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Abstract: The paper describes the design method 
of a neuralifuzzy variable structural proportional- 
integral-derivative (neurallfuzzy VSPID) control 
system. The neurallfuzzy VSPID controller has a 
structure similar to that of the conventional PID. 
In this controller, the PD mode is used in the case 
of large errors to speed up response, whereas the 
PI mode is applied for small error conditions to 
eliminate the steady-state offset. A sigmoidal-like 
neuron is employed as a preassigned algorithm of 
the law of structural change. Meanwhile, the 
controller parameters would be changed 
according to local conditions. Bounded neural 
networks or bounded fuzzy logic systems are used 
for constructing the nonlinear relationship 
between the PID controller parameters and local 
operating control conditions. Flexible changes of 
controller modes and resilient controller 
parameters of the neuralifuzzy VSPID during the 
transient could thereby solve the typical conflict 
in nature between steady-state error and dynamic 
responsiveness. A neutralisation process is used to 
demonstrate the applicability of such a controller 
for controlling highly nonlinear processes. 

The three-mode proportional-integral-derivative (PID) 
controller is widely used in chemical plants due to ease 
of use and robustness in the face of plant uncertainties. 
Nevertheless, the linear PID algorithm might be diffi- 
cult to deal with processes with complex dynamics, 
such as those with large dead time, inverse response 
and highly nonlinear characteristics. To date, many 
sophisticated algorithms have been used to help the 
PID controller work under such difficult conditions. 
The various nonlinear PID controllers in which the 
simple controller structure has been reserved and supe- 
rior performance has been achieved by allowing con- 
troller parameters to vary with local control conditions, 
such as three-piece PIDs [I] and nonlinear PI(D)s [2, 31, 
seem to be acceptable. Meanwhile, neural/fuzzy infer- 
ences based on self-tuning schemes of PI controllers 
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have also been proposed to improve the control per- 
formance (for example, see [4, 51) by using the neural/ 
fuzzy capabilities to store the domain expert knowledge 
and to infer control decisions. On the other hand, 
improving the limited performance of PI controllers, 
such as the conflict in nature between static accuracy 
(steady-state error) and dynamic responsiveness (speed 
of response), the variable structural PID (VSPID), i.e. 
using the PD action to accelerate the speed of the 
response and using the PI mode to eliminate the 
steady-state offset, could be used to overcome the diffi- 
culties. The VSPID controller has a structure which is 
flexibly changed by a preassigned algorithm of the law 
of structural change. Its superior performance, with the 
aid of neural/fuzzy systems, additionally achieved by 
allowing controller parameters to vary with local con- 
trol conditions, is proposed in this paper. 

Radial basis function networks (RBFNs) and back- 
propagation neural networks (BPNNs) have yielded 
useful results in many practical areas such as pattern 
recognition [6],  system identification [7, 81 and control 
[9], due primarily to their simple structures for realisa- 
tion and well established training algorithms. Many 
fuzzy paradigms, meanwhile, have been studied in 
recent years by viewing a fuzzy logic system (FLS) as a 
functionally equivalent RBFN or BPNN [lo, 111. As 
indicated in [l 11, the most important advantage of such 
an FLS spanned by fuzzy basis functions is the provi- 
sion of a natural framework for combining numerical 
values and linguistic symbols in a uniform way. From a 
mathematical point of view, the input-output expres- 
sions of those mappings are identical in spite of the dis- 
tinct inference procedure. Capability discrimination 
between neural and fuzzy systems is thus diminished 
for proofs of universal neuralifuzzy approximators [l 1, 
121. Using neural networks or fuzzy systems to approx- 
imate a given plant or to control a process now 
depends on whether rich available data are at hand or 
whether the ‘If-Then’ control heuristics could be estab- 
lished by human experts familiar with system dynamics 
under consideration. The RBFN, the BPNN and the 
FLS are used interchangeably in this paper since they 
could provide equivalent functionality. 

The design methodology of a neuralifuzzy variable 
structural PID controller (neural/fuzzy VSPID) for 
nonlinear processes is proposed in this paper. The neu- 
ralifuzzy systems discussed above are exploited to pro- 
vide the nonlinear VSPID parameters according to 
local control conditions. A simple sigmoidal-like neu- 
ron is employed as a preassigned algorithm of the law 
of structural change which is directed by the current 
value of the error signal. High-quality control could be 
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assured if parameters of the neuralifuzzy VSPID are 
suitably determined and the law of structural change 
could be deduced properly. The PI mode with antireset 
windup is designed for the prevention of excessive ove:r- 
shoot caused by direct implementation of the integral 
action. The amount of maximal saturation of the inte- 
gral action is studied by using the squeezing technique 
approach. The stability analysis of the PI/PD part is 
also discussed. 

2 
logic systems 

Topology of the L, neural networks and fuzzy 

2.7 The L,neural networks (L, NN) 
A great number of multilayered feedfonvard neural 
networks (MLNNs) have been widely discussed in 
recent literature [13, 141. An MLNN includes an inpiut 
layer, an output layer and a number of hidden layers. 
Each input layer is composed of input nodes. Each hid- 
den layer (and output layer) consists of processing units 
(the so-called hidden nodcs or basis functions), and 
each unit is the composite of an activation function 
(AF) and a transfer function (TF). 

The input signals to each processing unit are first 
transformed into an activation level via the activation 
function. The activation level is further mapped into a 
crisp output by the transfer function. The aim of those 
mappings is to store the input-output relationship in 
parameters of the AF/TF via learning. With various 
selections of activation functions and transfer func- 
tions, a variety of MLNNs could be synthesised. 

Without loss of generality, the activation function 
V(x; p) could be generally expressed in quadratic form: 

( I )  
where denotes the vectodmatrix transpose, x 2 [x,, ..., 
xIlT E R‘ is the input vector, c g [c1, ..., c1lT E R’ is 
called the centre, A is an I x I semi-positive-definite 
matrix; ?L [ I , ,  ..., hIlT E R‘and p = overall parameters 
of an AF. Some popularly used AFs are special condi- 
tions of such a quadratic form. For example [13-151, 

a 
U ( X ;  p) = (X - c ) ~ A ( x  - C) + XTx + b 

4 x ;  PI 

[k Xixi + 6 i f A = O  
i=l (linear) 

C ( X Z  - 

if X = 0, 6 = 0, A = diag - 
[%=I S2 (spherical) LI 

As to transfer function @(.), all TFs mentioned in the 
literature are analytical almost everywhere [16-181. Far 
instance, 

(linear) f ”  
1 

1 + exp(-v) 
(sigmoidal) 

4 ( U )  = I (3) 
n I exp(ju) ,  j = (Fourier) 

I exp(-u) (inverse exponential) 
where expb)  might include cos(v), sin(v) and their lini- 
ear combinations. Combining any of the AFs and any 
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of the various possible TFs, a processing unit with var- 
ious characteristics could be synthesised. The typical 
processing unit of a BPNN, for instance, is the combi- 
nation of a linear AF and a sigmoidal TF, and the typ- 
ical processing unit of an RBFN is the combination of 
a spherical AF and any analytical TF. 

Each layer of a multi-inputhingle-output (MISO) 
MLNN is composed of various processing units with a 
suitable choice of AFs and TFs. Without loss of gener- 
ality, the three-layered MISO MLNN with I inputs and 
J hidden processing units would be used in the follow- 
ing, and both the AF and the TF  in the output layer 
are assumed to be linear throughout this work. Each 
processing unit combining an AF and a TF in the hid- 
den layer is called the basis function @j e @(v(x; pJ), 
where pi denotes overall parameters of the jth process- 
ing unit in the hidden layer. Such a neural network is 
mathematically equivalent to a finite-dimensional func- 
tion space spanned by neural basis functions: 

J 

f ( x ;  P) 2 wjd(”(x; Pj)) (4) 
j=1 

where P denotes overall network parameters. 
The bounded input-bounded output (L,) RBFNs 

and BPNNs, i.e. L, NNs, would be used in this paper. 
Without loss of generality, the basis function Qj for an 
L, NN is assumed to be normalised for allj,  i.e. l l $ j j l l ,  
= 1 for allj. The relationship between the norm of the 
weight vector and the range space of an L, NN could 
be derived from the Minkowski inequality and func- 
tional analysis. Let Q2, ..., QJ} be a basis for an L, 
NN. Then for every choice of weights wl, w2, ..., wJ one 
has 

J J 

aCI1L’A I l l ~ ~ ~ ~ ~ ~ l l c c  5 CI% (5) 
j=1 j=1 

where 0 < a 5 1. The inequality, in fact, could be 
viewed as the definition of an L, NN. 

2.2 The fuzzy logic systems (FLS) 
A typical FLS is composed of four principal compo- 
nents [11]: (1) a fuzzifier; (2) a rule base; (3) an infer- 
ence engine; (4) a defuzzifier. The fuzzifier deals with 
mapping scaled input variables and transforming the 
mapping into appropriate linguistic values. The rule 
base comprises the well established knowledge of the 
application domain. For an inference engine, it emu- 
lates human decision-making logic. Such operations are 
performed by employing fuzzy implication and fuzzy 
logic inference. As the final stage of the FLS, the 
defuzzifier generates a single crisp output from the 
inferred fuzzy action. 

Without loss of generality, an FLS with the singleton 
fuzzifier, Gaussian membership functions, the product 
inference rule, the centre average defuzzifier and the 
equal area of membership functions for all output lin- 
guistic terms would be used in this paper. The output 
of such an FLS with J inference rules is [l 11 

&;P) = 

20 1 



J 

j=1 

where wj is the corresponding crisp output of @(v(x; pj)) 
with unit membership function value. P is the set of all 
adjustable parameters in the FLS. The FLS could be 
viewed as a modified Gaussian potential function net- 
work (modified GPFN [13]). Each rule in the FLS is 
functionally equivalent to one hidden node of a modi- 
fied GPFN. The wjs here refer to the weights of the 
FLS in accordance with neural network jargon. The 
discussed FLSs are notably input-output bounded, and 
have the relationships with output weights as demon- 
strated in eqn. 5. 

(I a(t) 
w 

......... ~ ........ ~ ....................................... 

VSPID . .- . . . . 

Fig. 1 VSPID control system 

01 y ' ' ' I ' 1 I I I 
0 1 2 3 L 5 6 7 8 9 10 

Characteristics of a(t) with E = 1.0 and various 77 values 
le(t)l 

Fig.2 
-q = 0.5 
-q = 1.0 
I q = 2.0 

3 
(neural/fuzzy VSPID) 

3. I The variable structural PlD controller 
(VSPID) 
The system has notably no steady-state error in 
response to a step input disturbance provided that the 
control law employs the integral mode. Undesirable 
overshoot, increasing sharply as a function of the gain, 
will occur for sufficiently large integral action. Sharply 
increasing the controller gain could significantly accel- 
erate the system response in the absence of the integral 
mode, but a steady-state offset would be displayed in 
such a case; thus, reaching a compromise is vital. A 
nonlinear variable structural PID controller could be 
used for such a correcting effort, as is depicted in 
Fig. 1: 

u( t )  = E +  k c ( t ) e ( t )  + akd( t ) r ( t )  + (1 - a)k i ( t )m~( t )  

Neural/fuzzy variable structural PID controller 

= G + a[k , ( t )e ( t )  + kd( t ) r ( t ) ]  
+ (1 - a)[k , ( t )e ( t )  + 7ci(t)ml(t)] (7) 
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where U is a constant, r ( t )  2 de(t)/dt, mkt) & e(z)dz 
and a E [0, I]. The controller would turn out to be 
either a PD or a PI controller if a is either 1 or 0. 
Instead of a drastic change of a value, a could be rea- 
sonably defined as 

4 4  = tanh(rP(t)) (8) 
where 

a is an increasing function of le(t)l, and converges to 
either 1 or 0 if le(t)l approaches infinity or le(t)/ enters 
the tube 0 I le(t)l 5 E such as shown in Fig. 2, i.e. 

1 if le(t)l >> E 

0 if /e(t)l  5 E 
a( t )  = 

The q value in eqn. 8 determines how quickly a 
changes between zero and one. For reasonablc q val- 
ues, the VSPID would behave from the PD controller 
in the case of large error to the PID case and the PI 
case, i.e. 

( kc( t )e ( t )  + k d ( t ) T ( t )  for le(t)l >> E 

An infinite q value would lead the VSPID to be either 
a PD or a PI controller according to the magnitude of 
le(t)l. The time at which the controller structure change 
occurs is thereby determined by a flexible program 
which is directed by the current value of the error sig- 
nal. 

In order to put into operation the proposed VSPID 
controller in the practical process, stability analysis in 
the PD control mode and training procedures of the 
proposed controller parameters are discussed in the dis- 
crete time domain. The parameters of the proposed 
VSPID controller could be updated for every control 
interval T. A zero-order holder is used to keep a con- 
stant controller output during each interval. The nota- 
tions therein are defined as follows: 

4n)  = {sp( t )  - v(t)}lt=nT 

e ( n )  - e (n  - I) 
T 

r(n)  = 

n 

k=l 

u(n) = a + k(n)e(n)  + a(n)r(n) + (1 - a(n))rn~(n) 

sp(t) and y( t )  are reference and process output; e(n), 
r(n), min) and u(n) are error, rate of change in error, 
integral of error and controller output, respectively, at 
the nth sampling point. 

3.2 L, NN/FLS based variable structural PID 
controllers (L, NN- VSPID, FL- VSPID) 
The neuraufuzzy VSPID has a structure similar to that 
of the conventional nonlinear VSPID controller, but its 
parameters are changed according to local conditions 
(see Fig. 3). Here, L, NNs or the previously mentioned 
fuzzy systems are used for constructing a nonlinear 
relationship between controller parameters and local 
control conditions. Parameters of the L, NN-VSPID 
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or the FLVSPID are defined as 

k ( t )  = f ( x ;  P1) 

k ( t )  = f ( x ;  P2) (13) 

IC&) = f ( x ;  P3) 
where 

f ( x ;  Prn) 

Ewz3#(v(x(t); pz3)) for the L ,  NN-VSPII) 
zE17,3EJm 

x w z g 4 ( M t ) ; P z 3 ) )  (14) 

for the FL-VSPID, z E L ,  JEJ,,, 

E E4(~(x( t ) ;Pz3))  = 1,2 ,3  
%€I,  JEJ, 

Hence, k,(t), k,(t) and kd t )  are outputs of three three- 
layered L, NNs or three FLSs with two inputs x(t) = 
[e(t), r(t)lT. p2] denotes overall parameters in the ijth 
hidden processing unit or the ijth rule. 

1 \ neurallfuzzy VSPID 

Fig. 3 Neural/fuzzy VSPID control system 

For the L, NNVSPID/FL-VSPID, v(x(t); pii> is the 
activation level of the ijth hidden processing unit 

M t ) ;  Pzj) (1.5) 

- - [ (vs+ f y r  for the L,  RBFN/FLS 

A&e(t )  + Xrjr(t)  + bi, for the BPNN 

Cp is the analytical function for the L, RBFN, and Cp is 
the sigmoidal function for the BPNN. As for the FLS, 
Cp is the discussed fuzzy basis function. pij = [cei, c . sei, 

the BPNN. A$ or 1; refers to the weight in the hidden 
layer that connects the ijth hidden node to the input 
node of e(t) or r(t). Subscript ei denotes the ith node in 
the e direction, and subscript rj denotes the jth node in 
the r direction for i E 11, 12, I3 a n d j  E J1, J2, J3, where 
11 b (1, ..., 111, Ji { I ,  ..., &2}, 12 b (1, ..., 41, 52 k (1, 
..., 14}, I3 { 1, ..., Z5} and J3 k { 1, ..., 16}. The lis refer 
to the number of AFs in either the e ( i  = 1, 3, 5)  direc- 
tion or the r (i = 2, 4, 6) direction. Tuning parameters 
of the specific L, NNs/FLSs in k,(t), ki(t) and kd(:t) 
might encompass centres [ceb cTjlT, widths of receptive 
field [sei, srjIT, connective weights in the hidden layer 

srjIT for the L, RBFN/FLS, and pij = [Ai: Ai;, bij] !F fix 
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[hi] and [Ai;], bias terms [by] and the output connective 
weights [wV] for i E 11, 12, I3 a n d j  E J1, J2, J3. 

Outputs of controller parameters and output connec- 
tive weights of associated NNs/FLSs have the following 
relationships: 

'2 Iwz31 5 I l k t ( t ) l l a  5 I w Z J  (16) 
zEIz 3EJz ~ € 1 2  3EJz 

a3 l W v I  I Ilki(t)llm I t: IwzgI 

%€I3 3EJ3 ~ € 1 3  3EJ3 

where 0 < al ,  u2, u3 I 1. Those relationships imply that 
parameters of the L, NN-VSPID/FL-VSPID control- 
ler are bounded. 

An L, RBFN-VSPID or a FLVSPID is function- 
ally equivalent to a linear VSPID if all receptive field 
widths approach infinity in neural/fuzzy basis func- 
tions: 
Property 1 (L, RBFN-VSPID and FL-VSPID are 
functionally equivalent to linear VSPID): An L, RBF- 
NVSPID or an FLVSPID controller is functionally 
equivalent to a linear VSPID controller if sei, srI -+ M b' 
i E 11, 12, I,, and b ' j  E J,, J,, J3. 
Proo$ Each basis function in an L, RBFN or an FLS 
becomes a constant function, providing that all recep- 
tive field widths in each basis function approach infin- 
ity. Hence, an L, RBFN-VSPID or an FL-VSPID is 
functionally equivalent to a linear VSPID controller if 
se,, srl + 00 b' i E 11, 12, I3 and ' d j  E J1, J2, J3. 

Property 1 gives the way to set L, RBFN-VSPIDI 
FLVSPID parameters initially by letting the receptive 
field widths in the neuralifuzzy basis function be large 
enough so that the initial performance of the L, RBF- 
N-VSPID/FLVSPID could be like the performance 
provided by the linear VSPID. 

j neurallfuzzy VSPID j 

Mod$ed neurawuzzy VSPID control system Fig. 4 

4 

Integral or reset action is usually taken to eliminate the 
steady-state error in feedback controllers. One of the 
penalties that must be paid for this convenience is 'reset 
windup' or excessive overshoot caused by the direct 

Nonlinear PI controller with antireset windup 
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implementation of the integral action. Installing a lim- 
iter on the controller output to keep it from going 
beyond the operating range of the actuator is a way to 
prevent reset windup. To do this, let us first break 
down the nonlinear PI control rule into its parts (i.e. 
see Fig. 4). 

Suppose a saturating actuator with a positive upper 
bound Mu and a lower bound M' is installed. Then the 
output of the saturating actuator is 

M u  for m(t) 2 M u  

us(t)  = m(t)  for M' 5 m(t)  5 M u  (17) 

M' for m(t) 5 M' 

(18) 

7jZ1(t) = e ( t )  (19) 

i 
where 

m(t) = U+ k c ( t ) e ( t )  + k i ( t ) m I ( t )  
and W 2 U 2 M1 2 0. From the definition of mXt) we 
get 

Since kc(t) > 0 and k,(t) > 0 in nature for all t, the 
reset-feedback implementation of the time-varying PI 
control law is thus given by 

1 
7 j Z I ( t )  = -(m(t) - ki(t>rnI(t) - U )  (20) 

k C  ( t )  
Solving the above time-varying first-order ordinary dif- 
ferential equation we have 

Since -(U - M') 2 m(t) - U 4 Mu - U for all t ,  thereby 

exp (- Z d r )  
-(U - M l )  

k," 

Then 

Thus 

Therefore 

(U - W)-  
kyk;  

Describing the exact trajectory of mxt) needs full 
information of kc(t), k,(t) and m(t). Estimating the 
dynamics of kc(t) and k,(t) is difficult if kc(t) and k i t )  
are not prescribed. The possible extreme output at 
some instant and steady-state behaviour of m i t )  is 
investigated in the following. 

There exist values of k / ,  k;, k,' and k," for the pro- 
posed neural/fuzzy PI controller such that 

0 < k: 5 k Z ( t )  5 ky 

and (22) 
0 < rk: 5 rkc(t) 5 ik; 

Then we have 

k: k i ( t )  < 2 o < - < -  
k," - k c ( t )  - k: 

' i t  (23) 

For all t and s I t, it thus implies that 

Hence 

0 < exp (- 1 Z d r )  

exp (- [ Z d r )  
O <  

Then 

5 k;(t)rn~(t) 5 ( M u  -U)k (1 - exp ( - $ t ) )  (31) 

where k f k;"k,"lk,'k,' and k > 1. The result is consist- 
ent with the initial condition ki(0)ml(O) = 0. The deriva- 
tion thus implies 

To this end, Property 2 is thus derived. 
Property 2 (Integral action of the neuralfuzzy VSPID 
controller is bounded): Since there exist constants k / ,  
k,", k,' and k," for neurallfuzzy VSPID controller 
parameters such that 0 < k," I k,(t) I k," and 0 < k,' I 
kc(t) I k," for all t ,  with the proposed antireset windup 
implementation the integral action of the neural/fuzzy 
VSPID controller is bounded. 

The possible maximal output of k,(t)ml(t) is therefore 
equal to k ( W  - U), and the possible minimal output is 
-(U - M')/k. The rate at which the controller output, 
saturated at Mu, is reset is governed by the gain k ,  
which determines how quickly the integral is reset, i.e. 
for large k it takes much time to reset the integral 
action and vice versa. Likewise, the rate at which the 
controller output, saturated at M1, is reset is decided by 
Ilk, which determines how quickly the integrator is 
reset, i.e. less time is spent to reset the integral action if 
Ilk is close to one and vice versa. Thus there is no 
effect on normal operation when the actuator does not 
saturate. Whilst saturating occurs, the feedback signal 
will try to drive the integrator to a value such that the 
controller output is exactly at the saturation limit. 
Preventing the integrator from winding up is therefore 
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clear. There would be no saturation effect if k were 
equal to one. The result is consistent with the fact 
derived from linear control theory. 

At steady state the error signal must be zero, since 
e(t) = mXt) = 0. No steady-state offset is therefore 
guaranteed for this modified PI control law. Suppose 
k,(t) = k," and k,(t) = kj" at e = r = 0. It implies that 

M L  5 m(o0) = k,-rnl(oo) +U 5 M U  (33) 
The integral signal is confined to the range of the satu- 
rating actuator at steady state. 

With the antireset windup, the nonlinear PI contrd- 
ler is always input-output stable, i.e. for finite energy 
input, the PI controller with antireset windup would 
yield finite energy output. A wide enough operating 
range of the controller is therefore required to put the 
controller into operation. 

Suppose the nonlinear PI controller is operated at the 
normal level. Then for a given process, linear or non- 
linear, the proposed nonlinear PI control system hias 
the same local stability (asymptotically stable or unsita- 
ble) at the equilibrium point, sp, as the linear PI (k, = 
k,", k, = e) control system does. This is because the 
linearisation of the proposed nonlinear PI controller 
around the equilibrium point results in the linear PI 
controller. The two controllers thereby behave similairly 
in the region around the equilibrium point. According 
to Lyapunov's indirect method [19] (Lyapunov's first 
method on stability), the neural/fuzzy PI mode is 
asymptotically stable (unstable) at the equilibrium 
point if and only if the linear PI control system (k, = 
k,", k ,  = k;) is asymptotically stable (unstable). 

5 
control law 

Stability analysis of the neural/fuzzy PD 

The closed-loop system is L stable if both subsystems, 
the process and the controfer, are Lp stable in thein- 
selves and if the 'loop gain' is less than one for 1 I 1;' I 
M [19]. Given any process in a complete function space, 
one could thus find a controller in the complete space 
such that the composite of the process and the control- 
ler converges at a fixed point in space, providing the 
gain of the composite is less than one. Suppose the 
controlled process is L, stable. The proposed neural/ 
fuzzy PD control law would be one of the choices since 
the PD controller is L, stable, an assertion which is 
discussed in the following. 

Consider the neural/fuzzy PD controller output at 
the nth sampling point: 

u(n)  = U + k,(n)e(n) + kd(n)~(n) 
Then for n 2 1 we have 

lu(n)l I Ial + Ikc(n)Ile(n)l + Ikd(n)ll+)l 

Therefore for n 2 1 

SUP I4n) I 

IEE Proc.-Control Theory Appl., Vol. 143, No. 2, March 1996 

+ ZE13jEJ3 

T sup le(. - I ) /  + 

By using the definition of the L, gain of an L,map- 
ping Ax( t)) defined in [ 191, 

where y, and b, are finite constants, the derivation 
leads to Property 3. 
Property 3 (Gain of the neuralfuzzy PD controller): 
The gain of the PD controller yJu) is less than or equal 
to 

Ym(f) = inf{ym : SUP If1 I Ym SUP 14 + bm} (37) 

Since there exists a finite upper bound of the pro- 
posed neural/fuzzy PD controller gain, an application 
of the small gain theorem yields the following stabilisa- 
tion criterion for the proposed neural/fuzzy PD control 
system. 
Property 4 (Suflicient criterion for the stable neural/ 
fuzzy PD control system) : The proposed neurallfuzzy 
PD control system is stable if 

c 
i E I l  

where y,b) is the process gain. 
Centres and receptive field widths in the neural/fuzzy 

basis functions are irrelevant to the stabilisation crite- 
rion. The most important factors related to the stabili- 
sation criterion are output connective weights of the 
neural/fuzzy systems. According to Property 4, the 
number of parametric space dimensions related to the 
stability region of the proposed PD control system is 
reduced to I I  x l2 + Is x 16, as compared to the dimen- 
sions ( I I  x l2 + 211 + 212 + Is x l6 + 21, + 2 4 )  in the orig- 
inal neural/fuzzy parametric space (PD part). 
Stabilising the PD mode control could be done by 
appropriately adjusting weights in k ,  and kd satisfying 
the stabilisation criterion. 

6 Training procedures 

The aim of training a neural/fuzzy VSPID controller is 
to minimise the following performance measure, i.e. to 
solve a finite horizon optimisation problem 

p N P  

p = l  n=l 
(38)  

T 
Je = 2 c {[sdn) - Y(n)I2), 

Here, {sp(.>}, E S, S is a set of P individual reference 
inputs to the process over the possible operating 
region; {U(.)}, are outputs of the real plant in response 
to the given pth testing input excitation; Np is the total 
number of control instants within the interval of each 
training time under consideration. Different choice of 
the input set for training could lead to somewhat dif- 
ferent controller parameters. One can directly use any 
existing optimisation methods, such as the steepest 
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gradient method or the conjugated gradient method, in 
search of the optimal parametrisation of the neural/ 
fuzzy VSPID controller. 

Suppose the controlled process has a time delay d. 
Let zi be one of the elements in parametric space of the 
proposed neural/fuzzy VSPID controller. The associ- 
ated gradient is 

p NP 

3 = -T { [ (sy(n  + d )  (39) 
p=l n=l az, 

In the equation, dy(n + d>/du(n) required to update 
parameter zi in the parametric space of the neural/fuzzy 
VSPID controller during optimisation. Therefore, a 
first-principle mathematical model [20] or a well trained 
plant emulator [21] is required to estimate these partial 
derivatives of the plant response to neural/fuzzy VSPID 
controller parameters at current operating points. 
However, especially where more complex plants are 
concerned, such a precise plant emulator is often not 
available. When the information is not provided, one 
can take the sign of the partial derivatives of the plant, 
i.e. sign dy(n + d)/du(n), to give approximate informa- 
tion [22]. Such an approximation might, however, slow 
down the speed of convergence in finding optimal solu- 
tions. 

Several training passes are required to search for 
convergent parameters (q*, E*,  ce:, er;*, se,, sr; and w;, 
for i E 11, 12, 13, j E J1, J2, J3) of the optimal neural/ 
fuzzy VSPID controller (U*). Notice that the current 
VSPID controller parameters are kept constant 
through the whole control pass in the course of this 
searching. Given the specific input pattern x(t) = [e(t), 
r(t)lT, the control response of the optimal neuraufuzzy 
VSPID controller is 

U* (n) = U + (n)e(n) + a*(n)k;(n)r(n) 
+ (1 - a!*(n))k:(n)rnl(n) (40) 

7 Illustrations 

7, I pN control of a neutralisation process 
The applicability of the neuralifuzzy VSPID controller 
is demonstrated by controlling the pH value of a neu- 
tralisation process. The control near the neutrality 
point (pH = 6 - S) is notably difficult since a slight 
change of operating condition could make a drastic dif- 
ference in pH value. 

F= Fit F;! 

pH=-log [ H’I 

Fig.5 p H  control system 
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In this example, the strong base NaOH is used in 
controlling the acidity of a wild process stream with 
weak acid HA. A perfectly effective liquid level con- 
troller is used to keep the reactor volume constant (see 
Fig. 5). The balanced equations are [23]: 
Acid balance: 

Sodium balance: 

Charge balance: 

[H+I + P+l { C + K )  + [H+] { (C - <) K, - Kw } -K, Kw z 0 
(43) 

Sensory signal lag: 
p H ( t )  = - loglo([H+](t - 0.4)) (44) 

In these equations, 5 [Nuc], Ku = 
[H+][A-]/ [HA] (the acid equilibrium constant) and K, = 
[H+][OH-] (the water equilibrium constant). The charge 
balance equation results from the fact that [ + [H+] = 
[OH-] + [A-]. The operating range of the base inlet 
stream F2 is 0 - 2L/min. Numerical values of the phys- 
ical variables involved here are listed in Table 1. 

[HA] + [A-], 5 

Table 1: Nominal values of parameters in the neutralisa- 
tion process 

K, = IO”mol/L K,,, = 10-14m012/L2 

Cl = 0.10998moI/L C, = Imol/L 

pH = 4 F2 = 0.9988Umin 

5 = O.Imol/L 5 = 0.09081mol/L 

Fl = 10L/min V = 50L 

In demonstrating the applicability of the proposed 
control method, the set-point of pH is changed from 4 
(initial steady state) to 7 and two input loads, acid con- 
centration from 0.10998 to 0.1 105mol/L and acid flow 
rate from 10 to 10.5L/min are then introduced at 60 
min and loomin, respectively. The control interval T i s  
0.2min. 

10 
9 

Z 8  
7 
6 
5 
4 

0 20 40 60 80 100 120 140 
time, min 

Fig. 6 Compar~on of servo and regulatory control performance for the 
n e u t r a l i s a t i o n 7  when using optimised linear PI and optimised 
L, NN-PI: p against time 
linear PI - 
L, NN-PI - 

Two 5 x 5 (i.e. Zi = 5, i = 1, ..., 4) modified GPFNs 
are used to construct a nonlinear relationship between 
local control conditions and L, NN-PI controller 
parameters. Optimisation is achieved for the linear PI 
and L, “PI by using the steepest-descent technique 
with the criterion of minimum integral of square error. 
Figs. 6 and 7 show servo and regulatory control results 
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derived from using both the optimised linear PI con- 
troller and the optimised L, NN-PI. The k, and ki tra- 
jectories of the optimised L, NN-PI are illustrated in 
Fig. 8. 

0.0060 
0.0055 
0.0050 
0.0045 
0.0040 
0.0035- 
0.0030 
0.0025- 
0.0020 
0.0015- 
0.0010 

1.25 I I I I I 1 I 

I 1 I I I I I - 
- 
- 
-7 
- c A. 

- izz hnnn*l---- 
I I I I 

0.95 l . O 0 L - - - - - J  
0 20 40 60 80 100 120 140 

time,min 
Fig. 7 , Comparison of servo and regulatory control performance for the 
neutrahsation process when using optimised linear PI and optimised 
L, NN-PL F2 against time 
linear PI - 
L, "-PI - 

0.0050 I I I I I I I 

0.0045 - 

h 

I I I I I 

0 20 40 60 80 100 120 140 
time, min 

0.0010 

Fig.8 
k o f L  N N P I -  
k; of L z  ":PI - 

k, and k, trajectories of optimised L, NN-PI 

Three 5 x 5 (i.e. Zi = 5, i = 1, ..., 6) modified GPFNs 
are used to construct a nonlinear relationship between 
local control conditions and L, NN-VSPID controlller 
parameters. Fig. 9 shows servo and regulatory contr'ol 
results derived from using both the optimised linear 
PID controller and the optimised L, NN-VSPID. The 
k,, k, and kd trajectories of the optimised I,, 
"_VSPID are illustrated in Fig. 10. The variation of 
the a value for the optimised L, NN-VSPID is illus- 
trated in Fig. 1 I .  The best obtainable servo and reguLa- 
tory control performances for the optimised linear PI, 
the linear PID, the L, NN-PI and the L, NN-VSPID, 
are shown in Table 2. 

Undesirable overshoots and large transients, iIS 
observed from the control performance derived from 
conventional controllers, can be satisfactorily elimd- 
nated by the neural/fuzzy VSPID controller. The 
improvement in servo and regulatory control perfornn- 
ance derived from the preassigned algorithm of the law 
of the controller structure change and the resilient re1,a- 
tionship between controller parameters and local coin- 
trol conditions is desirable and excellent. Satisfactoiry 
servo and regulatory control performance could also be 

derived from FLVSPID controllers. This example has 
illustrated the potential value of using the proposed L, 
NN-VSPID controller in highly nonlinear chemical 
processes. 

time, min 
Fig.9 Comparison of servo and regulatory control performance for the 
neutralisation process when using optimised linear PID and optimised 
L, NN-VSPID 
linear PID - 
L.=.= NN-VSPID - 

Fig. 10 
k, of L, NN-VSPID ~ 

kc, K, and kd trajectories of optimised L, NN-VSPID 

k; of L.. NN VSPID - 
k> of NK-VSPID - 

a 
0.4 

0.21 

I1 1 I I I I I 1 I 
0 20 40 60 80 100 120 140 160 

t i  me, m in 
Fig. 11 Variation of a value for optimised L, NN-VSPID 

8 Conclusion 

This paper has described the design method of a neu- 
ral/fuzzy variable structural proportional-integral-deriv- 
ative (neural/fuzzy VSPID) control system. The PD 
mode is emphasised in the case of a large error occur- 
ring so as to speed up response, and the PI mode is 
applied to small error conditions to eliminate the 
steady-state offset. A sigmoidal-like neuron has been 
employed as a preassigned algorithm of the law of the 
structural change. Meanwhile, the VSPID controller 

Table 2: Comparison of servo and regulatory control performance for the neutralisation process 
when using the linear PI, the linear PID, the! L, NN-PI and the L, NN-VSPlD 

Controller (optimised) k, k, kd E Je 

linear PI 2.673 x 10-3 I .9:38 x 10-3 - - - 294.31 
linear PID 2.436 x 10-3 2.265 x 10" 5.399x IO" - - 270.82 

L, "-PI trajectories of k, and k, : see Fig. 8 - - - 129.45 
L, NN-VSPID trajectories of k,, ki, kd and a : see Figs. IO, 1 1  10 2.951 106.21 

IEE Proc -Control Theory Appl., Vol. 143, No. 2, March 1996 207 



parameters are changed according to local conditions. 
L, neural networks or bounded-inputhounded-output 
fuzzy logic systems have been used for constructing a 
nonlinear relationship between the PID controller 
parameters and local operating control conditions. The 
PI mode with antireset windup has been designed for 
prevention of excessive overshoot caused by direct 
implementation of integral action. The stability analysis 
of the PI/PD part has also been discussed. A neutrali- 
sation process has been used to demonstrate the appli- 
cability of such a controller for controlling highly 
nonlinear processes. 
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