
þ

F11

F11

" #
V ; ð23Þ

where

D11 ¼
Emh3m

12 1� n2m
	 
þ 1� B þ Bnp

	 

h3 � h3m
	 


12sE
11 1� n2p
� �

1� 2Bð Þ
�

B h þ hmð Þ h2 � h2
m

	 

16sE

11 1� np

	 

1� 2Bð Þ

;

D12 ¼
Emnmh3

m

12 1� n2m
	 
þ np þ B � Bnp

	 

h3 � h3

m

	 

12sE

11 1� n2p
� �

1� 2Bð Þ
�

B h þ hmð Þ h2 � h2m
	 


16sE
11 1� np

	 

1� 2Bð Þ

;

F11 ¼
d31 h þ hmð Þ
sE
11 1� np

	 
; ð24Þ

and

B ¼
d2
31

eT
33s

E
11 1� np

	 
 ¼ 1
2
k2

p;

np ¼ �
sE
12

sE
11

: ð25Þ
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where kp is the planar coupling factor or radial coupling factor for single piezoelectric ring under
static radial vibration. Also, the membrane force Nrz can be related to the bending moments Mrr;
Myy as following:

Nrz ¼
@Mrr

@r
þ

1

r
ðMrr � MyyÞ: ð26Þ

Finally, substituting Eqs. (20) and (23) into Eq. (21), the governing equations of the trimorph
ring transducer can be expressed as

�D11
@4uz

@r4
þ

2

r

@3uz

@r3
�

1

r2
@2uz

@r2
þ

1

r3
@uz

@r

 �
¼ R0

@2uz

@t2
: ð27Þ

To analyze the dynamic characteristics of the trimorph ring transducer, we assume the
displacement of the reference plane in thickness direction is

uz r; tð Þ ¼ Wz rð Þejot; ð28Þ

where o is the angular frequency of vibration. The general solution, Wz rð Þ; is

WzðrÞ ¼ C1J0 lzrð Þ þ C2I0 lzrð Þ þ C3Y0 lzrð Þ þ C4K0 lzrð Þ½ 
; ð29Þ

where

lzð Þ4¼
R0

D11
o2; ð30Þ

and J0 and Y0 are the Bessel functions of the first and second kinds of order zero, respectively, I0
and K0 are the modified Bessel functions of the first and second kinds of order zero, respectively,
and lz is the frequency parameter.
Define a dimensionless frequency parameter, which relates to frequency parameter as

l�z
� �4

� lzð Þ4r4o: ð31Þ

By substituting Eqs. (19) and (28) into boundary conditions (14) or (15) or (16), the matrix form
of algebraic equations including coefficients Cj for different boundary conditions can be written as

A½ 
 � Cf g ¼ Ff g; ð32Þ

where

Cf g ¼ C1;C2;C3;C4f gT; ð33Þ

and A½ 
 is a fourth order square matrix, and Ff g is a 4 1 matrix. The elements of A½ 
 and Ff g are
listed in the appendix. Coefficients Cj can be found by meeting boundary conditions. The resonant
frequencies can be determined by solving

det A½ 
ð Þ ¼ 0: ð34Þ

Since the applied voltage V only appeared in Ff g and is not involved in A½ 
; the resonant
frequencies are obviously irrelevant to the applied voltage V :
Besides, The electric current I over a conduction area Se can be calculated using

I ¼
Z

Se

dD0
3

dt
dSe: ð35Þ
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By expressing stresses in terms of displacement, and using Eqs. (1)–(3), (8), (9), (11), and (17),
the electric current I would be

I ¼
�jpod31 h þ hmð Þ
2sE

11 1� np

	 
 � rbr

	 

jr¼ro

r¼ri
þ

8d31 1� 2Bð Þ
B h2 � h2

m

	 
 r2o � r2i
	 


V

" #
; ð36Þ

where j ¼
ffiffiffiffiffiffiffi
�1

p
:

The anti-resonant frequencies can be determined by solving

I ¼ 0: ð37Þ

We can infer that the antiresonant frequencies are dependent of the applied voltage V by
Eqs. (36) and (37), which is different from the resonant ones.
There are two kinds of electromechanical coupling coefficients (EMCCs) to evaluate the

transduction efficiency between electric energy and mechanical energy for a transducer in dynamic
state. They are the dynamic electromechanical coupling coefficient kd and energy electro-
mechanical coupling coefficient ke: The dynamic electromechanical coupling coefficient kd is
defined by Mason, which takes the formula [21]

k2
d ¼

f 2
a � f 2

r

f 2
a

; ð38Þ

where fr and fa are the resonant and antiresonant frequencies at the specified mode number,
respectively. However kd can be only utilized to assess the transfer efficiency near the resonant
frequencies, thus, Ulitko proposed the energy electromechanical coupling coefficient ke as follows:

k2
e ¼

U ðdÞ � U ðshÞ

U ðdÞ ; ð39Þ

where U ðdÞ and U ðshÞ are the internal energies for the disconnected and short circuits, respectively.
The internal energy mainly includes mechanical energy, dielectric energy, and mutual energy for
the concerned trimorph systems. The energy electromechanical coupling coefficient ke is
applicable for any frequency including resonant and antiresonant frequencies to evaluate the
efficiency of the transducer.

3. Validation of the theory

The procedure described in the previous section is straightforward. The validity of the theory
can be verified first by the experiment. The impedance–frequency response experiments for the
trimorph ring transducers under both free inner and outer surfaces boundary condition are
presented in Ref. [22], which shows agreement between predictions of the theory and experi-
mental measurements on resonant and antiresonant frequencies. One more verification of the
theory is to introduce both the piezoelectric layer thickness hp and applied voltage V equal zero
and to compare results with analytical data [23]. In this case, the laminated trimorph ring
transducer simply becomes an isotropic elastic ring, and quantities R0; D11; lz in Eqs. (22), (24),
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and (30) become

R0 ¼ rmhm;

D11 ¼
Eh3m

12 1� n2m
	 
;

lzð Þ4¼
12rmð1� n2mÞ

Emh2m
o2: ð40Þ

Then the resonant frequencies for the fixed inner and fixed outer surfaces boundary condition
are governed by the following equation:

D ¼ det

J0ðlzriÞ I0ðlzriÞ Y0ðlzriÞ K0ðlzriÞ

J1ðlzriÞ �I1ðlzriÞ Y1ðlzriÞ K1ðlzriÞ

J0ðlzroÞ I0ðlzroÞ Y0ðlzroÞ K0ðlzroÞ

J1ðlzroÞ �I1ðlzroÞ Y1ðlzroÞ K1ðlzroÞ

2
6664

3
7775 ¼ 0: ð41Þ

We solve the algebraic equation numerically by using software MATLAB, and obtain the
fundamental and second dimensionless resonant parameters ðlnz Þr: The resonant frequency fr

relates to the dimensionless resonant parameter ðlnz Þr by

fr ¼
ðlnz Þ

2
r

2pðroÞ
2

Emh3m
12rmhmð1� n2mÞ

� �1=2
: ð42Þ

The calculated results for different radius ratio ri=ro are listed in Table 1. The data found in Ref.
[23] are also listed for comparison. It can be easily seen the results are nearly identical. We can
also find all the corresponding mode shapes are mushroom-like, of which nodal lines are circulars.

4. Numerical and FEM simulations

To illustrate the dependence of dynamic characteristics on geometric variables such as thickness
and radius ratios, the dynamic characteristics of the trimorph ring transducer are numerically
calculated. The mathematical software MATLAB is used to handle the tedious computations.
Since the first resonant and antiresonant frequencies significantly determine the efficiency of
transducers, we here simulate and present their dependence on geometry other than the higher

Table 1

Dimensionless resonant parameters ðlnz Þr of single elastic ring under the fixed inner and fixed outer surfaces boundary

condition

ri=ro ¼ 0:1 ri=ro ¼ 0:3 ri=ro ¼ 0:5 ri=ro ¼ 0:7

Mode 1 Mode 2 1 2 1 2 1 2

Present result 27.32 75.36 45.14 124.8 89.31 246.5 248.8 687.2

Blevins 27.30 75.30 45.20 125.0 89.20 246.0 248.0 686.0
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order ones afterwards. The first dimensionless resonant parameter ðl�zÞr and antiresonant
parameter ðl�zÞa versus radius ratio ri=ro for different boundary conditions are shown in Figs. 2
and 3, respectively. Note that the dimensionless resonant and antiresonant parameters comprise
the material property and thickness ratio hm=h: By Eqs. (30) and (31), the resonant and
antiresonant frequencies can be easily calculated for different combinations of ring materials and
sizes. For example, Figs. 4 and 5, respectively, show the first resonant frequencies fr; and
antiresonant frequencies fa; for the fixed inner and free outer surfaces boundary conditions, if
piezoceramics Fuji C-82 and metal Al are chosen. The properties of piezoceramics Fuji C-82 and

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10
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25

30

35

fixed inner - fixed outer

free inner - fixed outer

fixed inner - free outer

oi r/r

r
* z)

(λ

C-82 / Al / C-82 

Fig. 2. The first dimensionless resonant parameter ðlnz Þr versus radius ratio ri=ro for different boundary conditions.
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Fig. 3. The first dimensionless antiresonant parameter ðlnz Þa versus radius ratio ri=ro for different boundary conditions.

S.-H. Chang, J.-F. Lin / Journal of Sound and Vibration 263 (2003) 831–851 841



metal Al are listed in Table 2. From Figs. 4 and 5, the values of the first resonant and antiresonant
frequencies almost lies between 500Hz and 100 kHz, however, are quite smaller than those for
single piezoelectric ring of the same dimensions—ri/ro, hp: The values of the first resonant and
antiresonant frequencies for single piezoelectric ring are all above 15 kHz from impedance
measurements [22]. Therefore, trimorph ring transducer greatly reduces in the values of resonant
and antiresonant frequencies, which implies it could be operated at lower exciting frequency. This
feature inherent in trimorph ring transducer gains an advantage over other ones. From Figs. 2
and 3, the tendencies of resonant and antiresonant parameters are quite in the same way, which
monotonically increase as ri=ro increases. And, the antiresonant parameters are always lager than
the resonant ones in value at same geometric dimensions for all kinds of boundary conditions
except the fixed inner and fixed outer surfaces boundary condition, which implies the antiresonant
frequencies are all similarly larger than the resonant ones in value at same geometric dimensions,
for example, shown in Figs. 4 and 5. Moreover, the resonant and antiresonant parameters for the
fixed inner and fixed outer surfaces boundary condition are the largest, but only little difference in
value for the other two boundary conditions. For the fixed inner surface and fixed outer surface
rings, the displacements of any location of the ring are analytically shown vanished from
Eqs. (16), (28), (29) and (32). It results in the identical resonant and antiresonant frequencies and
EMCC to be zero. In addition, from Figs. 4 and 5, the resonant and antiresonant frequencies not
only monotonically increase as ri=ro increases but also do as hm=h increases. Meanwhile, we also
use the FEM software ABAQUS to simulate those cases. The trimorph ring transducer is modeled
in 420 solid elements with 2485 nodes, which element types of C3D20R for elastic material and
C3D20RE for piezoelectric material. The first four resonant frequencies and their corresponding
mode shapes for ri=ro ¼ 0:5; hm=h ¼ 0:05; and different boundary conditions are shown in
Figs. 6–8, respectively. The FEM simulation accumulates much more resonant and antiresonant
frequencies, which comprise the ones that cannot be excited by electric potential, for example,
modes 2–4 in Figs. 6–8. It can be seen that the mode shapes are almost similar to those of single
elastic plate for the same boundary condition except that their corresponding resonant frequencies
are largely smaller in values. Also, the first resonant frequencies acquired by FEM simulation are
in 5% deviation compared with those obtained by numerical simulation. The second to fourth

Table 2

Material properties

Al

E GPað Þ 70

nm 0.33

rm kg=m3
	 


2700

Fuji C-82 PZT

eT
33=e0 3400

d31 10�12 C=N
	 


�260

Y E
11 ¼ 1=sE

11;GPa
	 


59

np 0.34

rp kg=m3
	 


7400
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resonant frequencies are caused by bending of the trimorph itself, not by bending of unequal
extensions of piezoelectric and elastic rings comprised the trimorph. Therefore, they cannot be
excited by electric potential, in other words, would not form minimum values in the impedance-
frequency response diagram and only the mode shapes with circular nodal lines can be excited by
electric potential. This phenomenon interprets the overall bending motion due to unequal
extensions of piezoelectric and elastic rings dominates. Similarly, the antiresonant frequencies and
their corresponding mode shapes are available by FEM, of which the values are larger than those
of resonant frequencies and the corresponding mode shapes are almost the same as those of
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Fig. 5. The first antiresonant frequency fa versus thickness ratio hm=h and radius ratio ri=ro for the fixed inner and free

outer surfaces boundary condition.
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Fig. 4. The first resonant frequency fr versus thickness ratio hm=h and radius ratio ri=ro for the fixed inner and free

outer surfaces boundary condition.
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resonant frequencies except magnitude ratios of deformation. We can also calculate the dynamic
EMCC by hand for this particular geometric scale from the frequencies obtained from FEM,
however, it need to distinguish the resonant and antiresonant frequencies, which can be really
excited by electric potential, from all the simulated values. Besides, it should run FEM program
once again to obtain the resonant frequencies, antiresonant frequencies and dynamic EMCCs for
another different geometric scale and search the maximum optimized value of them. Therefore,
the analytical theory with numerical simulation just predicts resonant and antiresonant
frequencies, and easily acquires dynamic and energy EMCCs. The non-dimensional electric
current responses of the same transducer for ri=ro ¼ 0:5; hm=h ¼ 0:5 under different exciting
frequency parameters for different boundary conditions are shown in Fig. 9. In this figure, we can
see many relative maximums and minimums appeared in sequence. The maximum ones like
‘‘peaks’’ represent that the transducer largely and diversely displaces, which lead to almost zero
impedance, and the corresponding frequencies are resonant frequencies at the specified mode
number. On the contrary, the minimum ones like ‘‘valleys’’ represent that the transducer also
largely and diversely displaces, but lead to almost zero current, and the corresponding frequencies

(a) the first resonant frequency: (b) the second resonant frequency:

Hz6.1350fr = Hz9.1358fr =  

(c) the third resonant frequency: (d) the fourth resonant frequency:

Hz5.1443fr = Hz2.1753fr =  

Fig. 6. The mode shapes with their corresponding resonant frequencies for the fixed inner and free outer surfaces

boundary condition.
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are antiresonant frequencies, which follow the corresponding resonant frequencies. The dynamic
and energy EMCCs of the same transducer for ri=ro ¼ 0:5; hm=h ¼ 0:5 under different exciting
frequency parameters for different boundary conditions are shown in Fig. 10. In this figure, we
can see the dynamic EMCCs kd ; which are the points plotted using mean value of the resonant
and followed antiresonant parameters as the abscissa’s value, are almost the same magnitudes as
the energy EMCCs ke: The local maximum energy EMCC ke for each peak decreases as the
exciting frequency increases, in addition, the dynamic EMCC kd near the resonant and
antiresonant frequencies monotonically decreases as the same way. The monotonic increment of
dynamic EMCCs is different from that for both free inner and outer surfaces boundary condition
[22]. It should be proclaimed that the radial coupling factor kp for single piezoelectric ring is
proper only for static (DC) excitation. In fact, the dynamic EMCC for single piezoelectric ring is
quite smaller than the maximum dynamic EMCC for trimorph ring transducer, which composed
of two piezoelectric and one elastic rings of the same diameters ri; ro; total thickness h; but variable
thickness ratio ri=ro: The above conclusion can be drawn from experimental impedance

(a) the first resonant frequency:      (b) the second resonant frequency:

Hz1.1745f r = Hz0.2111f r =

(c) the third resonant frequency: (d) the fourth resonant frequency:

Hz6.3049f r = Hz5.4413fr =

Fig. 7. The mode shapes with their corresponding resonant frequencies for the free inner and fixed outer surfaces

boundary condition.

S.-H. Chang, J.-F. Lin / Journal of Sound and Vibration 263 (2003) 831–851 845



measurements and numerical simulations based on our theories. Since the maximum dynamic
EMCC occurs at the vicinity of the first resonant and antiresonant frequencies, we will optimize
the trimorph ring transducer for the first dynamic EMCC next. The objective function is to
maximize

kd ¼ kdðri=ro; hm=ho;B;Dij;R0Þ ð43Þ

subjected to the particular material combination of piezoceramics Fuji C-82 and metal Al, that is,
B; Dij; R0 are kept constants. The calculated first dynamic EMCC for the fixed inner and free
outer surfaces boundary condition is shown in Fig. 11. Fig. 12 shows results for the free inner and
fixed outer surfaces boundary condition. The figures show that the first dynamic EMCC has
totally different tendency for different boundary conditions. For carefully examining the data in
Fig. 11, the maximum first dynamic EMCC of 0.444 exists when the thickness ratio is 0.38 and the
radius ratio is 0.46 for the fixed inner and free outer surfaces boundary condition. Similarly
examining the data in Fig. 12, the maximum first dynamic EMCC of 0.406 exists when the
thickness ratio is 0.34 and the radius ratio approaches one for the free inner and fixed outer

(a) the first resonant frequency: (b) the second resonant frequency:
Hz0.8856fr = Hz3.8964fr =  

(c) the third resonant frequency: (d) the fourth resonant frequency:

Hz5.9255fr = Hz7.9790fr =  

Fig. 8. The mode shapes with their corresponding resonant frequencies for the fixed inner and fixed outer surfaces

boundary condition.
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surfaces boundary condition. Overall, the trimorph ring transducer for the fixed inner and free
outer surfaces boundary condition have slightly lower resonant and antiresonant frequencies and
larger EMCCs than those for the free inner and fixed outer surfaces boundary condition. This
phenomenon may be due to the bending feasibility in the thickness direction.
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5. Conclusions

An electroelastic laminated plate theory is proposed to analyze the dynamic behaviors of the
composite piezoelectric/elastic trimorph rings under constant applied voltage and different
mechanical boundary conditions, including resonant frequencies, antiresonant frequencies,
electric current responses, and dynamic and energy EMCCs. These dynamic characteristics are
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Fig. 11. The first dynamic EMCC kd versus thickness ratio hm=h and radius ratio ri=ro for the fixed inner and free outer

surfaces boundary condition.
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then numerically simulated for varying thickness and radius ratios of the piezoelectric and elastic
materials by MATLAB. The curves of dimensionless resonant and antiresonant parameters versus
radius ratios are figured. With the developed easy-to-use figures, the resonant and antiresonant
frequencies of the laminated trimorph ring transducer can be evaluated which would be
convenient and useful for transducer design.
The finite element method is also utilized to simulate the resonant, antiresonant frequencies and

their corresponding mode shapes. The FEM simulation gathers much more resonant and
antiresonant frequencies, which comprise the ones that cannot be excited by electric potential.
Only resonant and antiresonant frequencies with their corresponding mode shapes, of which
nodal lines are circulars, can be excited by electric potential. Besides, Only above resonant and
antiresonant frequencies can be found and form valleys and peaks in the impedance–frequency
response diagram. This justifies the electroelastic laminated plate theory, which is formulated
based on the concept that the bending motion owing to unequal extensions piezoelectric and
elastic rings dominates.
We optimize the trimorph ring transducer using piezoceramics Fuji C-82 and metal Al by

maximizing its first dynamic EMCC. Under the optimized configuration, the trimorph ring
transducer will reach the maximum dynamic EMCC value 0.444 as the thickness ratio is 0.38 and
the radius ratio is 0.46 for the fixed inner and free outer surfaces. And, it will attain the maximum
dynamic EMCC value 0.406 as the thickness ratio is 0.34 and the radius ratio approaches one for
the free inner and fixed outer surfaces boundary condition. By selecting the appropriate thickness
ratio and radius ratio, optimal design of the laminated trimorph ring transducer can be achieved.
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Appendix

Elements of matrix ½A
 and vector Ff g in Eq. (32):
For the fixed inner and free outer surfaces boundary condition, elements are zero except:

A1;1 ¼ J0ðlzriÞ; A1;2 ¼ I0ðlzriÞ; A1;3 ¼ Y0ðlzriÞ; A1;4 ¼ K0ðlzriÞ;

A2;1 ¼ J1ðlzriÞ; A2;2 ¼ �I1ðlzriÞ; A2;3 ¼ Y1ðlzriÞ; A2;4 ¼ K1ðlzriÞ;

A3;1 ¼ �J1ðlzroÞ; A3;2 ¼ �I1ðlzroÞ; A3;3 ¼ �Y1ðlzroÞ; A3;4 ¼ K1ðlzroÞ;

A4;1 ¼ lz
1

ro

ðD12 � D11ÞJ1ðlzroÞ þ D11lzJ0ðlzroÞ
� �

;

A4;2 ¼ �lz

1

ro

ðD12 � D11ÞI1ðlzroÞ þ D11lzI0ðlzroÞ
� �

;
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A4;3 ¼ lz
1

ro

ðD12 � D11ÞY1ðlzroÞ þ D11lzY0ðlzroÞ
� �

;

A4;4 ¼ lz
1

ro

ðD12 � D11ÞK1ðlzroÞ � D11lzK0ðlzroÞ
� �

;

F4;1 ¼ �F11V :

For the free inner and fixed outer surfaces boundary condition, elements are zero except:

A1;1 ¼ �J1ðlzriÞ; A1;2 ¼ �I1ðlzriÞ; A1;3 ¼ �Y1ðlzriÞ; A1;4 ¼ K1ðlzriÞ;

A2;1 ¼ lz

1

ri

ðD12 � D11ÞJ1ðlzriÞ þ D11lzJ0ðlzriÞ
� �

;

A2;2 ¼ �lz

1

ri

ðD12 � D11ÞI1ðlzriÞ þ D11lzI0ðlzriÞ
� �

;

A2;3 ¼ lz
1

ri

ðD12 � D11ÞY1ðlzriÞ þ D11lzY0ðlzriÞ
� �

;

A2;4 ¼ lz
1

ri

ðD12 � D11ÞK1ðlzriÞ � D11lzK0ðlzriÞ
� �

;

A3;1 ¼ J0ðlzroÞ; A3;2 ¼ I0ðlzroÞ; A3;3 ¼ Y0ðlzroÞ; A3;4 ¼ K0ðlzroÞ;

A4;1 ¼ J1ðlzroÞ; A4;2 ¼ �I1ðlzroÞ; A4;3 ¼ Y1ðlzroÞ; A4;4 ¼ K1ðlzroÞ;

F2;1 ¼ �F11V :

For the fixed inner and fixed outer surfaces boundary condition, elements are zero except:

A1;1 ¼ J0ðlzriÞ; A1;2 ¼ I0ðlzriÞ; A1;3 ¼ Y0ðlzriÞ; A1;4 ¼ K0ðlzriÞ;

A2;1 ¼ J1ðlzriÞ; A2;2 ¼ �I1ðlzriÞ; A2;3 ¼ Y1ðlzriÞ; A2;4 ¼ K1ðlzriÞ;

A3;1 ¼ J0ðlzroÞ; A3;2 ¼ I0ðlzroÞ; A3;3 ¼ Y0ðlzroÞ; A3;4 ¼ K0ðlzroÞ;

A4;1 ¼ J1ðlzroÞ; A4;2 ¼ �I1ðlzroÞ; A4;3 ¼ Y1ðlzroÞ; A4;4 ¼ K1ðlzroÞ:
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